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Many NLP applications entail that texts are classified based on their semantic distance (how
similar or different the texts are). For example, comparing the text of a new document to that of
documents of known topics can help identify the topic of the new text. Typically, a distributional
distance is used to capture the implicit semantic distance between two pieces of text. However,
such approaches do not take into account the semantic relations between words. In this article, we
introduce an alternative method of measuring the semantic distance between texts that integrates
distributional information and ontological knowledge within a network flow formalism. We first
represent each text as a collection of frequency-weighted concepts within an ontology. We then
make use of a network flow method which provides an efficient way of explicitly measuring the
frequency-weighted ontological distance between the concepts across two texts. We evaluate our
method in a variety of NLP tasks, and find that it performs well on two of three tasks. We develop
a new measure of semantic coherence that enables us to account for the performance difference
across the three data sets, shedding light on the properties of a data set that lends itself well to
our method.

1. Introduction

Many natural language tasks can be cast as a problem of comparing texts in terms of
their semantic distance. For example, given a suitable text distance measure, document
classification can be performed by comparing the text of a new document to the text of
various documents whose topics are known. The new document is then labelled with
the topic of the document whose text is most similar to it. In general, the texts to be
compared may be full documents, as in this example, or may be portions of documents,
or even collections of documents. Using text comparison to perform semantic classifi-
cation has been adopted in a variety of natural language processing (NLP) tasks, from
document classification (Scott and Matwin 1998; Rennie 2001; Al-Mubaid and Umair
2006), to prepositional phrase attachment (Pantel and Lin 2000), to spelling correction
(Budanitsky and Hirst 2001).
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Distributional methods for semantic distance are widely used and highly successful
in comparing texts that are represented as bags of words with associated frequencies
of occurrence (Lee 2001; Weeds, Weir, and McCarthy 2004; Pedersen, Banerjee, and
Patwardhan 2005). In document classification, for example, the text of a document may
be represented as a word frequency vector, which is compared using a distributional
distance measure to each of the word frequency vectors of the texts of the documents
of known topics. In this way, distributional distance between word vectors captures the
semantic distance between two texts that is implicitly encoded in the set of words used
in each.

Semantic distance can also be measured more explicitly, by using the relations in
an ontology as the direct encoding of semantic association. However, such approaches
have generally been limited to calculating the distance between two individual con-
cepts, rather than capturing the distance between two sets of concepts corresponding
to two texts. Numerous measures have been proposed, for example, for capturing
the distance between two concepts in WordNet, typically relying on the synonymy
(synset) and hyponymy (is-a) relations (Wu and Palmer 1994; Resnik 1995; Jiang and
Conrath 1997, among others). Using such an ontological measure to compare two texts
(collections of words instead of single words) might involve mapping each word of a
text to its appropriate concept(s) in the ontology, and then calculating the aggregate
distance between the two resulting sets of concepts across the ontological relations.
For example, one might calculate the semantic distance between the two texts as the
average, minimum, maximum, or summed ontological distance between the individual
elements of the two sets of concepts (Corley and Mihalcea 2005).

Observe that each of these approaches to text comparison—distributional and
ontological—encodes information not contained in the other. Distributional distance
captures important information about frequency of occurrence of the words that consti-
tute the target text, whereas ontological distance captures essential semantic knowledge
that has been encoded in the relations of an ontology. In response, previous work has
attempted to combine distributional and ontological information in computing seman-
tic distance. For example, researchers have developed measures of semantic distance
between texts that apply distributional distances to concept vectors of frequencies rather
than to word vectors (McCarthy 2000; Mohammad and Hirst 2006). However, these ap-
proaches onlymake pairwise comparisions between the elements of the concept vectors,
and do not take into account the important ontological relations among the concepts. In
order to capture such relations, other methods have instead integrated distributional
information into an ontological method. However, such approaches have heretofore
been limited to measuring distance between two individual concepts. For example,
some ontological measures use corpus frequencies of words to yield concept weights
that are taken into account in measuring the distance between two concepts (Resnik
1995; Jiang and Conrath 1997). What has been missing is an approach to semantic
distance between two texts—two sets of words—that can truly integrate distributional
and ontological (relational) information, drawing more fully on their complementary
advantages for text comparison.

