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Abstract
In many lock-free algorithms, threads help one another, and each operation creates a descriptor
that describes how other threads should help it. Allocating and reclaiming descriptors intro-
duces significant space and time overhead. We introduce the first descriptor abstract data type
(ADT), which captures the usage of descriptors by lock-free algorithms. We then develop a
weak descriptor ADT which has weaker semantics, but can be implemented significantly more
efficiently. We show how a large class of lock-free algorithms can be transformed to use weak
descriptors, and demonstrate our technique by transforming several algorithms, including the
leading k-compare-and-swap (k-CAS) algorithm. The original k-CAS algorithm allocates at
least k + 1 new descriptors per k-CAS. In contrast, our implementation allocates two descriptors
per process, and each process simply reuses its two descriptors. Experiments on a variety of work-
loads show significant performance improvements over implementations that reclaim descriptors,
and reductions of up to three orders of magnitude in peak memory usage.
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1 Introduction

Many concurrent data structures use locks, but locks have downsides, such as susceptib-
ility to convoying, deadlock and priority inversion. Lock-free data structures avoid these
downsides, and can be quite efficient. They guarantee that some process will always makes
progress, even if some processes halt unexpectedly. This guarantee is typically achieved with
helping, which allows a process to harness any time that it would otherwise spend waiting for
another operation to complete. Specifically, whenever a process p is prevented from making
progress by another operation, it attempts to perform some (or all) of the work of the other
operation, on behalf of the process that started it. This way, even if the other process has
crashed, its operation can be completed, so that it no longer blocks p.

In simple lock-free data structures (e.g., [30, 16, 25, 28]), a process can determine how
to help an operation that blocks it by inspecting a small part of the data structure. In more
complex lock-free data structures [14, 19, 29, 10], processes publish descriptors for their
operations, and helpers look at these descriptors to determine how to help. A descriptor
typically encodes a sequence of steps that a process should follow in order to complete the
operation that created it.

Since lock-free algorithms cannot use mutual exclusion, many helpers can simultaneously
help an operation, potentially long after the operation has terminated. Thus, to avoid situ-
ations where helpers read inconsistent data in a descriptor and corrupt the data structure,
each descriptor must remain consistent and accessible until no helper will ever access it
again. This leads to wasteful algorithms which allocate a new descriptor for each operation.
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In this work, we introduce two simple abstract data types (ADTs) that capture the way
descriptors are used by wasteful algorithms (in Section 2). The immutable descriptor ADT
provides two operations, CreateNew and ReadField, which respectively create and initialize
a new descriptor, and read one of its fields. The mutable descriptor ADT extends the
immutable descriptor ADT by adding two operations: WriteField and CASField. These
allow a helper to modify fields of the descriptor (e.g., to indicate that the operation has
been partially or fully completed). We also give examples of wasteful algorithms whose
usage of descriptors is captured by these ADTs.

The natural way to implement the immutable and mutable descriptor ADTs is to have
CreateNew allocate memory and initialize it, and to have ReadField, WriteField and CAS-
Field perform a read, write and CAS, respectively. Every implementation of one of these
ADTs must eventually reclaim the descriptors it allocates. Otherwise, the algorithm would
eventually exhaust memory. We briefly explain why reclaiming descriptors is expensive.

In order to safely free a descriptor, a process must know that the descriptor is no longer
reachable. This means no other process can reach the descriptor by following pointers in
shared memory or in its private memory. State of the art lock-free memory reclamation
algorithms such as hazard pointers [26] and DEBRA+ [7] can determine when no process has
a pointer in its private memory to a given object, but they typically require the underlying
algorithm to identify a time t after which the object is no longer reachable from shared
memory. In an algorithm where each operation removes all pointers to its descriptor from
shared memory, t is when O completes. However, in some algorithms (e.g., [11]), pointers
to descriptors are “lazily” cleaned up by subsequent operations, so t may be difficult to
identify. The overhead of reclaiming descriptors comes both from identifying t, and from
actually running a lock-free memory reclamation algorithm.

Additionally, in some applications, such as embedded systems, it is important to have a
small, predictable number of descriptors in the system. In such cases, one must use memory
reclamation algorithms that aggressively reclaim memory to minimize the number of objects
that are waiting to be reclaimed at any point in time. Such algorithms incur high overhead.
For example, hazard pointers can be used to maintain a small memory footprint, but a
process must perform costly memory fences every time it tries to access a new descriptor.

To circumvent the aforementioned problems, we introduce a weak descriptor ADT (in
Section 3) that has slightly weaker semantics than the mutable descriptor ADT, but can be
implemented without memory reclamation. The crucial difference is that each time a process
invokes CreateNew to create a new descriptor, it invalidates all of its previous descriptors.
An invocation of ReadField on an invalid descriptor fails and returns a special value ⊥.
Invocations of WriteField and CASField on invalid descriptors have no effect. We believe
the weak descriptor ADT can be useful in designing new lock-free algorithms, since an
invocation of ReadField that returns ⊥ can be used to inform a helper that it no longer
needs to continue helping (making further accesses to the descriptor unnecessary).

We also identify a class of lock-free algorithms that use the descriptor ADT, and which
can be transformed to use the weak descriptor ADT (in Section 3.2). At a high level,
these are algorithms in which (1) each operation creates a descriptor and invokes a Help
function on it, and (2) ReadField, WriteField and CASField operations occur only inside
invocations of Help. Intuitively, the fact that these operations occur only in Help makes it
easy to determine how the transformed algorithm should proceed when it performs an invalid
operation: the operation being helped must have already terminated, so it no longer needs
help. We prove correctness for our transformation, and demonstrate its use by transforming
a wasteful implementation of a double-compare-single-swap (DCSS) primitive [17].
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We then present an extension to our weak descriptor ADT, and show how algorithms
that perform ReadField operations outside of Help can be transformed to use this extension
(in Section 4). We prove correctness for the transformation, and demonstrate its use by
transforming wasteful implementations of a k-compare-and-swap (k-CAS) primitive [17] and
the LLX and SCX primitives of Brown et al. [11]. These primitives can be used to implement
a wide variety of advanced lock-free data structures. For example, LLX and SCX have been
used to implement lists, chromatic trees, relaxed AVL trees, relaxed (a, b)-trees, relaxed
b-slack trees and weak AVL trees [10, 8, 18].

We use mostly known techniques to produce an efficient, provably correct implementation
of our extended weak descriptor ADT (in Section 5). The high level idea is to (1) store a
sequence number in each descriptor, (2) replace pointers to descriptors with tagged sequence
numbers, which contain a process name and a sequence number, and (3) increment the
sequence number in a descriptor each time it is reused.

With this implementation, the transformed algorithms for k-CAS, and LLX and SCX,
have some desirable properties. In the original k-CAS algorithm, each operation attempt
allocates at least k+1 new descriptors. In contrast, the transformed algorithm allocates only
two descriptors per process, once, at the beginning of the execution, and these descriptors are
reused. Similarly, in the original algorithm for LLX and SCX, each SCX operation creates
a new descriptor, but the transformed algorithm allocates only one descriptor per process,
at the beginning of the execution. This entirely eliminates dynamic allocation and memory
reclamation for descriptors (significantly reducing overhead), and results in an extremely
small descriptor footprint.

We present extensive experiments on a 64-thread AMD system and a 48-thread Intel
system (in Section 6). Our results show that transformed implementations always perform
at least as well as their wasteful counterparts, and significantly outperform them in some
workloads. In a k-CAS microbenchmark, our implementation outperformed wasteful im-
plementations using fast distributed epoch-based reclamation [7], hazard pointers [26] and
read-copy-update (RCU) [13] by up to 2.3x, 3.3x and 5.0x, respectively. In a microbench-
mark using a binary search tree (BST) implemented with LLX and SCX, our transformed
implementation is up to 57% faster than the next best wasteful implementation.

The crucial observation in this work is that, in algorithms where descriptors are used only
to facilitate helping, a descriptor is no longer needed once its operation has terminated. This
allows a process to reuse a descriptor as soon as its operation finishes, instead of allocating
a new descriptor for each operation, and waiting considerably longer (and incurring much
higher overhead) to reclaim it using standard memory reclamation techniques. The challenge
in this work is to characterize the set of algorithms that can benefit from this observation,
and to design and prove the correctness of a transformation that takes such algorithms
and produces new algorithms that simply reuse a small number of descriptors. As a result
of developing this transformation, we also produce significantly faster implementations of
k-CAS, and LLX and SCX.

2 Wasteful Algorithms

In this section, we describe two classes of lock-free wasteful algorithms, and give descriptor
ADTs that capture their behaviour. First, we consider algorithms with immutable descriptors,
which are not changed after they are initialized. We then discuss algorithms with mutable
descriptors, which are modified by helpers.

For the sake of illustration, we start by describing one common way that lock-free wasteful
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algorithms are implemented. Consider a lock-free algorithm that implements a set of high-
level operations. Each high-level operation consists of one or more attempts, which either
succeed, or fail due to contention. Each high-level operation attempt accesses a set of objects
(e.g., individual memory locations or nodes of a tree). Conceptually, a high-level operation
attempt locks a subset of these objects and then possibly modifies some of them. These locks
are special: instead of providing exclusive access to a process, they provide exclusive access
to a high-level operation attempt. Whenever a high-level operation attempt by a process p is
unable to lock an object because it is already locked by another high-level operation attempt
O, p first helps O to complete, before continuing its own attempt or starting a new one. By
helping O complete, p effectively removes the locks that prevent it from making progress.
Note that p is able to access objects locked for a different high-level operation attempt (which
is not possible in traditional lock-based algorithms), but only for the purpose of helping the
other high-level operation attempt complete.

We now discuss how helping is implemented. Each high-level operation or operation
attempt allocates a new descriptor object, and fills it with information that describes any
modifications it will perform. This information will be used by any processes that help the
high-level operation attempt. For example, if the lock-free algorithm performs its modi-
fications with a sequence of CAS steps, then the descriptor might contain the addresses,
expected values and new values for the CAS steps.

A high-level operation attempt locks each object it would like to access by publishing
pointers to its descriptor, typically using CAS. Each pointer may be published in a dedicated
field for descriptor pointers, or in a memory location that is also used to store application
values. For example, in the BST of Ellen et al., nodes have a separate field for descriptor
pointers [14], but in Harris’ implementation of multi-word CAS from single-word CAS, high-
level operations temporarily replace application values with pointers to descriptors [17].

When a process encounters a pointer ptr to a descriptor (for a high-level operation
attempt that is not its own), it may decide to help the other high-level operation attempt
by invoking a function Help(ptr). Typically, Help(ptr) is also invoked by the process that
started the high-level operation. That is, the mechanism used to help is the same one used
by a process to perform its own high-level operation attempt.

