
Deep Learning using Support Vector Machines

Yichuan Tang tang@cs.toronto.edu

Department of Computer Science, University of Toronto. Toronto, Ontario, Canada.

Abstract

Recently, fully-connected and convolutional
neural networks have been trained to reach
state-of-the-art performance on a wide vari-
ety of tasks such as speech recognition, im-
age classification, natural language process-
ing, and bioinformatics data. For classifi-
cation tasks, much of these “deep learning”
models employ the softmax activation func-
tions to learn output labels in 1-of-K for-
mat. In this paper, we demonstrate a small
but consistent advantage of replacing soft-
max layer with a linear support vector ma-
chine. Learning minimizes a margin-based
loss instead of the cross-entropy loss. In al-
most all of the previous works, hidden rep-
resentation of deep networks are first learned
using supervised or unsupervised techniques,
and then are fed into SVMs as inputs. In
contrast to those models, we are proposing
to train all layers of the deep networks by
backpropagating gradients through the top
level SVM, learning features of all layers.
Our experiments show that simply replac-
ing softmax with linear SVMs gives signif-
icant gains on datasets MNIST, CIFAR-10,
and the ICML 2013 Representation Learning
Workshop’s face expression recognition chal-
lenge.

1. Introduction

Deep learning using neural networks have claimed
state-of-the-art performances in a wide range of tasks.
These include (but not limited to) speech (Mohamed
et al., 2009; Dahl et al., 2010) and vision (Jarrett et al.,
2009; Ciresan et al., 2011; Rifai et al., 2011; Krizhevsky
et al., 2012). All of the above mentioned papers use
the softmax activation function (also known as multi-

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

nomial logistic regression) for classification.

Support vector machine is an widely used alternative
to softmax for classification (Boser et al., 1992). Using
SVMs (especially linear) in combination with convolu-
tional nets have been proposed in the past as part of a
multistage process. In particular, a deep convolutional
net is first trained using supervised/unsupervised ob-
jectives to learn good invariant hidden latent represen-
tations. The corresponding hidden variables of data
samples are then treated as input and fed into linear
(or kernel) SVMs (Huang & LeCun, 2006; Lee et al.,
2009; Quoc et al., 2010; Coates et al., 2011). This
technique usually improves performance but the draw-
back is that lower level features are not been fine-tuned
w.r.t. the SVM’s objective.

In other related works, Weston et al. (2008) proposed a
semi-supervised embedding algorithm for deep learn-
ing where the hinge loss is combined with the ”con-
trastive loss” from siamese networks (Hadsell et al.,
2006). Lower layer weights are learned using stochastic
gradient descent. Vinyals et al. (2012) learns a recur-
sive representation using linear SVMs at every layer,
but without joint fine-tuning of the hidden represen-
tation.

In this paper, we show that for some deep architec-
tures, a linear SVM top layer instead of a softmax
is beneficial. We optimize the primal problem of the
SVM and the gradients can be backprogated to learn
lower level features. We demonstrate superior perfor-
mance on MNIST, CIFAR-10, and on a recent Kag-
gle competition on recognizing face expressions. Op-
timization is done using stochastic gradient descent
on small minibatches. Comparing the two models in
Sec. 3.4, we believe the performance gain is largely
due to the superior regularization effects of the SVM
loss function, rather than an advantage from better
parameter optimization.



Deep Learning using Support Vector Machines

2. The model

2.1. Softmax

For classification problems using deep learning tech-
niques, it is standard to use the softmax or 1-of-K
encoding at the top. For example, given 10 possible
classes, the softmax layer has 10 nodes denoted by pi,
where i = 1, . . . , 10. pi specifies a discrete probability
distribution, therefore,

∑10
i pi = 1.