In this article, we describe a new graph-based distance measure that achieves the
desired integration of distributional and ontological factors in measuring semantic
distance between two sets of concepts (mapped from two texts). An ontology is treated
as a graph in the usual manner, in which the concepts are nodes and the relations are
edges. A text is represented as a subgraph of the ontology, by mapping the words in
the text into their corresponding concepts, which are weighted according to the word
frequencies. We call the resulting set of frequency-weighted concepts a semantic profile.
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By exploiting the relational structure of the ontology, we can explicitly measure the
ontological distance over the paths between two profiles. Using the frequencies on the
concept nodes, we weight these paths according to the frequency distribution of words
in the two texts. The resulting calculation yields a frequency-weighted ontological
distance between the two sets of concepts. Thus, we view a text not as a set of items to
be compared individually to those in another set (with those individual distances then
somehow combined, e.g., as in Corley and Mihalcea [2005]), but rather as a distribution
of “mass” within a graph that encodes the semantic relations across the two sets, and
use a weighted graph-based approach that captures the aggregate distance between the
two frequency masses.

To our knowledge, this is the first method to integrate ontological and distributional
information in the graphical calculation of text distance. This article describes the use
of the new measure in several different types of NLP text comparison tasks, in order to
explore the situations in which such an approach can be effective. Given the novelty
of the approach, the task-based evaluation is not intended as the last word on the
usefulness of the method, but rather as a first suite of experiments across different types
of text comparison tasks to illuminate some of the strengths and weaknesses of such
an approach to text distance. We thus analyze the results in detail to identify future
directions for further illuminating when and to what extent the methodmight be useful.

The analysis reveals that our method is not consistently successful across our
sample tasks. We hypothesize that, because ontological relations play an integral role
in our semantic distance measure, the measure is less effective when the semantic
profile for a text (the set of corresponding concepts) lacks semantic coherence. Other
work has explored ways to measure the semantic coherence of a set of concepts in
terms of their connectedness within an ontology (Gurevych et al. 2003). Because a
semantic profile in our work includes both ontological (relational) and distributional
(frequency) knowledge, we require a measure of semantic coherence that takes both
into account. We develop a novel measure of semantic coherence called profile density
that captures both the ontological and distributional coherence of a set of frequency-
weighted concepts, and apply it to the data sets used in the different tasks to better
understand the performance of our semantic distance measure.

Our distance measure is cast as a graphical text comparison task within a network
flow framework as described in Section 2. In Section 3, we give an overview of our
exploration of the method on three types of text comparison problems. The following
three sections present experimental results and analysis of applying our method to the
various tasks: verb alternation detection (Section 4), name disambiguation (Section 5),
and document classification (Section 6). In Section 7, we describe our profile density
measure and use it to analyze the properties of the data sets that lead to the performance
differential across the tasks. We conclude the paper with a description of related work
in text comparison and graph-theoretic NLP approaches (Section 8) and a discussion of
some future directions for our research (Section 9).

2. The Network Flow Method

As noted previously, we treat an ontology as a graph and represent a text as a semantic
profile—a collection of nodes in the graph (concepts in the ontology), each having a
weight (its frequency). For example, in Figure 1, a small text consisting of the words
{cheese, wheat}, with frequencies of 4 and 10, respectively, is represented as a small
weighted subgraph in an ontology by uniformly distributing the word frequencies
among the associated concepts. In this way, a text is a weighted subgraph within a
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Figure 1
A small text represented as a collection of weighted nodes in a fragment of WordNet.

larger graph (with the thickness of the boxes in the figure indicating weight), and two
such weighted subgraphs are connected via a set of paths in the graph.