Wasteful algorithms typically assume that, whenever an operation attempt allocates
a new descriptor, it uses fresh memory that has never previously been allocated. If this
assumption is violated, then an ABA problem may occur. Suppose a process p reads an
address x and sees A, then performs a CAS to change x from A to C, and interprets the
success of the CAS to mean that x contained A at all times between the read and CAS.
If another process changes x from A to B and back to A between p’s read and CAS, then
p’s interpretation is invalid, and an ABA problem has occurred. Note that safe memory
reclamation algorithms will reclaim a descriptor only if no process has, or can obtain, a
pointer to it. Thus, no process can tell whether a descriptor is allocated fresh or reclaimed
memory. So, safe memory reclamation will not introduce ABA problems.

2.1 Immutable descriptors
We give a straightforward immutable descriptor ADT that captures the way that descriptors
are used by the class of wasteful algorithms we just described. A descriptor has a set of fields,
and each field contains a value. The ADT offers two operations: CreateNew and ReadField.
CreateNew takes, as its arguments, a descriptor type and a sequence of values, one for each
field of the descriptor. It returns a unique descriptor pointer des that has never previously
been returned by CreateNew. Every descriptor pointer returned by CreateNew represents a
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new immutable descriptor object. ReadField takes, as its arguments, a descriptor pointer
des and a field f , and returns the value of f in des.

In wasteful algorithms, whenever a process wants to create a new descriptor, it simply
invokes CreateNew. Whenever a helper wants to access a descriptor, it invokes ReadField.

2.1.1 Progress
If the immutable descriptor ADT is implemented so that CreateNew allocates and initializes
a new descriptor, and ReadField reads and returns a field of a descriptor, then its operations
will be wait-free (i.e., each operation will terminate after a finite number of its own steps).
However, wait-free descriptor operations are not necessary to guarantee lock-freedom for
high-level operations that use descriptors. Instead, we simply require descriptor operations
to be lock-free. We now explain why this is sufficient to implement lock-free data structures.

Consider a lock-free algorithm that uses a wait-free implementation of the immutable
descriptor ADT. Suppose we transform this algorithm by replacing the wait-free implement-
ation of the descriptor ADT with a lock-free implementation. We argue that the transformed
algorithm remains lock-free. In other words, we show that, if processes take infinitely many
steps in the transformed algorithm, then infinitely many high-level operations complete.

In the original algorithm, if processes take infinitely many steps, then infinitely many
high-level operations will complete. The only steps we change to obtain the transformed
algorithm are invocations of CreateNew and ReadField, some of which might no longer
terminate. Therefore, the only way the transformed algorithm can fail to satisfy lock-
freedom is if, eventually, all processes take steps only in non-terminating invocations of
CreateNew and ReadField. (Otherwise, processes take infinitely many steps of the original
algorithm, so infinitely many high-level operations will succeed.) In this case, only finitely
many invocations of CreateNew and ReadField will terminate. However, since CreateNew
and ReadField are lock-free, infinitely many invocations of CreateNew and/or ReadField
must terminate. Thus, a lock-free implementation of the immutable descriptor ADT is
sufficient to implement lock-free algorithms.

2.1.2 Example Algorithm: DCSS
We use the double-compare single-swap (DCSS) algorithm of Harris et al. [17] as an example
of a lock-free algorithm that fits the preceding description. Its usage of descriptors is easily
captured by the immutable descriptor ADT. A DCSS(a1, e1, a2, e2, n2) operation does the
following atomically. It checks whether the values in addresses a1 and a2 are equal to a pair
of expected values, e1 and e2. If so, it stores the value n2 in a2 and returns e2. Otherwise
it returns the current value of a2.

Pseudocode for the DCSS algorithm appears in Figure 1. At a high level, DCSS creates
a descriptor, and then attempts to lock a2 by using CAS to replace the value in a2 with a
pointer to its descriptor. Since the DCSS algorithm replaces values with descriptor pointers,
it needs a way to distinguish between values and descriptor pointers (in order to determine
when helping is needed). So, it steals a bit from each memory location and uses this bit to
flag descriptor pointers.

We now give a more detailed description. DCSS starts by creating and initializing a
new descriptor des at line 2. It then flags des at line 3. We call the result fdes a flagged
pointer. DCSS then attempts to lock a2 in the loop at lines 4-7. In each iteration, it tries
to store its flagged pointer in a2 using CAS. If the CAS is successful, then the operation
attempt invokes DCSSHelp to complete the operation (at line 8). Now, suppose the CAS
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1 DCSS(a1, e1, a2, e2, n2) :
2 des := CreateNew(DCSSdes, a1, e1, a2, e2, n2)
3 fdes := flag(des)
4 loop
5 r := CAS(a2, e2, fdes)
6 i f r is flagged then DCSSHelp(r)
7 else exit loop
8 i f r = e2 then DCSSHelp(fdes)
9 return r

11 DCSSRead(addr) :
12 loop
13 r := ∗addr
14 i f r is flagged then DCSSHelp(r)
15 else exit loop
16 return r

17 type DCSSdes :
{ADDR1, EXP1, ADDR2, EXP2, NEW2}

21 DCSSHelp(fdes) :
22 des := unflag(fdes)
23 a1 := ReadField(des, ADDR1)
24 a2 := ReadField(des, ADDR2)
25 e1 := ReadField(des, EXP1)
26 i f ∗a1 = e1 then
27 n2 := ReadField(des, NEW2)
28 CAS(a2, fdes, n2)
29 else
30 e2 := ReadField(des, EXP2)
31 CAS(a2, fdes, e2)

Figure 1 Code for the DCSS algorithm of Harris et al. [17] using the immutable descriptor ADT.

fails. Then, the DCSS checks whether its CAS failed because a2 contained another DCSS
operation’s flagged pointer (at line 6). If so, it invokes DCSSHelp to help the other DCSS
complete, and then retries its CAS. DCSS repeatedly performs its CAS (and helping) until
the DCSS either succeeds, or fails because a2 did not contain e2.

DCSSHelp takes a flagged pointer fdes as its argument, and begins by unflagging fdes

(to obtain the actual descriptor pointer for the operation). Then, it reads a1 and checks
whether it contains e1 (at line 26). If so, it uses CAS to change a2 from fdes to n2,
completing the DCSS (at line 28). Otherwise, it uses CAS to change a2 from fdes to e2,
effectively aborting the DCSS (at line 31). Note that this code is executed by the process
that created the descriptor, and also possibly by several helpers. Some of these helpers may
perform a CAS at line 26 and some may perform a CAS at line 28, but only the first of
these CAS steps can succeed.

When a program uses DCSS, some addresses can contain either values or descriptor
pointers. So, each read of such an address must be replaced with an invocation of a function
called DCSSRead. DCSSRead takes an address addr as its argument, and begins by reading
addr (at line 13). It then checks whether it read a descriptor pointer (at line 14) and, if so,
invokes DCSSHelp to help that DCSS complete. DCSSRead repeatedly reads and performs
helping until it sees a value, which it returns (at line 16).

2.2 Mutable descriptors
In some more advanced lock-free algorithms, each descriptor also contains information about
the status of its high-level operation attempt, and this status information is used to coordin-
ate helping efforts between processes. Intuitively, the status information gives helpers some
idea of what work has already been done, and what work remains to be done. Helpers use
this information to direct their efforts, and update it as they make progress. For example,
the state information might simply be a bit that is set (by the process that started the
high-level operation, or a helper) once the high-level operation succeeds.

As another example, in an algorithm where high-level operation attempts proceed in
several phases, the descriptor might store the current phase, which would be updated by
helpers as they successfully complete phases. Observe that, since lock-free algorithms can-
not use mutual exclusion, helpers often use CAS to avoid making conflicting changes to
status information, which is quite expensive. Updating status information may introduce
contention. Even when there is no contention, it adds overhead. Lock-free algorithms typic-
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ally try to minimize updates to status information. Moreover, status information is usually
simplistic, and is encoded using a small number of bits.

Status information might be represented as a single field in a descriptor, or it might be
distributed across several fields. Any fields of a descriptor that contain status information
are said to be mutable. All other fields are called immutable, because they do not change
during an operation.
Mutable descriptor ADT. We now extend the immutable descriptor ADT to provide
operations for changing (mutable) fields of descriptors. The mutable descriptor ADT offers
four operations: CreateNew, WriteField, CASField and ReadField. The semantics for Cre-
ateNew and ReadField are the same as in the immutable descriptor ADT. WriteField takes,
as its arguments, a descriptor pointer des, a field f and a value v. It stores v in field f of des.
CASField takes, as its arguments, a descriptor pointer des, a field f , an expected value exp

and a new value v. Let vf be the value of f in des just before the CASField. If vf = exp,
then CASField stores v in f . CASField returns vf . As in the immutable descriptor ADT,
we require the operations of the mutable descriptor ADT to be lock-free.

2.2.1 Example Algorithm: k-CAS
A k-CAS(a1, ..., ak, e1, ..., ek, n1, ..., nk) operation atomically does the following. First, it
checks if each address ai contains its expected value ei. If so, it writes a new value ni to ai

for all i and returns true. Otherwise it returns false.
The k-CAS algorithm of Harris et al. [17] is an example of a lock-free algorithm that

has descriptors with mutable fields. At a high level, a k-CAS operation O in this algorithm
starts by creating a descriptor that contains its arguments. It then tries to lock each location
ai for the operation O by changing the contents of ai from ei to des, where des is a pointer
to O’s descriptor. If it successfully locks each location ai, then it changes each ai from des

to ni, and returns true. If it fails because ai is locked for another operation, then it helps
the other operation to complete (and unlock its addresses), and then tries again. If it fails
because ai contains an application value different from ei, then the k-CAS fails, and unlocks
each location aj that it locked by changing it from des back to ej , and returns false. (The
same thing happens if O fails to lock ai because the operation has already terminated.)

We now give a more detailed description of the algorithm. Pseudocode appears in Fig-
ure 2. A k-CAS operation creates its descriptor at line 5, and then invokes a function
k-CASHelp to complete the operation. In addition to the arguments to its k-CAS opera-
tion, a k-CAS descriptor contains a 2-bit state field that initially contains Undecided and is
changed to Succeeded or Failed depending on how the operation progresses. This state field
is used to coordinate helpers.

Let p be a process performing (or helping) a k-CAS operation O that created a descriptor
d. If p fails to lock some address ai in d, then p attempts to change the state of d using
CAS from Undecided to Failed. On the other hand, if p successfully locks each address in
d, then p attempts to change the state of d using CAS from Undecided to Succeeded. Since
the state field changes only from Undecided to either Failed or Succeeded, only the first CAS
on the state field of d will succeed. The k-CAS implementation then uses a lock-free DCSS
primitive (the one presented in Section 2.1.2) to ensure that p can lock addresses for O only
while d’s state is Undecided. This prevents helpers from erroneously performing successful
CAS steps after the k-CAS operation is already over.