Let h be the activation of the penultimate layer nodes,
W is the weight connecting the penultimate layer to
the softmax layer, the total input into a softmax layer,
given by a, is

ai =
∑
k

hkWki, (1)

then we have

pi =
exp(ai)∑10
j exp(aj)

(2)

The predicted class î would be

î = arg max
i

pi

= arg max
i

ai (3)

2.2. Support Vector Machines

Linear support vector machines (SVM) is originally
formulated for binary classification. Given train-
ing data and its corresponding labels (xn, yn), n =
1, . . . , N , xn ∈ RD, tn ∈ {−1,+1}, SVMs learning
consists of the following constrained optimization:

min
w,ξn

1

2
wTw + C

N∑
n=1

ξn (4)

s.t. wTxntn ≥ 1− ξn ∀n
ξn ≥ 0 ∀n

ξn are slack variables which penalizes data points
which violate the margin requirements. Note that we
can include the bias by augment all data vectors xn
with a scalar value of 1. The corresponding uncon-
strained optimization problem is the following:

min
w

1

2
wTw + C

N∑
n=1

max(1−wTxntn, 0) (5)

The objective of Eq. 5 is known as the primal form
problem of L1-SVM, with the standard hinge loss.
Since L1-SVM is not differentiable, a popular variation

is known as the L2-SVM which minimizes the squared
hinge loss:

min
w

1

2
wTw + C

N∑
n=1

max(1−wTxntn, 0)2 (6)

L2-SVM is differentiable and imposes a bigger
(quadratic vs. linear) loss for points which violate the
margin. To predict the class label of a test data x:

arg max
t

(wTx)t (7)

For Kernal SVMs, optimization must be performed in
the dual. However, scalability is a problem with Ker-
nal SVMs, and in this paper we will be only using
linear SVMs with standard deep learning models.

2.3. Multiclass SVMs

The simplest way to extend SVMs for multiclass prob-
lems is using the so-called one-vs-rest approach (Vap-
nik, 1995). For K class problems, K linear SVMs
will be trained independently, where the data from
the other classes form the negative cases. Hsu & Lin
(2002) discusses other alternative multiclass SVM ap-
proaches, but we leave those to future work.

Denoting the output of the k-th SVM as

ak(x) = wTx (8)

The predicted class is

arg max
k

ak(x) (9)

Note that prediction using SVMs is exactly the same
as using a softmax Eq. 3. The only difference between
softmax and multiclass SVMs is in their objectives
parametrized by all of the weight matrices W. Soft-
max layer minimizes cross-entropy or maximizes the
log-likelihood, while SVMs simply try to find the max-
imum margin between data points of different classes.

2.4. Deep Learning with Support Vector
Machines

To date, deep learning for classification using fully con-
nected layers and convolutional layers have almost al-
ways used softmax layer objective to learn the lower
level parameters. There are exceptions, notably the
supervised embedding with nonlinear NCA, and semi-
supervised deep embedding (Weston et al., 2008). In
this paper, we propose using multiclass SVM’s objec-
tive to train deep neural nets for classification tasks.
Lower layer weights are learned by backpropagating



Deep Learning using Support Vector Machines

Figure 1. Training data. Each column consists of faces of
the same expression: starting from the leftmost column:
Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral.

the gradients from the SVM. To do this, we need to
differentiate the SVM objective with respect to the ac-
tivation of the penultimate layer. Let the objective in
Eq. 5 be l(w), and the input x is replaced with the
penultimate activation h,

∂l(w)

∂hn
= −Ctnw(I{1 > wThntn}) (10)

Where I{·} is the indicator function. Likewise, for the
L2-SVM, we have

∂l(w)

∂hn
= −2Ctnw

(
max(1−wThntn, 0)

)
(11)

From this point on, backpropagation algorithm is ex-
actly the same as the standard softmax-based deep
learning networks.

3. Experiments

3.1. Facial Expression Recognition

This competition/challenge was hosted by the ICML
2013 workshop on representation learning, organized
by the LISA at University of Montreal. The contest
itself was hosted on Kaggle with over 120 competing
teams during the initial developmental period.

The data consist of 28,709 48x48 images of faces under
7 different types of expression. See Fig 1 for examples
and their corresponding expression category. The val-
idation and test sets consist of 3,589 images and this
is a classification task.

Winning Solution

We submitted the winning solution with a public val-
idation score of 69.4% and corresponding private test

score of 71.2%. Our private test score is almost 2%
higher than the 2nd place team. Due to label noise
and other factors such as corrupted data, human per-
formance is roughly estimated to be between 65% and
68%1.