Our goal is to measure the distance between two subgraphs (representing two
texts to be compared), taking into account both the ontological distance between the
component concepts and their frequency distributions. To achieve this, we measure the
amount of “effort” required to transform one profile to match the other graphically:
The more similar they are, the less effort it takes to transform one into the other. (This
view is similar to that motivating the use of “earth mover’s distance” in computer
vision [Levina and Bickel 2001].) In Section 2.1, we first give the intuitive motivation
for the approach in terms of the properties of semantic distance that we want to cap-
ture by considering transport effort. We then present the mathematical formulation of
our graph-based method as a minimum cost flow (MCF) problem in Section 2.2, and
describe the formulation of our task within this network flow framework in Section 2.3.
In Section 2.4, we return to the properties we identify in Section 2.1 to explain how they
are reflected in the MCF formulation.

2.1 An Intuitive Overview

In Figure 2(a), we show a diagrammatic representation of an ontology (the large open
triangle) with two profiles, one indicated with filled squares and the other with filled
triangles. The location of a filled shape indicates the location of a profile concept in the
ontology, and its size indicates its frequency within the profile. We omit edges between
the nodes to simplify the diagram, but note that we assume we have a hierarchical, con-
nected ontology; hyponymy links are sufficient. Our goal is to calculate the similarity
between the two profiles by determining howmuch effort is required to transport, along
the ontological links, the frequency mass from all of the squares to “fill” the available
space in the triangles. The amount of mass to move and the amount of space available
are indicated by the sizes of the squares and triangles, respectively. The degree of effort
required to transport one to the other indicates the degree of semantic distance.
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Figure 2
Two subgraphs (one represented by squares, the other, triangles) with varying degrees of
overlap and, therefore, similarity within an ontology. Figure (b) differs from Figure (a) in terms
of the ontological distance between the square and the triangle clusters. Figure (c) differs from
Figure (a) in terms of the size of the individual squares.

The transport effort is determined by both the amount of mass to move and the
graphical distance over which it must travel. First consider graphical (ontological)
distance between the profiles. Assume the calculated distance between the two profiles
in Figure 2(a) is d. In Figure 2(b), the triangle profile is exactly the same. By contrast,
although the square profile has the same internal properties (same frequency distribu-
tion and graphical structure), its location is further from the triangles. Because the two
profiles occupymore distant portions of the ontological space, they are less semantically
similar than in Figure 2(a). As desired, the extra ontological distance over which the
square frequency mass must be transported to the triangles will cause the calculated
distance in Figure 2(b) to be larger than d.

Next consider the effect of varying the frequency distribution over the profile nodes.
Again, in Figure 2(c), the triangle profile is exactly the same as in Figure 2(a). However,
whereas the nodes of the square profile in Figure 2(c) are in the same locations as in
Figure 2(a), their distributional properties are different. The bulk of the frequency distri-
bution is now shifted closer to the nodes of the triangle profile. Because the two profiles
have more distributional weight located closer within the ontology, this indicates that
the semantic space they occupy is more similar than in Figure 2(a). Correspondingly,
because much of the mass of the square profile needs to travel less far to fill the space of
the triangle nodes, the calculated distance in Figure 2(c) will be less than d.
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It is worth noting explicitly that this notion of semantic distance as transport effort
of concept frequency over the relations (edges) of an ontology differs significantly from
an approach to semantic distance that utilizes concept vectors of frequency. By crucially
utilizing the relations between concepts in calculating semantic distance, our approach
can determine the distance between texts that use related but non-equivalent concepts.
For example, our measure will find greater similarity between a text that discusses
milk and one that discusses cheese than between one that discusses milk and one that
discusses bread. A vector distance would find each of these equally dissimilar, because
there are no concepts in common, and there is no way to relate milk to cheese.1

The intuitive examples in Figure 2 show that calculating semantic distance as
transport effort captures in a well-motivated way both the ontological distance between
the profiles and their weighting by the distributional amounts of the concept nodes. In
the next subsection, we describe a mathematical formulation that captures the relevant
properties of our problem in a network flow framework. Network flow methods are
often used in computer science for modelling such transport effort, for example, in
communication or transportation networks.