Recall that the DCSS algorithm allocates a descriptor for each DCSS operation. A
k-CAS operation performs potentially many DCSS operations (at least k for a successful
k-CAS), and also allocates its own k-CAS descriptor. The k-CAS algorithm need not be
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1 type k-CASdes : {STATE, ADDR1, EXP1, NEW1,
ADDR2, EXP2, NEW2, . . . , ADDRk, EXPk, NEWk}

3 . k-CAS ADT operations
4 k-CAS(a1, e1, n1, a2, e2, n2, . . . , ak, ek, nk) :
5 des := CreateNew(k-CASdes, Undecided, a1, e1, n1, . . .)
6 fdes := flagged version of des
7 return k-CASHelp(fdes)

9 k-CASRead(addr) :
10 loop
11 r := DCSSRead(addr)
12 i f r is flagged then k-CASHelp(r)
13 else exit loop
14 return r

16 . Private procedures
17 k-CASHelp(fdes) :
18 des := remove the flag from fdes
19 . Use DCSS to store fdes in each of a1, a2, . . . , ak

20 . only if des has STATE Undecided and ai = ei for all i
21 i f ReadField(des, STATE) = Undecided then
22 state := Succeeded
23 for i = 1...k do
24 retry_entry :
25 a1 := ReadField(des, STATE)
26 a2 := ReadField(des, ADDRi)
27 e2 := ReadField(des, EXPi)
28 val := DCSS(〈des, STATE〉,Undecided, a2, e2, fdes)
29 i f val is flagged then
30 i f val 6= fdes then
31 k-CASHelp(val)
32 goto retry_entry
33 else
34 i f val 6= e2 then
35 state := F ailed
36 break
37 CASField(des, STATE,Undecided, state)

39 . Replace fdes in a1, ..., ak with n1, ..., nk or e1, ..., ek

40 state := ReadField(des, STATE)
41 for i = 1...k do
42 a = ReadField(des, ADDRi)
43 i f state = Succeeded then
44 new := ReadField(des, NEWi)
45 else
46 new := ReadField(des, EXPi)
47 CAS(a, fdes, new)
48 return (state = Succeeded)

Figure 2 Code for the k-CAS algorithm of Harris et al. [17] using the mutable descriptor ADT.

aware of DCSS descriptors (or of the bit reserved in each memory location by the DCSS
algorithm to flag values as DCSS descriptor pointers), since it can simply use the DCSSRead
procedure described above whenever it accesses a memory location that might contain a
DCSS descriptor. However, the k-CAS algorithm performs DCSS on the state field of a
k-CAS descriptor, which is accessed using the k-CAS descriptor’s ReadField operation. To
allow DCSS to access the state field, we must modify DCSS slightly. First, instead of passing
an address a1 to DCSS, we pass a pointer to the k-CAS descriptor and the name of the state
field (at line 28 of Figure 2). Second, we replace the read of addr1 in DCSS (at line 26 of
Figure 1) with an invocation of ReadField.
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Since k-CAS descriptor pointers are temporarily stored in memory locations that nor-
mally contain application values, the k-CAS algorithm needs a way to determine whether
a value in a memory location is an application value or a k-CAS descriptor pointer. In the
DCSS algorithm, the solution was to reserve a bit in each memory location, and use this bit
to flag the value contained in the location as a pointer to a DCSS descriptor. Similarly, the
k-CAS algorithm reserves a bit in each memory location to flag a value as a k-CAS descriptor
pointer. The k-CAS and DCSS algorithms need not be aware of each other’s reserved bits,
but they should not reserve the same bit (or else, for example, a DCSS operation could
encounter a k-CAS descriptor pointer, and interpret it as a DCSS descriptor pointer).

When the k-CAS algorithm is used, some memory addresses may contain either values or
descriptor pointers, so reads of such addresses must be replaced by a k-CASRead operation.
This operation reads an address, and checks whether it contains a k-CAS descriptor pointer.
If so, it helps the k-CAS operation to complete, and tries again. Otherwise, it returns the
value it read. For further details, on the k-CAS algorithm refer to [17].

3 Weak descriptors

In this section we present a weak descriptor ADT that has weaker semantics than the
mutable descriptor ADT, but can be implemented more efficiently (in particular, without
requiring any memory reclamation for descriptors). We identify a class of algorithms that
use the mutable descriptor ADT, and which can be transformed to use the weak descriptor
ADT, instead.

We first discuss a restricted case where operation attempts only create a single descriptor,
and we give an ADT, transformation and proof for that restricted case. (In the next section,
we describe how the ADT and transformation can be modified slightly to support operation
attempts that create multiple descriptors.)

3.1 Weak descriptor ADT

The weak descriptor ADT is a variant of the mutable descriptor ADT that allows some
operations to fail. To facilitate the discussion, we introduce the concept of descriptor validity.
Let des be a pointer returned by a CreateNew operation O by a process p, and d be the
descriptor pointed to by des. In each configuration, d is either valid or invalid. Initially,
d is valid. If p performs another CreateNew operation O′ after O, then d becomes invalid
immediately after O′ (and will never be valid again).

We say that a ReadField(des, ...), WriteField(des, ...) or CASField(des, ...) operation is
performed on a descriptor d, where des is a pointer to d. An operation on a valid (resp.,
invalid) descriptor is said to be valid (resp., invalid). Invalid operations have no effect on
any base object, and return a special value ⊥ (which is never contained in a field of any
descriptor) instead of their usual return value. We say that a CreateNew operation O is
performed on a descriptor d if O returns a pointer to d. Observe that a CreateNew
operation is always valid. We say that a process p owns a descriptor d if it performed a
CreateNew operation that returned a pointer des to d.

The semantics for CreateNew are the same as in the mutable descriptor ADT. The
semantics for the other three operations are the same as in the mutable descriptor ADT,
except that they can be invalid. As in the previous ADTs, these operations must be lock-free.
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3.2 Transforming a class of algorithms to use the weak descriptor ADT
We now formally define a class of lock-free algorithms that use the mutable descriptor ADT,
and can easily be transformed so that they use the weak descriptor ADT, instead. We
say that a step s of an execution is nontrivial if it changes the state of an object o in
shared memory, and trivial otherwise. In particular, all invalid operations are trivial, and
an unsuccessful CAS or a CAS whose expected and new values are the same are both trivial.
In the following, we abuse notation slightly by referring interchangeably to a descriptor and
a pointer to it.

I Definition 1. Weak-compatible algorithms (WCA) are lock-free wasteful algorithms that
use the mutable descriptor ADT, and have the following properties:

1. Each high-level operation attempt O by a process p may create (and initialize) a single
descriptor d. Inside O, p may perform at most one invocation of a function Help(d) (and
p may not invoke Help(d) outside of O).

2. A process may help any operation attempt O′ by another process by invoking Help(d′)
where d′ is the descriptor that was created by O′.

3. If O terminates at time t, then any steps taken in an invocation of Help(d) after time t

are trivial (i.e., do not change the state of any shared object, incl. d).
4. While a process q 6= p is performing Help(d), q cannot change any variables in its private

memory that are still defined once Help(d) terminates (i.e., variables that are local to
the process q, but are not local to Help).

5. All accesses (read, write or CAS) to a field of d occur inside either Help(d) or O.

At a high level, properties 1 and 2 of WCA describe how descriptors are created and
helped. Property 4 intuitively states that, whenever a process q finishes helping another
process perform its operation attempt, q knows only that it finished helping, and does
not remember anything about what it did while helping the other process. In particular,
this means that q cannot pay attention to the return value of Help. We explain why this
behaviour makes sense. If q creates a descriptor d as part of a high-level operation attempt
O and invokes Help(d), then q might care about the return value of Help, since it needs
to compute the response of O. However, if q is just helping another process p’s high-level
operation attempt O, then it does not care about the response of Help, since it does not
need to compute the response of O. The remaining properties, 3 and 5, allow us to argue
that the contents of a descriptor are no longer needed once the operation that created it has
terminated (and, hence, it makes sense for the descriptor to become invalid). In Section 4,
we will study a larger class of algorithms with a weaker version of property 5.
The transformation. Each algorithm in WCA can be transformed in a straightforward
way into an algorithm that uses the weak descriptor ADT as follows. Consider any ReadField
or CASField operation op performed by a high-level operation attempt O in an invocation
of Help(d), where d was created by a different high-level operation attempt O′. Note that op

is performed while O is helping O′. After op, a check is added to determine whether op was
invalid, in which case p returns from Help immediately. (In this case, Help does not need to
continue, since op will be invalid only if O′ has already been completed by the process that
owns d or a helper.)
Example Algorithm: DCSS. Figure 3 shows code for the DCSS algorithm in Figure 1
that has been transformed to use the weak descriptor ADT. There, we include only the
DCSSHelp procedure, since it is the only one that differs from Figure 1. The transformation
adds lines 4, 6, 8, 11 and 15 to check whether the preceding invocations of ReadField are
invalid.
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1 DCSSHelp(fdes) :
2 des := Unflag(fdes)
3 a1 := ReadField(des, ADDR1)
4 i f a1 = ⊥ then return
5 a2 := ReadField(des, ADDR2)
6 i f a2 = ⊥ then return
7 e1 := ReadField(des, EXP1)
8 i f e1 = ⊥ then return
9 i f ∗a1 = e1 then

10 n2 := ReadField(des, NEW2)
11 i f n2 = ⊥ then return
12 CAS(a2, fdes, n2)
13 else
14 e2 := ReadField(des, EXP2)
15 i f e2 = ⊥ then return
16 CAS(a2, fdes, e2)

Figure 3 Applying the transformation to DCSS.

3.3 Correctness

We argue that our transformation takes a linearizable algorithmA ∈WCA that uses mutable
descriptors and produces a linearizable algorithm A′ that uses weak descriptors. Consider
any execution e′ of the transformed algorithm A′. We prove there exists an execution e of
the original algorithm A that performs the same high-level operations, in the same order,
and with the same responses, as in e′. We explain how this helps. Since e is a correct
execution of the original algorithm A, the high-level operations performed in e must respect
the sequential specification(s) of the object(s) implemented in A. Furthermore, since e′

performs the same high-level operations, in the same order, and with the same responses,
the high-level operations in e′ must also respect the sequential specification(s) of the same
object(s). Therefore, the transformed algorithm A′ is correct.

We construct e as follows. By Property 5 of WCA, all ReadField, WriteField and CAS-
Field operations occur in Help. Whenever a check by a process p follows a ReadField or
CASField in e′ that returns ⊥ (because the operation attempt O being helped by p has
already terminated), we replace that check by a consecutive sequence of steps in which p fin-
ishes its invocation of Help. All other checks immediately following ReadField or CASField
are simply removed.

By Property 3 of WCA, none of the steps added to e change the state of any shared
object. So, these steps will not change the behaviour of any other process. We also argue
that none of these steps make any changes to p’s private memory that persist after p finishes
its invocation of Help. (I.e., any changes these steps make to p’s private memory are reverted
by the time p finishes its invocation of Help, so p’s private memory is the same just after
the invocation of Help as it was just before the invocation of Help.) So, these steps will not
change the behaviour of p after it finishes its invocation of Help. Observe that, whenever
a process performs a ReadField or CASField operation on a descriptor that it created, this
operation will return a value different from ⊥. This is due to Property 1 of WCA, and the
definition of the weak descriptor ADT, which states that d becomes invalid only after O has
terminated. Since p’s invocation of ReadField or CASField returns ⊥, p must therefore be
performing Help(d) where d was created by a different process. Thus, Property 4 of WCA
implies that, after p performs the sequence of steps to finish its invocation of Help(d), its
private memory has the same state as it did just before it invoked Help.
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1 DCSSHelp(fdes) :
2 des := Unflag(fdes)
3 values := ReadImmutables(des)
4 i f values = ⊥ then return
5 〈a1, e1, a2, e2, n2〉 := values

7 i f ∗a1 = e1 then
8 CAS(a2, fdes, n2)
9 else

10 CAS(a2, fdes, e2)

Figure 4 Using ReadImmutables to optimize and streamline the transformed DCSS algorithm.