Our submission consists of using a simple Convolu-
tional Neural Network with linear one-vs-all SVM at
the top. Stochastic gradient descent with momentum
is used for training and several models are averaged to
slightly improve the generalization capabilities. Data
preprocessing consisted of first subtracting the mean
value of each image and then setting the image norm
to be 100. Each pixels is then standardized by remov-
ing its mean and dividing its value by the standard
deviation of that pixel, across all training images.

Our implementation is in C++ and CUDA, with ports
to Matlab using MEX files. Our convolution routines
used fast CUDA kernels written by Alex Krizhevsky2.
The exact model parameters and code is provided on
the author’s homepage.

3.1.1. Softmax vs. DLSVM

We compared performances of Softmax with the deep
learning using L2-SVMs (DLSVM). Both models are
tested using an 8 split/fold cross validation, with a
image mirroring layer, similarity transformation layer,
two convolutional filtering+pooling stages, followed by
a fully connected layer with 3072 hidden penultimate
hidden units. The hidden layers are all of the rectified
linear type. other hyperparameters such as weight de-
cay are selected using cross validation.

Softmax DLSVM L2
Training cross validation 67.6% 68.9%

Public leaderboard 69.3% 69.4%
Private leaderboard 70.1% 71.2%

Table 1. Comparisons of the models in terms of % accu-
racy. Training c.v. is the average cross validation accuracy
over 8 splits. Public leaderboard is the heldout valida-
tion set scored via Kaggle’s public leaderboard. Private
leaderboard is the final private leaderboard score used to
determine the competition’s winners.

We can also look at the validation curve of the Soft-
max vs L2-SVMs as a function of weight updates in
Fig. 2. As learning rate is lowered during the latter
half of training, DLSVM maintains a small yet clear
performance gain.

1Personal communication from the competition orga-
nizers: http://bit.ly/13Zr6Gs

2http://code.google.com/p/cuda-convnet



Deep Learning using Support Vector Machines

Figure 2. Cross validation performance of the two models.
Result is averaged over 8 folds.

We also plotted the 1st layer convolutional filters of
the two models:

Figure 3. Filters from convolutional net with softmax.

Figure 4. Filters from convolutional net with L2SVM.

While not much can be gain from looking at these
filters, SVM trained conv net appears to have more
textured filters.

3.2. MNIST

MNIST is a standard handwritten digit classification
dataset and has been widely used as a benchmark
dataset in deep learning.

We first performed PCA from 784 dimensions to 70 di-
mensions. The data is divided up into 300 minibatches
of 200 samples each. We trained using stochastic gra-
dient descent with momentum on these minibatches
for over 400 epochs, totalling 120K weight updates.

Our learning algorithm is permutation invariant with-
out any unsupervised pretraining

Softmax: 0.99% DLSVM: 0.87%

An error of 0.87% on MNIST is the state-of-the-art
for the above learning setting. The only difference
between softmax and DLSVM is the last layer. This
experiment is mainly to demonstrate the effectiveness
of the last linear SVM layer vs the softmax, we have
not fully explored other commonly used tricks such as
Dropout, weight constraints, hidden unit sparsity, and
more hidden layers and layer sizes.

3.3. CIFAR-10

Canadian Institute For Advanced Research 10 dataset
is a 10 class object dataset with 50,000 images for
training and 10,000 for testing. The colored images
are 32× 32 in resolution. We trained a Convolutional
Neural Net with two alternating pooling and filtering
layers. Horizontal reflection and jitter is applied to
the data randomly before the weight is updated using
a minibatch of 128 data cases.

The conv net part of both the model is fairly standard,
the first C layer had 32 5× 5 filters with Relu hidden
units, the second C layer has 64 5 × 5 filters. Both
pooling layers used max pooling and downsampled by
a factor of 2.

The penultimate layer has 3072 hidden nodes and uses
Relu activation with a dropout rate of 0.2. The dif-
ference between the Convnet+Softmax and ConvNet
with L2-SVM is the mainly in the SVM’s C constant,
the Softmax’s weight decay constant, and the learning
rate. We selected the values of these hyperparameters
for each model separately using validation.

ConvNet+Softmax ConvNet+SVM
Test error 14.0% 11.9%

Table 2. Comparisons of the models in terms of % error on
the test set.