2.2 Minimum Cost Flow

Our intuitive transport effort examples above can be viewed as a supply–demand
problem, in which we find the minimum cost flow (MCF) from the supply profile to the
demand profile to meet the requirements of the latter. Mathematically, let G = (N,E) be
a connected graph representing an ontology, where N is the set of nodes representing
the individual concepts, and E is the set of edges representing the relations between
the concepts. (Most ontologies are connected; in the case of a forest, adding an arbi-
trary root node yields a connected graph.) Each edge has a cost c : E → R, which is
the ontological distance of the edge. Each node i ∈ N is associated with a value b(i)
such that b : N → R indicates its available supply (b(i) > 0), its demand (b(i) < 0), or
neither (b(i) = 0). The goal is to find a flow from supply nodes to demand nodes that
satisfies the supply/demand constraints of each node and minimizes the overall “trans-
port cost.”

First, we have to define a function to describe the flow entering i via an incoming
edge (h, i) and exiting i via an outgoing edge (i, j). Let INi be the set of edges (h, i)
with a flow entering node i; similarly, let OUTi be the set of edges (i, j) with a flow
exiting node i. Then, the flow entering and exiting node i is captured by x : E → R such
that we can observe the combined incoming flow,

∑
(h,i)∈INi

x(h, i), from the entering
edges INi, as well as the combined outgoing flow,

∑
(i,j)∈OUTi

x(i, j), via the exiting edges
OUTi (see Figure 3). A valid flow, x, must be found such that the net flow at each
node—the difference between its exiting flow and its entering flow—equals its specified
supply or demand constraints. For example, in Figure 2 where the squares represent
the supply and the triangles represent the demand, a solution for x would allow us to
transport all the weight at the squares to fill the triangles, via a set of routes connecting
them.

1 Techniques such as SVD or LSA could be applied to the concept vectors, as with word vectors, yielding
potential relations through unnamed concepts (e.g., Landauer and Dumias 1997). Note, however, that
such methods are dependent on the usages of the concepts implicitly encoding such connections,
whereas an ontology-based method draws on a knowledge base that explicitly encodes the relations
regardless of the particular usages of the concepts.
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Figure 3
An illustration of flow entering and exiting node i.

Formally, the MCF problem can be stated as follows (from Chvátal 1983):

Minimize z(�x ) =
∑

(i,j)∈E

c(i, j) · x(i, j) (1)

subject to
∑

(i,j)∈OUTi

x(i, j)−
∑

(h,i)∈INi

x(h, i) = b(i),∀i ∈ N (2)

and x(i, j) ≥ 0,∀(i, j) ∈ E (3)

The constraint specified by Equation (2) ensures that the difference between the flow
entering and exiting each node i matches its supply or demand b(i) exactly. The next
constraint, Equation (3), ensures that the flow is transported from the supply to the
demand but not in the opposite direction. The calculation of z in Equation (1) (which is
subject to these constraints) multiplies the amount of flow travelling along each edge,
x(i, j), by the transportation cost of using that edge, c(i, j). Taking the summation over all
edges of the product c(i, j) · x(i, j) yields the desired transport effort of using the supply
to fill the demand.2

2.3 Semantic Distance as MCF

To cast our text comparison task into this framework, we first represent each text as a
semantic profile in an ontology. The profile of one text is chosen as the supply (S) and the
other as the demand (D); our distance measure is symmetric, so this choice is arbitrary.
In our examples in Section 2.1, the square profile was seen as the supply and the triangle

2 We cast our text comparison problem as an uncapacitated minimum-cost flow problem, i.e., there is no
upperbound constraint placed on the amount of flow along each edge (see Equation (3)). Unlike a
capacitated version of MCF, which is NP-complete (Garey and Johnson 1979), our problem is tractable
and can be solved in polynomial time.
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profile as the demand. The concept frequencies of the profiles are normalized, so that
the total supply equals the total demand.