3.4 Reading immutable fields efficiently

If an invocation of Help(des) accesses many immutable fields of a descriptor, then we can
optimize it by replacing many ReadField operations with a single, more efficient operation
called ReadImmutables. This operation reads and returns all of a descriptor’s immutable
fields, unless the descriptor is invalid, in which case it returns ⊥.

To use ReadImmutables in Help(des), one can simply perform, at the beginning of Help, a
ReadImmutables operation, followed by an if -statement that checks whether it the operation
invalid, and, if so, returns immediately. Then, in the body of Help(des), each invocation
of ReadField(des, f), where f is immutable, is replaced with a direct read from the set of
values returned by ReadImmutables. We demonstrate this approach on the transformed
pseudocode for DCSS in Figure 3. Figure 4 shows the result. Since all fields of a DCSS
descriptor are immutable, every invocation of ReadField can be replaced with a direct read
from the result of the ReadImmutables operation performed at line 3. (This will not be the
case in an algorithm where the Help procedure reads mutable fields.) Since ReadImmutables
replaces several invocations of ReadField, it has the added benefit of making code simpler
and shorter.

4 Extended Weak Descriptors

In this section, we describe an extended version of the weak descriptor ADT, and an ex-
tended version of the transformation in Section 3.2. This extended transformation weakens
property 5 of WCA so that ReadField operations on a descriptor d can also be performed
outside of Help(d). At a high level, we handle ReadField operations performed outside of
Help as follows. For ReadFields performed inside Help, we have seen that we can simply
stop helping when ⊥ is returned. However, for ReadFields performed outside of Help, it is
not clear, in general, how we should respond if ⊥ is returned. Intuitively, the goal is to
find a value that ReadField can return so that the algorithm will behave the same way as it
would if the descriptor were still valid. In some algorithms, just knowing that an operation
has been completed gives us enough information to determine what a ReadField operation
should return (as we will see below).
Extended weak descriptor ADT. This ADT is the same as the weak descriptor ADT,
except that ReadField is extended to take, as an additional argument, a default value dv

that is returned instead of ⊥ when the operation is invalid. Observe that the weak descriptor
ADT is a special case of the extended weak descriptor ADT where each argument dv to an
invocation of ReadField is ⊥.
The extended transformation. CASField and WriteField operations are handled the
same way as in the WCA transformation. However, an invocation of ReadField(des, f) is
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handled differently depending on whether it occurs inside an invocation of Help(des). If it
does, it is replaced with an invocation of ReadField(des, f,⊥) followed by the check, as in
the WCA transformation. If not, it is replaced with an invocation of ReadField(des, f, dv),
where the choice of dv is specific to the algorithm being transformed.

LetA be any algorithm that uses mutable descriptors, and satisfies properties 1-4 of WCA
algorithms (see Definition 1), as well as a weaker version of property 5, called property 5′,
which states: every write or CAS to a field of a descriptor d must occur in an invocation
of Help(d). Let e be an execution of A and let e′ be an execution that is the same as e,
except that one (arbitrary) descriptor d becomes invalid at some point t after the high-level
operation attempt O that created d terminates. (When we say that d becomes invalid at
time t, we mean that after t, each invocation of ReadField(d, f, dv) that is performed outside
of Help(d) returns its default value dv.)

Let O′ be any high-level operation attempt in e′ which, after t, performs ReadField on
d outside of Help(d). We say that an extended transformation is correct for A if, for all
choices of e, e′, d, t, and O′, the exact same changes are performed by O′ in e and e′ to any
variables that are still defined once O′ terminates (i.e., variables that are local to the process
performing O′, but are not local to O′, and variables in shared memory), and O′ returns the
same response in both executions. An algorithm A is an extended weak-compatible algorithm
(and is in the class EWCA) if there is an extended transformation that is correct for A.

4.1 Correctness
Consider any extended transformation which is correct for a linearizable algorithm A that
uses mutable descriptors. We prove the result of applying this transformation to A is a
linearizable algorithm A′ that uses extended weak descriptors. Specifically, let e′ be any
execution of A′. We prove there is an execution e of A that performs the same high-level
operations, in the same order, with the same responses, as in e′.

First, we define an execution e0. Whenever a check in e′ by a process p in Help(d)
determines that the preceding ReadField or CASField on a descriptor d is invalid (which
means that the operation attempt being helped by p has already terminated), we replace
that check by a consecutive sequence of steps in which p finishes its invocation of Help(d).
By Property 3 of WCA, none of these added steps change the state of any shared variable.
Moreover, by Property 4 of WCA, p does not change any variable that is still defined after
its invocation of Help, so p has the same local state after Help in e0 and e′. Whenever such
a check determines that the preceding ReadField or CASField is valid, we simply remove
this check. Observe that each invalid operation in e0 is an invalid ReadField operation on
some descriptor d performed outside of Help(d).

Let d1, d2, ... be the sequence of descriptors created in e0. We inductively construct a
sequence e1, e2, ... of executions such that ei differs from ei−1 only in that descriptor di never
becomes invalid in ei. Specifically, for each high-level operation attempt O′ that performs
an invalid ReadField operation on descriptor di outside of Help(di), consider the first such
ReadField operation R. All of the steps of O′ prior to R are the same in ei as in ei−1.
After R, O′ continues to take steps in ei, but each ReadField operation that O′ performs
on a field f of di returns the contents of f (instead of a default value). This may result
in O′ executing completely different code paths in ei−1 and ei. However, by the definition
of an extended transformation that is correct for A, O′ returns the same response in ei

and ei−1 and performs the exact same changes to any variables that are still defined once
O′ terminates. Thus, for each variable v that is still defined once O′ terminates, we can
schedule the sequence of changes to v in the exact same way in ei and ei−1 (which implies
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that any reads in ei−1 which see these changes can be scheduled appropriately in ei).
Since the claim holds for all i, there is an execution e in which no descriptor becomes

invalid (so e is an execution of A), and the same high-level operation attempts are performed,
in the same order, and with the same responses.

4.2 Multiple descriptors per operation attempt
In some lock-free algorithms, a high-level operation attempt can create several different
descriptors, and potentially invoke a different Help procedure for each descriptor. We de-
scribe how to adjust the definitions above to support these kinds of algorithms. For simpli-
city, we think of there being a single Help procedure that checks the type of the descriptor
passed to it, and behaves differently for different types.

In order to allow a high-level operation attempt to create multiple descriptors without
simply invalidating the ones it previously created, we update the definition of valid and
invalid descriptors. Let des be a pointer to a descriptor d of type T returned by a CreateNew
operation C performed by process p. Initially, d is valid. If p performs another CreateNew
operation C ′ with the same descriptor type T after C, then d becomes invalid immediately
after C ′ (and will never be valid again).

With this definition of valid and invalid descriptors, it might initially seem like an oper-
ation cannot create multiple descriptors of the same type T . However, this turns out not to
be a problem. If an operation should create multiple descriptors of type T , we can simply
imagine creating multiple clone types T1, T2, ... that have the exact same fields as T . To
create k descriptors of type T , one would then create k clone types, and have an operation
invoke CreateNew once for each clone type. (However, we are unaware of any algorithms in
which a high-level operation attempt creates multiple descriptors of the same type.)

We also slightly modify Property 1 of (extended) weak-compatible algorithms, as follows,
to accommodate the use of multiple descriptors. Each high-level operation attempt O by
a process p may create (and initialize) a sequence D of descriptors, each with a unique
type. Inside O, p may perform at most one invocation of a function Help(d) for each d ∈ D

(and p may not invoke Help(d) outside of O). Note that the proof for the extended weak
transformation goes through unchanged.

4.3 Example Algorithm: k-CAS
In this section, we explain how the extended transformation is applied to the k-CAS al-
gorithm presented in Section 2.2.1. Note that no invocations of ReadField on a DCSS
descriptor des are performed outside of HelpDCSS(des). There is only one place in the al-
gorithm where an invocation I of ReadField on a k-CAS descriptor des is performed outside
of Help(des) (the Help procedure for k-CAS). Specifically, I reads the state field of a k-CAS
descriptor inside the modified version of HelpDCSS. Recall that the k-CAS algorithm passes
a k-CAS descriptor pointer and the name of the state field as the first argument to DCSS
at line 28 of Figure 2, and the DCSS algorithm is modified to use ReadField at line 26 of
Figure 1 to read this state field. We choose the default value dv = Succeeded for this invoc-
ation of ReadField. We explain why this extended transformation of the k-CAS algorithm
is correct.

When I is performed at line 26 of DCSSHelp (in Figure 1), its response is compared with
e1, which contains Undecided. If I returns Undecided, then the CAS at line 28 is performed,
and the process p performing I returns from HelpDCSS. Otherwise, the CAS at line 31 is
performed, and p returns from HelpDCSS.
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Suppose I is invalid. Then, we know the k-CAS operation attempt that created des

has been completed. We use the following algorithm specific knowledge. After a k-CAS
operation attempt has completed, its k-CAS descriptor has state Succeeded or Failed (and
is never changed back to Undecided). (This can be determined by inspection of the code.)
Thus, if I were valid, its response would not be Undecided, and p would perform the CAS
at line 31 and return from HelpDCSS. Since dv = Succeeded, p does exactly the same thing
when I is invalid. (Note that the exact value of state is unimportant. It is only important
that it is not Undecided.)

4.4 Example Algorithm: LLX and SCX
In this section, we explain how the extended transformation is applied to the multiword syn-
chronization primitives load-linked-extended (LLX) and store-conditional-extended (SCX)
of Brown et al. [11]. Note that Brown et al. [10] also used these primitives to design a tree
update template that can be followed to produce a fast lock-free implementation of any data
structure based on a down-tree (a directed acyclic graph where each node has indegree one).
Thus, by optimizing LLX and SCX, we also optimize the tree update template, and all of
the data structures that have been implemented with it. Pseudocode for LLX and SCX
using mutable descriptors is presented in Figure 5.

LLX and SCX operate on multi-field data records, which can be used to represent, e.g.,
nodes in a tree, or records in a table. Like descriptors, data records contain mutable and
immutable fields. However, whereas descriptors are used only to facilitate helping, and are
not part of a sequential data structure, data records are.

LLX(r) attempts to take a snapshot of the mutable fields of a Data-record r. If it is
concurrent with an SCX involving r, it may return Fail, instead. Individual fields of a
Data-record can also be read directly. An SCX(V, R, fld, new) takes as its arguments a
sequence V of Data-records, a subsequence R of V , a pointer fld to a mutable field of one
Data-record in V , and a new value new for that field. The SCX tries to atomically: store
the value new in the field that fld points to and finalize each Data-record in R. Once a
Data-record is finalized, its mutable fields cannot be changed by any subsequent SCX, and
any LLX of the Data-record will return Finalized instead of a snapshot.