In literature, the state-of-the-art (at the time of writ-
ing) result is around 9.5% by (Snoeck et al. 2012).
However, that model is different as it includes con-
trast normalization layers as well as used Bayesian op-
timization to tune its hyperparameters.



Deep Learning using Support Vector Machines

3.4. Regularization or Optimization

To see whether the gain in DLSVM is due to the su-
periority of the objective function or to the ability to
better optimize, We looked at the two final models’s
loss under its own objective functions as well as the
other objective. The results are in Table 3.

ConvNet ConvNet
+Softmax +SVM

Test error 14.0% 11.9%
Avg. cross entropy 0.072 0.353
Hinge loss squared 213.2 0.313

Table 3. Training objective including the weight costs.

It is interesting to note here that lower cross entropy
actually led a higher error in the middle row. In ad-
dition, we also initialized a ConvNet+Softmax model
with the weights of the DLSVM that had 11.9% error.
As further training is performed, the network’s error
rate gradually increased towards 14%.

This gives limited evidence that the gain of DLSVM
is largely due to a better objective function.

4. Conclusions

In conclusion, we have shown that DLSVM works bet-
ter than softmax on 2 standard datasets and a recent
dataset. Switching from softmax to SVMs is incredibly
simple and appears to be useful for classification tasks.
Further research is needed to explore other multiclass
SVM formulations and better understand where and
how much the gain is obtained.

Acknowledgment

Thanks to Alex Krizhevsky for making his very fast
CUDA conv kernels available! Also many thanks to
Relu Patrascu for making running experiments possi-
ble!

References

Boser, Bernhard E., Guyon, Isabelle M., and Vapnik,
Vladimir N. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th Annual ACM Work-
shop on Computational Learning Theory, pp. 144–152.
ACM Press, 1992.

Ciresan, D., Meier, U., Masci, J., Gambardella, L. M., and
Schmidhuber, J. High-performance neural networks for
visual object classification. CoRR, abs/1102.0183, 2011.

Coates, Adam, Ng, Andrew Y., and Lee, Honglak. An
analysis of single-layer networks in unsupervised feature
learning. Journal of Machine Learning Research - Pro-
ceedings Track, 15:215–223, 2011.

Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E.
Phone recognition with the mean-covariance restricted
Boltzmann machine. In NIPS 23. 2010.

Hadsell, Raia, Chopra, Sumit, and Lecun, Yann. Dimen-
sionality reduction by learning an invariant mapping. In
In Proc. Computer Vision and Pattern Recognition Con-
ference (CVPR06. IEEE Press, 2006.

Hsu, Chih-Wei and Lin, Chih-Jen. A comparison of meth-
ods for multiclass support vector machines. IEEE Trans-
actions on Neural Networks, 13(2):415–425, 2002.

Huang, F. J. and LeCun, Y. Large-scale learning
with SVM and convolutional for generic object cate-
gorization. In CVPR, pp. I: 284–291, 2006. URL
http://dx.doi.org/10.1109/CVPR.2006.164.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun,
Y. What is the best multi-stage architecture for object
recognition? In Proc. Intl. Conf. on Computer Vision
(ICCV’09). IEEE, 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In NIPS, pp. 1106–1114, 2012.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Convo-
lutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In Intl. Conf.
on Machine Learning, pp. 609–616, 2009.

Mohamed, A., Dahl, G. E., and Hinton, G. E. Deep belief
networks for phone recognition. In NIPS Workshop on
Deep Learning for Speech Recognition and Related Ap-
plications, 2009.

Quoc, L., Ngiam, J., Chen, Z., Chia, D., Koh, P. W., and
Ng, A. Tiled convolutional neural networks. In NIPS
23. 2010.

Rifai, Salah, Dauphin, Yann, Vincent, Pascal, Bengio,
Yoshua, and Muller, Xavier. The manifold tangent clas-
sifier. In NIPS, pp. 2294–2302, 2011.

Vapnik, V. N. The nature of statistical learning theory.
Springer, New York, 1995.

Vinyals, O., Jia, Y., Deng, L., and Darrell, T. Learning
with Recursive Perceptual Representations. In NIPS,
2012.

Weston, Jason, Ratle, Frdric, and Collobert, Ronan. Deep
learning via semi-supervised embedding. In Interna-
tional Conference on Machine Learning, 2008.