The cost of the routes between nodes is determined by a semantic distance measure
defined over the nodes in the ontology—that is, a measure of individual concept-
to-concept distance. A relation (such as hyponymy) between two concepts i and j is
represented by an edge (i, j), and the cost c on the edge (i, j) can be defined as the
concept-to-concept distance between i and j. For simplicity in this article, we use edge
distance as our concept-to-concept distance measure c; that is, each edge (i, j) has a cost
of 1, and the distance between any two concepts is the number of edges separating
them.3

Next, we must determine the value of b(i) at each concept node i. In the simple
case, i occurs in only one profile or the other. If i ∈ S, b(i) is set to the normalized sup-
ply frequency, fS(i). If i ∈ D, b(i) is set to the negative of the normalized demand
frequency, −fD(i), since demand is indicated by a value less than zero. However, i may
be part of both the supply and demand profiles, and then b(i) must be set to the net
supply/demand at node i. Thus we have:

b(i) = fS(i)− fD(i) (4)

For example, if the supply profile contains a node car with frequency of 0.25, and the
same node in the demand profile has a frequency of 0.7, then b(car) is −0.45. In other
words, the node car has a net demand of 0.45.

Recall that our goal is to transport all the supply to meet the demand; the key
step is to determine the optimal routes between S and D such that the constraints in
Equation (2) and Equation (3) are satisfied. The total distance of the routes, or theMCF—
z(�x ) in Equation (1)—is the distance between the two semantic profiles.

2.4 Ontological and Distributional Factors in MCF

To see how the factors of ontological distance and frequency distribution play out in
the MCF formulation, let’s return to our square and triangle profile example. Consider
a hypothetical zoomed-in area of the earlier diagram in Figure 2(a), shown in Figure 4.
Here we assume that the square nodes have a net supply (b(i) > 0) and the triangle
nodes have a net demand (b(i) < 0).4 The size of the square and triangle nodes in
the figure indicates |b(i)|—i.e., the relative supply/demand, respectively. The circles
indicate nodes with neither supply nor demand constraints—i.e., b(i) = 0. Each arrow
from node i to node j indicates the source and destination for transported flow from a
square node to a triangle. The length of an arrow represents the ontological distance,
c(i, j), and the width indicates the amount of flow, x(i, j). Note that the mass at the
rightmost square in the figure has to be distributed over the two triangles, and the
mass at the leftmost square is transported over a path with one edge (as indicated by

3 Some semantic distances, such as those of Lin (1998) and Resnik (1995), do not directly use the
underlying graph structure of the ontology in calculating the distance between two concepts. Using this
type of distance in our MCF framework requires an extra graph transformation step; see Tsang and
Stevenson (2006) for more details.

4 Earlier we made the simplifying assumption that square nodes were the supply profile and triangle
nodes the demand profile. We have now seen that a node can belong to both profiles, and its
characterization more accurately is stated in terms of net supply/demand. Thus, for example, a square
node may belong to just the supply profile or to both the supply and demand profile; the defining factor
is that it has a net supply.
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Figure 4
An example of transporting the weights at the square nodes (supply nodes) to the triangle nodes
(demand nodes). The circle nodes have zero supply/demand requirement.

the arrow nearby) instead of a path with three edges (with two circle nodes on the path).
The aggregated length and width of the three arrows corresponds to the minimum cost
flow, i.e., the semantic distance between the profiles represented by the squares and
triangles.