Before a process invokes SCX, it must perform an LLX(r) on each Data-record r in V .
The last such LLX by the process is said to be linked to the SCX, and the linked LLX
must return a snapshot of r (not Fail or Finalized). An SCX(V, R, fld, new) by a process
modifies the data structure and returns True only if no Data-record r in V has changed
since its linked LLX(r); otherwise the SCX fails and returns False. Although LLX and
SCX can fail, their failures are limited in such a way that they can be used to build data
structures with lock-free progress. See [11] for a more formal specification of these primitives.

Each SCX operation creates a new descriptor called an SCX -record. LLX and SCX
requires each Data-record r to have a dedicated field r.des that stores a pointer to an
SCX -record, and this field is only ever accessed by LLX and SCX operations. Each
Data-record also has a marked bit which is accessed only by LLX and SCX. This field
is used by SCX to finalize Data-records. We say that a Data-record is marked if its marked
bit is set. SCX -records have two mutable fields: a 2-bit state field and an allFrozen bit.
The state field contains one of three values: InProgress, Committed and Aborted.

The following properties of the LLX and SCX algorithm are relevant for our purposes.
P1. Before the first invocation of Help(des) for an SCX O (performed by O or a helper) has

been completed, the SCX -record des created by O has its state field set to Committed
or Aborted, and, after this, the state field of des is never changed again.
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type SCXdes

⊲ Immutable descriptor fields
NFREEZE ⊲ number of Data-records to be frozen
NFINALIZE ⊲ number of Data-records to be finalized
V1,V2, ... ⊲ Data-records to be frozen
R1,R2, ... ⊲ Data-records to be finalized (must be a subsequence of 〈V1,V2, ...〉)
DES1,DES2, ... ⊲ descriptor pointers read from V1 .info,V2 .info, ...
FLD ⊲ pointer to a field of some Vi
NEW ⊲ value to be written into the field FLD
OLD ⊲ value previously read from the field FLD
⊲ Mutable descriptor fields
STATE ⊲ one of {InProgress, Committed, Aborted}
ALLFROZEN ⊲ Boolean

1 LLX(r) by process p
2 marked1 := r.marked
3 rinfo := r.info
4 state := ReadField(SCXdes,rinfo,STATE)
5 marked2 := r.marked
6 i f state = Aborted or (state = Committed and not marked2) then ⊲ if r was not frozen at line 4
7 read r.m1, ...,r.my and record the values in local variables m1, ...,my
8 i f r.info = rinfo then ⊲ if r.info contains the same
9 store 〈r,rinfo,〈m1, ...,my〉〉 in p’s local table ⊲ descriptor as on line 3

10 re turn 〈m1, ...,my〉
11 i f state = InProgress then Help(rinfo)
12 i f marked1 then return FINALIZED

13 e l s e re turn FAIL

14 SCX(V = 〈V1,V2, ...,Vk〉,R = 〈R1,R2, ...,Rl〉, f ld,new) by process p
15 ⊲ Preconditions: (1) for each r in V , p has performed an invocation Ir of LLX(r) linked to this SCX

(2) new is not the initial value of f ld
(3) for each r in V , no SCX(V ′,R′, f ld,new) was linearized before Ir was linearized

16 Let des1,des2, ...,desk be the descriptor pointers for V1,V2, ...,Vk in p’s local table of LLX results
17 Let old be the value for f ld stored in p’s local table of LLX results
18 des := CreateNew(SCXdes,{(NFREEZE,k),(NFINALIZE, l),(V1,V1),(V2,V2), ...,(Vk,Vk),

(R1,R1),(R2,R2), ...,(Rl ,Rl),(DES1,des1),(DES2,des2), ...,(DESk,desk),
(FLD, f ld),(NEW,new),(OLD,old),(STATE, InProgress),(ALLFROZEN,FALSE)})

19 re turn Help(des)

20 Help(des)
21 ⊲ Freeze all Data-records in des.V to protect their mutable fields from being changed by other SCXs
22 〈nfreeze,nfinal,V1,V2, ...,Vnfreeze,R1,R2, ...,Rnfinal,des1,des2, ...,desnfreeze, f ld,new,old〉 := ReadImmutables(SCXdes,des)
23 f o r i = 1..nfreeze do
24 i f not CAS(Vi.info,desi,des) then ⊲ freezing CAS
25 i f Vi.info 6= des then
26 ⊲ Could not freeze Vi because it is frozen for another SCX
27 i f ReadField(SCXdes,des,ALLFROZEN) = TRUE then ⊲ frozen check step
28 ⊲ the SCX has already completed successfully
29 re turn TRUE

30 e l s e
31 ⊲ Atomically unfreeze all Data-records frozen for this SCX
32 WriteField(SCXdes,des,STATE,Aborted) ⊲ abort step
33 re turn FALSE

34 ⊲ Finished freezing Data-records (Assert: state ∈ {InProgress,Committed})
35 WriteField(SCXdes,des,ALLFROZEN,TRUE) ⊲ frozen step
36 f o r i = 1..nfinal do
37 Ri.marked := TRUE ⊲ mark step
38 CAS( f ld,old,new) ⊲ update CAS
39 ⊲ Finalize all Ri in R, and unfreeze all Vi in V that are not in R
40 WriteField(SCXdes,des,STATE,Committed) ⊲ commit step
41 re turn TRUE

Figure 5 Code for the LLX and SCX algorithm using the mutable descriptor ADT.



M. Arbel-Raviv and T. Brown XX:17

P2. A marked Data-record remains marked forever.
P3. A marked Data-record cannot point to an SCX -record with state = Aborted.
P4. Each time the des field of a Data-record changes, it changes to a new value that has

never previously been stored there (to avoid the ABA problem).
There is only one place in the code where an invocation I of ReadField(SCX -record, d,

f, dv) can occur outside of Help(des): at line 4 of LLX in Figure 5. I reads the state
field of d. We choose the default value dv = Committed for I. We give a rigorous, but
straightforward, proof that this extended transformation of LLX and SCX is correct.

Let e be an execution of the original LLX and SCX algorithm A, and let e′ be an
execution that is the same as e, except that one arbitrary SCX -record d becomes invalid at
some point t after the SCX operation attempt O that created d terminates. Let O′ be any
LLX in e which, after t, performs an invocation I of ReadField on d outside of Help(d). We
must prove that O′ performs the exact same changes in e and e′ to any variables that are
still defined after O′ terminates, and returns the same response in both executions.

Since I is invalid in e′, by definition, the SCX O that created d must have terminated
before I. Thus, by P1, I must return Committed or Aborted in e. If I returns Committed in
e, then I returns the same response in e and e′, so O′ is exactly the same in both executions.
Now, suppose I returns Aborted in e. We consider three cases, depending on where O′

returns in e.
Case 1: O′ returns at line 10 in e. If marked2 = False, then O′ behaves exactly the

same way in e and e′. So, suppose marked2 = True. Then, O′ will enter the if-statement
at line 6 in e, but not in e′. In this case, O′ saw that the Data-record r pointed to an
SCX -record with state = Aborted when it performed line 3, and that r was marked when it
performed line 5. By P3, r cannot simultaneously be marked and point to an SCX -record
with state = Aborted, so r.des must change between these two lines. By P4, it must change
to a value different from rdes, so the if-block at line 8 will not be executed in e. However,
this contradicts our assumption that O′ returns at line 10.

Case 2: O′ returns Finalized at line 12 in e. Observe that O′ does not execute line 9 in
e (since it would then return at the following line). We first prove that O′ does not execute
line 9 in e′. Since O′ sees marked1 = True just before returning at line 12 in e, P2 implies
that marked2 = True (in both e and e′). Since I returns Committed in e′, O′ will not enter
the if-block at line 6 in e′. Thus, O′ reaches line 11 in both e and e′.

Since I returns Committed in e′, and we have assumed I returns Aborted in e, O′ will
not invoke Help at line 11 in e or e′. Therefore, O′ does not change any variable that is still
defined after it terminates. So, it suffices to prove that O′ returns Finalized (at line 12) in
e′. However, this is immediate from the fact that marked1 = True in O′ in e (and, hence,
in e′).

Case 3: O′ returns Fail at line 13 in e. The proof is similar to the previous case, except
marked1 = False in O′ in e, so when O′ reaches line 12, it will enter the else-block and
return Fail in both e and e′.

5 Implementing the extended weak descriptor ADT

We give a brief high-level overview of our implementation. It uses largely known techniques
(similar to [24]), and is not the main contribution of this work. Each process p uses a single
descriptor object DT,p in shared memory to represent all descriptors of type T that it ever
creates. The descriptor object DT,p conceptually represents p’s current descriptor of type
T . At different times in an execution, DT,p represents different abstract descriptors created
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by p. We store a sequence number in DT,p that is incremented every time p performs Cre-
ateNew(T,−). Instead of using traditional descriptor pointers, we represent each descriptor
pointer as a pair of fields stored in a single word. These fields contain the name of the
process who owns the descriptor, and a sequence number that indicates which invocation
of CreateNew conceptually created this descriptor. When a descriptor pointer is passed to
an operation O on the abstract descriptor, O compares the sequence number in des with
the current sequence number in DT,p to determine whether the operation is valid or invalid.
Thus, incrementing the sequence number in DT,p effectively makes all abstract descriptors
of type T that were previously created by p invalid. Mutable fields are stored in a single
word alongside a sequence number, so they can be updated with CAS, preventing invalid
operations from making changes. (If the mutable fields and a sequence number cannot fit in
one word, then one can use multiple words and attach the sequence number to each word.)

5.1 Detailed description
Complete pseudocode appears in Figure 6. We start by describing the data types and shared
variables. Each descriptor contains zero or more immutable fields, and zero or more mutable
fields (which are determined by the descriptor type), as well as a sequence number field seq.
Recall that DT,p represents different abstract descriptors at different times. Note that the
immutable fields of DT,p are only immutable for as long as DT,p represents the same abstract
descriptor. When DT,p is reused, so that it represents a different abstract descriptor, its
immutable fields can be reinitialized. Usually very few bits are required for the mutable
fields, since they exist solely to capture the state of an ongoing operation (and it is inefficient
to frequently change the state of a descriptor). (Every lock-free algorithm we are aware of
uses at most a small constant number of bits for its mutable fields.) Consequently, we think
of the sequence field and the mutable fields of a descriptor d as being packed together in
a single word mutables of d (with subfields for the sequence field and each mutable field).
(Note that, if more space is needed for mutable fields in some future algorithm, we can
eliminate this assumption about the size of mutables, as we explain below.) We use d.f

to denote an immutable field f of d, d.mutables to denote the field mutables of d, and
d.mutables.f to denote a mutable field f of d.

Since mutables fits in a single word, it can be modified atomically using CAS. By having
CAS atomically operate on a mutable field and the sequence number, we can ensure that a
descriptor changes only if its sequence number has not changed.

We now describe the operations. An invocation of CreateNew(T, ...) by process p first
increments the sequence number of DT,p, then initializes all of its fields, then increments the
sequence number again and returns a new descriptor pointer (with the up-to-date sequence
number). Observe that the descriptor pointers returned by CreateNew always have even
sequence numbers, and the sequence number of a descriptor is odd while it is being initialized
by CreateNew. Consequently, while a descriptor is being initialized, its sequence number
does not match any descriptor pointer in the system, so no process can read or modify the
descriptor’s fields.

Note that this approach of incrementing a sequence number twice has been used in
different contexts such as in transactional memory, where the least significant bit represents
whether the sequence number is locked or unlocked. Here, the idea is slightly different,
since the least significant bit represents whether the descriptor is currently being reused
and initialized, or is safe to access. (Nevertheless, in some sense, one can think of the bit
indicating whether the descriptor is currently being initialized as a sort of lock. It does
not prevent other processes from making progress (since operations on the descriptor will
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1 . Data types
2 Descriptor of type T :
3 mutables = 〈seq, mut1, mut2, ...〉 . Mutable fields
4 imm1, imm2, ... . Immutable fields

6 . Shared variables
7 DT,p for each descriptor type T and process p

9 . ADT operations
10 CreateNew(T, v1, v2, ...) by process p :
11 oldseq := DT,p.mutables.seq
12 DT,p.mutables.seq := oldseq + 1
13 for each field f in DT,p

14 l e t value be the corresponding value in {v1, v2, ...}
15 i f f is immutable then
16 DT,p.f := value
17 else
18 DT,p.mutables.f := value
19 DT,p.mutables.seq := oldseq + 2
20 return 〈p, oldseq + 2〉

22 ReadField(des, f, dv) :
23 〈q, seq〉 := des
24 i f f is immutable then
25 result := DT,q.f
26 else
27 result := DT,q.mutables.f
28 i f seq 6= DT,q.mutables.seq then return dv
29 return result

31 ReadImmutables(des) :
32 〈q, seq〉 := des
33 for each f in des
34 i f f is immutable then add DT,q.f to result
35 i f seq 6= DT,q.mutables.seq then return ⊥
36 return result

38 WriteField(des, f, value) :
39 〈q, seq〉 := des
40 loop
41 exp := DT,q.mutables
42 i f exp.seq 6= seq then return
43 new := exp
44 new.f := value
45 i f CAS(&DT,q.mutables, exp, new) then return

47 CASField(des, f, fexp, fnew) :
48 〈q, seq〉 := des
49 loop
50 exp := DT,q.mutables
51 i f exp.seq 6= seq then return ⊥
52 i f exp.f 6= fexp then return exp.f
53 new := exp
54 new.f := fnew
55 i f CAS(&DT,q.mutables, exp, new) then
56 return fnew

Figure 6 Pseudocode for the extended weak descriptor ADT implementation.
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terminate, but will simply be invalid), but it does prevent them from accessing fields of the
descriptor as they are being changed.)

An invocation of ReadField(des, f, default) by p reads the value v of the mutable or
immutable field f from DT,p followed by its sequence number s. If s matches the sequence
number in the descriptor pointer des, then v is returned. Otherwise, default is returned.

ReadImmutables is similar to ReadField, except it reads all immutable fields, instead of
a single field, and it returns ⊥ instead of default.

An invocation I of WriteField(des, f, value) by p performs a sequence of one or more
attempts. In each attempt, it reads the contents old of mutables, including the sequence
number s, from DT,p, then checks whether s matches the sequence number in the descriptor
pointer des. If the sequence numbers do not match, then the abstract descriptor represented
by des is invalid, so I returns without changing f . Otherwise, I uses CAS to try to change
DT,p.mutables from old to new, which is a copy of old in which the contents of field f

have been changed (locally) to contain value. Observe that this CAS will succeed only if
the sequence number in DT,p.mutables matches the sequence number in des. If the CAS
succeeds, then I returns. Otherwise, I performs another attempt.

Note that WriteField is less efficient than performing a direct write to memory. However,
since mutable fields are used merely to encode the status of an ongoing operation, there are
usually very few changes to a descriptor.

CASField is quite similar to WriteField. The only differences are (1) CASField has
different return values and, (2) in each attempt, it performs an additional check to determine
whether old.f is equal to fexp, and, if not, returns old.f .

5.2 Practical considerations
One might wonder, in an algorithm with multiple types of descriptors, why the type of
a descriptor is not also encoded in descriptor pointers. In algorithms that use multiple
descriptor types, any time the original algorithm accesses a field of a descriptor, it typically
must know what kind of descriptor it is accessing (if, for no other reason, to compute
the address of the desired field within the descriptor). In such algorithms, it would not
be necessary for descriptor pointers to carry this extra information. For algorithms that
access descriptors without knowing their exact types, one can include the descriptor type in
descriptor pointers.

Some lock-free algorithms “steal” up to three bits from pointers to encode additional
information, typically to distinguish between application values and (potentially, various
types of) descriptors. To accommodate such algorithms, one can slightly shrink the sequence
number in our descriptor pointers, and reserve the three lowest-order bits for use by other
algorithms.

One obvious way to store the descriptors for each thread is to create an array for each
descriptor type, with a slot containing a descriptor for each process. In this kind of imple-
mentation, it is extremely important to pad each slot to avoid false sharing [5]. We suggest
allocating at least two cache lines for each descriptor (128 bytes on modern Intel and AMD
machines).

To improve efficiency, modern Intel and AMD processors implement a relaxed memory
model called total store order (TSO) that allows certain steps in a program to be executed out
of order. Specifically, a read that occurs after a write in a program can actually be executed
before the write, as long as the read and write are not accessing the same address. This can
render a concurrent algorithm incorrect if it requires a write by a process p to be visible to
other processes before p performs a subsequent read. One can prevent this reordering by
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placing a memory fence (or barrier) between the write and read. CAS instructions also act
as memory fences. Our implementation does not require any memory fences (beyond those
implied by CAS instructions). This is an attractive property, since memory fences incur
high overhead.

Our implementation uses unbounded sequence numbers. However, in practice, sequence
numbers are bounded, and they may wrap around. If wraparound occurs, then two in-
vocations of CreateNew might return the same descriptor pointer. This can cause an ABA
problem if the high-level algorithm that uses descriptors relies on the uniqueness of descriptor
pointers returned by CreateNew.

We argue that the sequence number can be made sufficiently large on modern systems
for this to be a non-issue. Consider a system with a 64-bit word size. Recall that a sequence
number appears both in each descriptor pointer, and also in the mutables field of each
descriptor. A descriptor pointer contains only a process name and a sequence number, so if
n bits are reserved for the process name, then 64− n bits remain for the sequence number.
The mutables field contains the descriptor’s mutable fields and a sequence number, so if
m bits are reserved for mutable fields, then 64 −m bits remain for the sequence number.
Thus, if we use 14-bit process names (as the Linux kernel does), and the mutable fields of
each descriptor fit in at most 14 bits, then 50 bits remain for the sequence number. We
are unaware of any algorithm that requires more than three bits for mutable fields in its
descriptors, so this is realistic. In this case, a single process must perform 250 operations
to trigger even a single wraparound. If we assume that a single process can perform one
million operations per second, this will take 35 years of continuous execution. If this is
still a concern, then one can use double-wide CAS (DWCAS), which is implemented on
modern Intel and AMD systems, instead of CAS, to atomically operate on two adjacent
words (containing a much larger sequence number).

Although we are unaware of any current lock-free algorithms that use more than three
bits for mutable fields in descriptors, some future algorithm may use more. If the mutable
fields of a descriptor cannot fit in the same word as a sequence number, then our approach
must be modified. If the mutable fields and a sequence number can fit in two adjacent words,
then one can simply use DWCAS instead of CAS. Otherwise, one can store mutable fields
in their own separate words, and replicate the sequence number, storing a copy in the word
adjacent to each mutable field. To change a mutable field, one would then perform DWCAS
on the word containing the mutable field, and its adjacent sequence number. When the
descriptor is reused, instead of incrementing a single sequence number, one would increment
all sequence numbers.

In order to choose how many bits should be devoted to the process name in descriptor
pointers, one must know an upper bound on the number of processes. We stress that this is
not an onerous constraint, because the upper bound does not need to be tight. Note that one
need not initially allocate descriptors for all processes that could be running in the system.
It is straightforward to allocate a descriptor for a process the first time it invokes CreateNew
(potentially even in batches, to amortize the cost and improve control over memory layout).
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5.3 Correctness
We now prove that our implementation is linearizable. We first give the linearization points
for all operations.

Each invocation of CreateNew is linearized at the increment of the sequence number at
line 12.
If an invocation I of ReadField(des, f, dv) returns at line 28, then it is linearized at the
read of the sequence number at the same line. If I returns at line 29, then it is linearized
at the preceding read of the field f : for immutable fields this is line 25, and for mutable
fields this is line 27.
Each invocation of ReadImmutables is linearized at the read of the sequence number at
line 35.
If an invocation I of WriteField(des, f, value) returns at line 42, then it is linearized at
the last read of the sequence number at the same line. If I returns at line 45, then it is
linearized at the successful CAS at the same line.
If an invocation I of CASField(des, f, fexp, fnew) returns at line 51, then it is linearized
at the last read of the sequence number at the same line. If I returns at line 56, then it
is linearized at the successful CAS at the previous line. If I returns at line 52, then it is
linearized at the last read at the same line.

I Observation 1. The sequence number of DT,p (also denoted DT,p.mutables.seq) is written
only by p in invocations of CreateNew(T,−).

I Observation 2. Every descriptor pointer returned by CreateNew has an even sequence
number, and the linearization point of CreateNew always changes the sequence number of
the descriptor to an odd number.

I Observation 3. The sequence number returned by a
CreateNew(T,−) operation by p is 2 + v where v is the sequence number returned by p’s
previous CreateNew(T,−) operation, or v = 0 if p has not performed CreateNew(T,−).

We now prove that the above linearization points are correct. Let e be an execution of
our implementation of extended weak descriptors. Let O1, O2 · · ·Ok be the extended weak
descriptor operations executed in e in the order they are linearized. Note that we prove
correctness assuming unbounded sequence numbers. The implications of bounded sequence
numbers were considered above.

I Theorem 2. The responses of O1, O2 · · ·Ok respect the semantics of the extended weak
descriptor ADT.

Proof. By strong induction on the sequence of extended weak descriptor operations that
terminate in e. Base case: the claim vacuously holds when no operations have returned.
Induction step: assume the return values of O1, O2 · · ·Oi−1 follow the semantics of the
extended weak descriptor ADT. Let p be the process that performs Oi, and T be the type
of descriptor on which Oi is performed.

Suppose Oi is a CreateNew(T,−) operation. By Observation 3, Oi returns a unique
descriptor pointer.