Both the ontological distance between nodes and the node weights are important
in determining the minimum cost flow. The role of ontological information in the MCF
formulation is clear. If the squares were further away from the triangles in the ontology
in Figure 4—that is, if more edges separated the squares and the triangles—the sets of
concepts they represent would be less semantically similar. The length of the arrows
(representing c(i, j)) would be greater, and the resulting MCF would be larger, reflecting
the greater semantic distance between the profiles. Distributional information in this
method is equally critical to the distance calculation, because it determines the amount
of supply/demand at each node. If the squares in Figure 4 were more uniformly sized,
the two profiles would be more semantically similar because the weight would be
distributed more similarly across the ontological space. In this case, less flow would
have to travel from the rightmost square to the leftmost triangle (i.e., the corresponding
arrow would be thinner, representing x(i, j)), and the resulting MCF would therefore be
smaller. In short, our MCF method captures the desired property that both ontological
distance between profile nodes and their frequency distributions determine the overall
semantic distance between two profiles.

3. Evaluation: Experimental Tasks and Methodology

We select three different NLP tasks that can be formulated as text classification problems
based on semantic distance between the texts. In each case, the texts to be compared
are treated as bags of words with associated frequencies. The tasks are chosen to reflect
different types of relations used to extract the relevant words, to see if a varying amount
of constraint on the words comprising a text influences the performance of our method.

In verb alternation detection (Section 4), we identify which verbs, out of a set of
target and filler verbs, allow a certain variation in the syntactic expression of their
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underlying argument structure. The task is achieved by comparing the set of head
words that occur with the verb in each of two different syntactic positions (e.g., subject
of intransitive and object of transitive). In this task, the words that make up the texts
to be compared have a particular syntactic relation to the verb under consideration. In
proper name disambiguation (Section 5), we classify the sense of an ambiguous name
according to its local context. This task is similar to word sense disambiguation (WSD),
in picking the intended sense of a term, but also has similarities to topic identification,
since the proper name delineates a particular domain of discourse. In this task, we
compare the text constituting the ambiguous instance to texts representing each of the
known referents of the name. Here, the words of a text are extracted from a small
window of occurrence around the target name token (25 words on each side), regardless
of the syntactic relations among the words. For the known referents, the words from
these windows are aggregated across a small set of labelled instances. In document
classification (Section 6), a text is classified into one of a restricted number of topic
categories. The text to be classified consists of all the words in a document; for each
topic, it is compared to a set of words corresponding to a small set of known documents
for that topic. The extracted words are not constrained by syntactic relation (as in verb
alternation) or even by distance to a target element (as in name disambiguation).

In each case, the resulting bag of words for a text must be mapped into a semantic
profile—a frequency-weighted set of concepts in an ontology. Because all three of our
tasks involve general domain text, we use WordNet as our ontology (Fellbaum 1998).5

(A domain-restricted task may motivate the use of a domain-specific ontology, such
as UMLS for comparing medical texts as in Bodenreider [2004].) Because the noun
hierarchy of the WordNet ontology is most developed, we restrict our semantic profiles
to use only the nouns from the bag of words corresponding to a text: Any word in
the text that appears in the noun hierarchy of WordNet is included in the bag of
nouns.

The bag of nouns with their associated frequencies must be mapped to the appro-
priate concepts in WordNet. Given the current state of unsupervised WSD, there is
generally no attempt to disambiguate the words of a text when performing this kind
of mapping—that is, there is no selection of the most appropriate concept or set of
concepts to map the words to, given the context of their use. The simplest method
is to distribute the frequency of each word uniformly to its corresponding concepts.
For example, Ribas (1995) maps the word frequency to the most specific concept(s) for
the word, including all of the possible synsets for the word, but not their hypernyms.
Resnik (1993) also distributes the word frequency uniformly, but does so across the most
specific concept(s) and all of their hypernyms. Other approaches, although still avoiding
the difficulties of WSD, do try to capture the overall semantic “tendencies” of the set of
words. Such methods estimate the appropriate probability distribution over a set of
concepts to represent a given bag of nouns as a whole (Li and Abe 1998; Clark and Weir
2002). However, such techniques still start with a mapping of each word to all of its
immediate concepts.

5 There is disagreement over the suitability of treating WordNet as an ontology, rather than as a lexical
network (Gangemi, Guarino, and Oltramari 2001; Hirst 2009). However, the intention of the creators of
WordNet is apparently that its synsets correspond to concepts, and the relations between them include
both “conceptual-semantic and lexical relations” (http://wordnet.princeton.edu/), qualifying it, under
some views, as a general domain ontology. Although recognizing the limitations and difficulties of using
a primarily lexical resource as an ontology, we note that WordNet is standardly used as such in
computational linguistics, and so we adopt this use here.
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For all three of our tasks, we take the simple approach of mapping each noun
individually to its most specific concepts (not their hypernyms), uniformly dividing
the word frequency among them. In verb alternation, we also experiment with the
possibility of finding the best set of frequency-weighted concepts for the full bag of
nouns (using the techniques of Li and Abe [1998] and Clark and Weir [2002]), to see if
this affects the performance of our method.

The precise classification experiment performed using these semantic profiles is
described in detail subsequently in the section for each task. In each case, we compare
the performance of our MCF method on the semantic profiles to one or more purely
distributional methods using the original word frequency vectors.

4. Task 1: Verb Alternation Detection

Verb alternation refers to variations in the syntactic expression of verbal arguments. If a
verb participates in an alternation, the same underlying semantic argument may appear
in varying positions (slots) of the verb’s subcategorization frames. For example, the
following sentences show that the argument undergoing the melting action can appear
as the subject of an intransitive use of melt (1a) or as the object of a transitive use (1b).

1a. The chocolate melted.

1b. The cook melted the chocolate.

This type of intranstive/transitive pairing is known as the causative alternation because
of the explicit expression of the causer (the cook) in the transitive alternant.

It has long been hypothesized that the semantics of a verb and its relations to its
arguments at least partially determine the syntactic expression of those arguments (see
Pinker [1989], among others). Influential work by Levin (1993) showed that this rela-
tionship could be exploited “in reverse” by using alternation behavior as an indicator
of the underlying semantics of a verb—specifically, that verbs undergoing the same sets
of alternations form classes with similar semantics. Computational linguists have built
on this work by demonstrating that statistical cues to alternation behavior can be used
to automatically place verbs into semantic classes (Merlo and Stevenson 2001; Schulte
im Walde 2006).

Detection of verb alternation behavior can be cast as a text comparison problem
(McCarthy 2000; Merlo and Stevenson 2001). Consider an alternation such as the
causative illustrated in Example (1). The set of nouns appearing as the subject of the
intransitive (such as chocolate) have the same relation to the verb as the set of nouns
appearing as the object of the transitive. Because the verb places constraints on what
kinds of entities can be in that relation (here, things that are meltable), the two sets of
nouns should be similar. Hence, to identify a particular alternation for a verb, the set
of nouns in a certain slot of one of its subcategorization frames is compared to the set
of nouns in the alternating slot for that semantic argument in another subcategorization
frame.

For example, Merlo and Stevenson (2001) devise a simple lemma overlap score
that counts the number of tokens appearing in both of the relevant syntactic slots.
McCarthy (2000) instead compares two semantic profiles in WordNet that contain the
concepts corresponding to the nouns from the two argument positions. In McCarthy’s
method, the profiles are first generalized to a set of higher level nodes in the hierarchy
(starting with the method of Li and Abe [1998]); next, skew divergence is used to find
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the distance between the resulting vectors of concepts. Here we use our network flow
method to directly compare the semantic profiles corresponding to the noun sets. Our
method allows us to compare sets of weighted concepts as in McCarthy’s, but using
a distance method that applies within the ontology graph, rather than simply using a
distributional distance measure over concept vectors.