In each of the following cases, Oi takes a descriptor pointer des as one of its arguments.
Let q and seq be the process name sequence number in des, respectively. Let Oinit be the
CreateNew(T,−) by q that returned des. Since des is returned by Oinit before it is passed
to any operation, Oinit is linearized before Oi.
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Suppose Oi is a ReadField that returns the default value at line 28, a CASField that
returns ⊥ at line 51 or a ReadImmutables that returns ⊥ at line 35. We argue that des

is invalid when Oi is linearized. In each case, Oi returns after seeing that the sequence
number of DT,q no longer contains seq. Thus, this sequence number must change after
des is returned by Oinit, and before Oi is linearized. By Observation 1, this change to the
sequence number of DT,q must be performed by a CreateNew(T,−) operation Ochange by q

(which occurs after Oinit, and before Oi is linearized). Ochange changes the sequence number
twice, and is linearized at the first change. Thus, Ochange is linearized after Oinit and before
Oi, which means that des is invalid when Oi is linearized.

Now suppose Oi is a ReadField that returns at line 29, a CASField that returns at
line 56, or a ReadImmutables that returns at line 36. We first argue that des is valid when
Oi is linearized. In each case, Oi sees that the sequence number of DT,q is seq at some time
t, which is either when Oi is linearized, or is after Oi is linearized. By Observation 1 and
Observation 3, whenever the sequence number of DT,q is changed, it is changed to a new
value that it never previously contained. Thus, since the sequence number of DT,q contains
seq when Oinit terminates, and it contains seq at time t, it contains seq at all times after
Oinit terminates and before t. Hence, the sequence number of DT,q contains seq when Oi

is linearized. By Observation 1, q does not perform any CreateNew(T,−) after Oinit and
before t, so des is valid when Oi is linearized.

We now argue that the response of Oi is correct if it is a ReadField(des, f, dv). The proof
is similar when Oi is a CASField or ReadImmutables.

If f is immutable, then it is changed only by CreateNew(T,−) operations by q. Since
des is valid when Oi is linearized, Oinit performs the last change to f before Oi is linearized.
Recall that Oi start after Oinit terminates. Thus, the write of f in Oinit happens before the
invocation of Oi, and Oi will return the value written to f by Oinit.

If f is mutable, then let Ochange be the operation that performs the last change to f

before Oi is linearized, and v be the value that it stores in f . Observe that Oi returns v.
We show that Ochange is the last operation that changes f and is linearized before Oi. If
Ochange is the same as Oinit, then we are done. Otherwise, since we have argued that q does
not perform any CreateNew(T,−) after Oinit and before t, Ochange must be a WriteField or
CASField. In each case, Ochange can change f only once, with a successful CAS (at line 55
or line 45). Since Ochange is linearized at this CAS, it is linearized before Oi. Moreover,
since we have assumed that Ochange is the last operation to change f before Oi, no other
operation that changes f linearized after Ochange and before Oi. J

5.4 Progress
Suppose, to obtain a contradiction, that there is an execution in which processes take infin-
itely many steps, but only finitely many (extended weak descriptor) operations terminate.
Then, after some time t, no operation terminates, which means there is at least one oper-
ation O in which a process takes infinitely many steps. By inspection of Figure 6, O must
be a WriteField or CASField operation. Suppose O is a WriteField operation. Then, each
time O executes line 42, it sees old.seq = seq, and each time it executes line 45, its CAS
fails and returns old without changing DT,q.mutables. Observe that the CAS will fail only
if DT,q.mutables changes after it is read at line 41 and before the CAS at line 45. Thus,
DT,q.mutables changes infinitely many times in the execution. Since DT,q.mutables can
be changed only by WriteField or CASField operations, and any operation that changes
DT,q.mutables terminates, there must be infinitely many terminating WriteField or CAS-
Field operations, which is a contradiction. The proof is similar when O is a CASField.
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6 Experiments

Our experiments were run on two large-scale systems. The first is a 2-socket Intel E7-4830
v3 with 12 cores per socket and 2 hyperthreads (HTs) per core, for a total of 48 threads.
Each core has a private 32KB L1 cache and 256KB L2 cache (which is shared between HTs
on a core). All cores on a socket share a 30MB L3 cache. The second is a 4-socket AMD
Opteron 6380 with 8 cores per socket and 2 HTs per core, for a total of 64 threads. Each
core has a private 16KB L1 data cache and 2MB L2 cache (which is shared between HTs on
a core). All cores on a socket share a 6MB L3 cache.

Since both machines have multiple sockets and a non-uniform memory architecture
(NUMA), in all of our experiments, we pinned threads to cores so that the first socket
is filled first, then the second socket is filled, and so on. Furthermore, within each socket,
each core has one thread pinned to it before hyperthreading is engaged. Consequently, our
graphs clearly show the effects of hyperthreading and NUMA.

For example, on the Intel machine, from thread counts 1 to 12 all threads are running on
a single socket and at most one thread is pinned to each core. (socket 1: no HTs; socket
2: empty). From 13 to 24, all threads are running on a single socket and cores either have
one or two threads pinned to them (socket 1: HTs; socket 2: empty). From 25 to 36,
each core on the first socket has two threads pinned to it, and the remaining threads are
each pinned to unique cores on the second socket (socket 1: HTs; socket 2: no HTs).
Finally, from 37 to 48, each core on the first socket has two threads pinned to it, and cores
on the second socket have one or two threads pinned to them (socket 1: HTs; socket 2:
HTs).

Both machines have 128GB of RAM. Each runs Ubuntu 14.04 LTS. All code was com-
piled with the GNU C++ compiler (G++) 4.8.4 with build target x86_64-linux-gnu and
compilation options -std=c++0x -mcx16 -O3. Thread support was provided by the POSIX
Threads library. We used the Performance Application Programming Interface (PAPI) lib-
rary [12] to collect statistics from hardware performance counters to determine cache miss
rates, stall times, instructions retired, and so on.

The system (glibc) allocator was found to have poor scaling and overall performance.
Instead, we used jemalloc 4.2.1, a fast user-space allocator designed to minimize conten-
tion and improve scalability [15]. The library was dynamically linked with LD_PRELOAD,
which is the recommended method. This allocator was found to yield vastly superior per-
formance for all algorithms, in all benchmarks. We also tried the tcmalloc allocator from
Google’s Perftools library, which is another common choice for concurrency-friendly alloca-
tion. However, performance with tcmalloc was substantially worse for all algorithms than
with jemalloc.

On the AMD machine, transparent huge-pages were disabled manually in the jemalloc
implementation by changing the default allocation chunk size from 221 to 219 using the
environment parameter setting MALLOC_CONF=lg_chunk:19. This maintained or improved
the performance for all algorithms in all workloads, and did not change the performance
relationship between any pair of algorithms. The same change did not improve performance
on the Intel machine (for any algorithm or workload), so the original chunk size was used.

For read-heavy workloads, it was necessary to force distribution of pages across NUMA
nodes to get consistently high performance. To achieve this, we used numactl –interleave=all
for all workloads. (Doing this did not negatively impact the performance of any workload,
but its benefit was less noticeable for write-heavy workloads.)
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Figure 7 Results for a k-CAS microbenchmark. The x-axis represents the number of con-
current threads. The y-axis represents operations per microsecond.

6.1 k-CAS microbenchmark

In order to compare our reusable descriptor technique with algorithms that reclaim descriptors,
we implemented k-CAS with several memory reclamation schemes. Specifically, we imple-
mented a lock-free memory reclamation scheme that aggressively frees memory called hazard
pointers [26], a (blocking) epoch-based reclamation scheme called DEBRA [7], and reclam-
ation using the read-copy-update (RCU) primitives [13] (also blocking). We use Reuse as
shorthand for our reusable descriptor based algorithm, and DEBRA, HP and RCU to denote
the other algorithms.

The paper by Harris et al. also describes an optimization to reduce the number of DCSS
descriptors that are allocated by embedding them in the k-CAS descriptor. We applied this
optimization, and found that it did not significantly improve performance. Furthermore, it
complicated reclamation with hazard pointers. Thus, we did not use this optimization.
Methodology. We compared our implementations of k-CAS using a simple array-based
microbenchmark. For each algorithm A ∈ {Reuse, DEBRA, HP, RCU}, array size S ∈
{214, 220, 226} and k-CAS parameter k ∈ {2, 16}, we run ten timed trials for several thread
counts n. In each trial, an array of a fixed size S is allocated and each entry is initialized to
zero. Then, n concurrent threads run for one second, during which each thread repeatedly
chooses k uniformly random locations in the array, reads those locations, and then performs
a k-CAS (using algorithm A) to increment each location by one.

As a way of validating correctness in each trial, each thread keeps track of how many
successful k-CAS operations it performs. At the end of the trial, the sum of entries in the
array must be k times the total number of successful k-CAS operations over all threads.
Results. The results for this benchmark appear in Figure 7. Error bars are not drawn on
the graphs, since more than 97% of the data points have a standard deviation that is less
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than 5% of the mean (making them essentially too small to see).
Overall, Reuse outperforms every other algorithm, in every workload, on both machines.

Notably, on the Intel machine, its throughput is 2.2 times that of the next best algorithm
at 48 threads with k = 16 and array size 226. On the AMD machine, its throughput is 1.7
times that of the next best algorithm at 64 threads with k = 16 and array size 220.

On the Intel machine, with k = 2, NUMA effects are quite noticeable for Reuse in the
jump from 24 to 32 threads, as threads begin running on the second socket. According the
statistics we collected with PAPI, this decrease in performance corresponds to an increase
in cache misses. For example, with k = 2 and an array of size 226 in the Intel machine,
jumping from 24 threads to 25 increases the number of L3 cache misses per operation from
0.7 to 1.6 (with similar increases in L1 and L2 cache misses and pipeline stalls). We believe
this is due to cross-socket cache invalidations.

From the three graphs for k = 2 on Intel, we can see that the effect is more severe with
larger absolute throughput (since the additive overhead of a cache miss is more significant).
Conversely, the effect is masked by the much smaller throughput of the slower algorithms,
and by the substantially lower throughputs in the k = 16 case, except when the array is of
size 214. In the array of size 214, contention is extremely high, since each of the 48 threads
are accessing 16 k-CAS addresses, each of which causes contention on the entire cache line
of 8 words, for a total of 6144 array entries contended at any given time. Thus, cache
misses become a dominating factor in the performance on two sockets. These effects were
not observed on the AMD machine. There, the number of cache misses is not significantly
different when crossing socket boundaries, which suggests a robustness to NUMA effects
that is not seen on the Intel machine.

Interestingly, absolute throughputs on the AMD machine are larger with array size 220

than with sizes 214 and 226. This is because the 220 array size represents a sweet spot with
less contention than the 214 size and better cache utilization than the 226 size. For example,
with 64 threads and k = 16, Reuse incurred approximately 50% more cache misses with size
226 than with size 220, and approximately 50% of operations helped one another with size
214, whereas less than 1% of operations helped one another with size 220.

Note, however, that this is not true on the Intel machine. There, 226 is almost always as
fast as 220, because of the very large shared L3 cache (which is 5x larger than on the AMD
machine). This is reflected in the increased number of cycles where the processor is stalled
(e.g., waiting for cache misses to be served) when moving from size 220 to 226. On the Intel
machine, stalled cycles increase by 85% per operation, whereas on the AMD machine they
increase by a whopping 450% per operation.

6.1.1 Memory usage in the k-CAS benchmark
We studied memory usage for all algorithms, in all workloads, on both systems, but we only
show results for array size 226 and k = 16, because the other graphs are very similar. These
results appear in Figure 8. In particular, we are interested in the descriptor footprint, i.e.,
the maximum amount of memory ever occupied by descriptors in an execution. Unfortu-
nately, computing the descriptor footprint exactly would require excessive synchronization
between threads. Thus, we approximate the descriptor footprint by computing the descriptor
footprint for each thread, and then summing those individual footprints. (This is only an
approximation, since different threads may hit their peak memory usage for descriptors at
different times.) The graph in Figure 8 contains the results of this approximation.

These results were obtained as follows. Each thread used three private variables: total-
Free, totalMalloc and maxFootprint. Each time a thread invoked free, it incremented
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Figure 8 Memory usage for the k-CAS microbenchmark. The x-axis represents the number
of concurrent threads. Note the logarithmic scale.

totalFree by the size of the descriptor being freed. Each time a thread invoked malloc,
it incremented totalMalloc by the size of the descriptor being allocated, and then set
maxFootprint = max{maxFootprint, totalMalloc−totalFree}. The per-thread maxFootprints
are then summed to obtain the data points in the graph.

Note that the y-axis is a logarithmic scale. The results show that DEBRA and HPs use
almost three orders of magnitude more memory than Reuse at their peaks, and RCU
uses nearly three orders of magnitude more memory than DEBRA and HPs. RCU ’s memory
usage is significantly higher because reclamation is delayed significantly longer than in the
other algorithms.

6.2 BST microbenchmark
Unlike in the k-CAS algorithm, where memory reclamation was only needed for descriptors,
in the BST, memory reclamation is always needed for nodes. To compare our technique with
different memory reclamation options, we implemented four variants of the BST algorithm:
DEBRA/DEBRA, DEBRA/Reuse, RCU/RCU and RCU/Reuse. Here, an algorithm named
X/Y uses X to reclaim nodes and Y for descriptors. For example, DEBRA/Reuse uses
DEBRA to reclaim nodes and has reusable descriptors.

Unfortunately, we could not create a variant of the BST using hazard pointers. As part
of the finalizing mechanism, this BST implementation marks nodes before deleting them.
Furthermore searches are allowed to traverse marked nodes, regardless of whether they have
been deleted, and subsequently succeed. These algorithmic properties make it infeasible to
use hazard pointers [7].

Methodology. We compared our BST variants using a simple randomized microbench-
mark. For each algorithm A ∈ {DEBRA/DEBRA,DEBRA/Reuse, RCU/RCU, RCU/Reuse},
key range size K ∈ {105, 106} and update rate U ∈ {100, 0}, we run ten timed trials for
several thread counts n. Each trial proceeds in two phases: prefilling and measuring. In
the prefilling phase, n concurrent threads perform 50% Insert and 50% Delete operations on
keys drawn uniformly randomly from [0, K) until the size of the tree converges to a steady
state (containing approximately K/2 keys). Next, the trial enters the measuring phase,
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Figure 9 Results for a BST microbenchmark. The x-axis represents the number of concurrent
threads. The y-axis represents operations per microsecond.

during which threads begin counting how many operations they perform. (These counts are
eventually summed over all threads and reported in our graphs.) In this phase, each thread
instead performs (U/2)% Insert, (U/2)% Delete and (100 − U)% Find operations on keys
drawn uniformly from [0, K) for one second.

As a way of validating correctness in each trial, each thread maintains a checksum. Each
time a thread inserts a new key, it adds the key to its checksum. Each time a thread deletes
a key, it subtracts the key from its checksum. At the end of the trial, the sum of all thread
checksums must be equal to the sum of keys in the tree.

Results. The results for this benchmark appear in Figure 9. The Reuse variants perform at
least as well as the pure reclamation variants in every case, and significantly outperform the
reclamation variants in the 100% update workload. Most notably, on the Intel machine with
key range [0, 106] and 48 threads, DEBRA/Reuse outperforms DEBRA/DEBRA by 57%,
and RCU/Reuse outperforms RCU/RCU by 33%. As expected, Reuse does not perform
significantly faster than the reclamation variants in the workloads with no updates. This is
because searches do not create descriptors. However, crucially, our transformation does not
impose any overhead on searches, either.

6.3 Studying sequence number wraparound
We performed experiments on the larger AMD machine to study how frequently errors occur
when sequence numbers of varying bit-widths experience wraparound. For each bit-width
B ∈ {2, 3, 4, ..., 48}, we performed 200 trials in which 64 threads run for 100 milliseconds
before terminating. Each trial was the same as a trial in our BST experiments with 100%
updates and key range [0, 105).

We identified three different types of errors in these trials. First, at the end of a trial, the
sum of the checksums maintained by all threads would fail to match the sum of keys in the
tree. Second, threads would enter infinite loops due to the tree structure being corrupted,
e.g., because a cycle was introduced. (We identified this type of error by waiting until some
thread had run twice as long as it should have.) Third, an invalid memory access would
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Bits E[time until error]
16 4.5 hours
24 116 years
32 26078192 years
48 > 1018 years

Figure 10 Experiment studying sequence number wraparound.

cause immediate program failure (e.g., due to segmentation fault or bus error).
For each B value, we divided the number of failed runs by 200 to estimate the probability

of a trial failing. A graph showing the resulting estimated probability distribution appears
in Figure 10. For small B values, trials frequently experienced errors. However, for B ≥ 13,
we did not observe a single error in 200 trials (despite the fact that wraparound consistently
occurred in every trial). For B ≥ 16, trials were not sufficiently long for wraparound to
consistently occur. The results appear in Figure 10.

As is common in physics when studying unknown functions, we make an educated guess
that the distribution is sigmoidal, which means it is of the form f(x) = a/(1 + e−b(x−c)) for
constants a, b and c. We determined a sigmoidal curve of best fit from the data, obtaining
the function f(x) = 1/(1 + e1.53969(x−8.199181)), which is plotted as the Best Fit curve on
the graph in Figure 10. As the graph shows, the error between the best fit curve and
the measured data is extremely small. Although we do not have a justification for the
shape of this distribution, we think it is worthwhile to put forth a hypothesis and study its
consequences.

We used f(x) to extrapolate on the data to estimate the expected time until an error oc-
curs in this workload for several bit-widths that would be impractical to test experimentally.
These extrapolations appear in the table on the right of Figure 10. They should be taken
with a grain of salt, since the error in our estimation likely grows quickly with B. However,
the extrapolations suggest that even B = 32 would be quite safe for this workload. To our
knowledge, this kind of experimental exploration of the practicality of unbounded sequence
numbers has not previously been done.

7 Related Work

Several papers have presented universal constructions or strong primitives for non-blocking
algorithms in which operations create descriptors [20, 2, 1, 27, 17, 23, 21, 24, 3, 11]. A subset
of these algorithms employ ad-hoc techniques for reusing descriptors [20, 2, 1, 27, 24, 23, 21].
The rest assume descriptors will be allocated for each operation and eventually reclaimed.

Most of the ad-hoc techniques for reusing descriptors have significant downsides. Some
are complex and tightly integrated into the underlying algorithm, or rely on highly specific
algorithmic properties (e.g., that descriptors contain only a single word). Others use syn-
chronization primitives that atomically operate on large words, which are not available on
modern systems, and are inefficient when implemented in software. Yet others introduce
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high space overhead (e.g., by attaching a sequence number to every memory word). Some
techniques also incur significant runtime overhead (e.g., by invoking expensive synchron-
ization primitives just to read fields of a descriptor). Furthermore, these techniques give,
at best, a vague idea of how one might reuse descriptors for arbitrary algorithms, and it
would be difficult to determine how to use them in practice. Our work avoids all of these
downsides, and provides a concrete approach for transforming a large class of algorithms.

Barnes [4] introduced a technique for producing non-blocking algorithms that can be
more efficient (and sometimes simpler) than the universal constructions described above.
With Barnes’ technique, each operation creates a new descriptor. Creating a new descriptor
for each operation allows his technique to avoid the ABA problem while remaining concep-
tually simple. Each operation conceptually locks each location it will modify by installing
a pointer to its descriptor, and then performs it modifications and unlocks each location.
Barnes’ technique is the inspiration for the class WCA. Many algorithms have since been
introduced using variants of this technique [17, 14, 3, 19, 29, 11, 10]. Several of these
algorithms are quite efficient in practice despite the overhead of creating and reclaiming
descriptors. Our technique can significantly improve the space and time overhead of such
algorithms.

Recent work has identified ways to use hardware transactional memory (HTM) to reduce
descriptor allocation [9, 22]. Currently, HTM is supported only on recent Intel and IBM
processors. Other architectures, such as AMD, SPARC and ARM have not yet developed
HTM support. Thus, it is important to provide solutions for systems with no HTM support.
Additionally, even with HTM support, our approach is useful. Current (and likely future)
implementations of HTM offer no progress guarantees, so one must provide a lock-free
fallback path to guarantee lock-free progress. The techniques in [9, 22] accelerate the HTM-
based code path(s), but do nothing to reduce descriptor allocations on the fallback path.
In some workloads, many operations run on the fallback path, so it is important for it to
be efficient. Our work provides a way to accelerate the fallback path, and is orthogonal to
work that optimizes the fast path.

The long-lived renaming (LLR) problem is related to our work (see [6] for a survey), but
its solutions do not solve our problem. LLR provides processes with operations to acquire
one unique resource from a pool of resources, and subsequently release it. One could imagine
a scheme in which processes use LLR to reuse a small set of descriptors by invoking acquire
instead of allocating a new descriptor, and eventually invoking release. Note, however, that a
descriptor can safely be released only once it can no longer be accessed by any other process.
Determining when it is safe to release a descriptor is as hard as performing general memory
reclamation, and would also require delaying the release (and subsequent acquisition) of a
descriptor (which would increase the number of descriptors needed). In contrast, our weak
descriptors eliminate the need for memory reclamation, and allow immediate reuse.

8 Conclusion

We presented a novel technique for transforming algorithms that throw away descriptors
into algorithms that reuse descriptors. Our experiments show that our transformation yields
significant performance improvements for a lock-free k-CAS algorithm. Furthermore, our
transformation reduces peak memory usage by nearly three orders of magnitude over the
next best implementation.

We also applied our transformation to a lock-free implementation of LLX and SCX, and
studied its performance by doing rigorous experiments on a lock-free binary search tree that
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uses LLX and SCX. These experiments demonstrated a significant performance advantage
for our transformed algorithm in workloads that perform many updates. Our transformed
LLX and SCX algorithm has the potential to improve the performance of many algorithms
that use LLX and SCX.

We believe our transformation can be used to improve the performance and memory
usage of many other algorithms that throw away descriptors. Moreover, we hope that our
extended weak descriptor ADT will aid in the design of more efficient, complex algorithms,
by allowing algorithm designers to benefit from the conceptual simplicity of throwing away
descriptors without paying the practical costs of doing so.
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