4.1 Experimental Set-up

We adopt the data set from an investigation of a semantic distance measure that was
a precursor to our network flow method (Tsang and Stevenson 2004). The selection
of these verbs and extraction of their arguments are discussed in the following two
sections; we then describe our evaluation methodology.

4.1.1 Experimental Verbs.We evaluate our method on the causative alternation. As noted
previously, in this alternation the target syntactic slots for comparison are the subject
of the intransitive (Subj-Intrans) and the object of the transitive (Obj-Trans). (These are
the positions of the chocolate in Examples (1a) and (1b), respectively.) To identify verbs
undergoing this alternation, we randomly selected verbs from among Levin classes that
are indicated to allow the causative alternation. This allows us to test the ability of a
distance measure to detect alternation behavior among verbs from a range of semantic
classes which may differ in other respects.

We refer to the verbs that are expected to undergo the causative alternation as
causative verbs. For comparison, we randomly selected an equal number of filler verbs,
subject to the constraint that their Levin classes do not allow a causative alternation.
(Specifically, none of the classes containing a filler verb allows an alternation in which
the same underlying argument appears in the Subj-Intrans slot as well as the Obj-Trans
slot.) The full set of potential causative and filler verbs were filtered according to corpus
counts, as described next.

4.1.2 Corpus Data and Argument Extraction. We used a randomly selected 35M-word
portion of the British National Corpus (BNC; Burnard 2000). The text was parsed using
the RASP parser of Briscoe and Carroll (2002), and subcategorization frames were
extracted using the system of Briscoe and Carroll (1997). Each subcategorization frame
entry for a verb includes a list of the observed argument heads per slot along with their
frequencies. For each verb/slot pair, we thus extracted the set of nouns used in that slot
along with their frequency of occurrence.

Verbs were filtered from the potential list of experimental items if they occurred
less than 10 times in our corpus in either the transitive or intransitive frame. The verbs
were then divided into multiple frequency bands: high (at least 450 instances), medium
(between 150 and 400 instances), and low (between 10 and 100 instances). An equal
number of verbs of each type (causative and filler) were randomly selected within each
band, yielding a total of 120 experimental verbs in balanced data sets of 60 items for
development and 60 items for testing. The development data was used in our earlier
work to select a profile-generation method for the test data (Tsang and Stevenson 2004).
In our current work, we did not make any adjustments to our method based on results
on the development set (i.e., it was not used to set any parameters or select a particular
implementation approach). Hence, we report the evaluation of our method on the full
set of 60 verbs in each of the data sets, as well as individually on the three frequency
bands of 20 verbs each. We refer here to the original “development” and “test” data sets
as “dataset1” and “dataset2”.
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4.1.3 Evaluation Methodology. For each verb, we create a semantic profile for each of
the Subj-Intrans and Obj-Trans slots. We first take the argument heads with their fre-
quencies from the appropriate slots in the extracted subcategorization frame for the
verb. We then map these words with their frequencies to the corresponding nodes in
WordNet, as described in Section 3. (We also consider here different profile generation
methods, discussed later in Section 4.2.2.) We then calculate the network flow distance
between the two semantic profiles for each verb, yielding a distance calculation for
that verb. Recall that we expect verbs that participate in the alternation to have more
similar semantic profiles corresponding to the Subj-Intrans and Obj-Trans nouns. For
example, a causative verb like melt, as in Examples (1a) and (1b), may have words
like chocolate, sherbet, and glacier in the Subj-Intrans slot, and words like chocolate, butter,
and bronze in the Obj-Trans slot. In contrast, a non-causative verb like fry will typically
have more dissimilar sets of words that contribute to the two profiles (e.g., cook, wife,
and chef in the Subj-Intrans slot, and egg, noodle, and onion in the Obj-Trans slot). We
thus rank all the verbs by the distance calculation, and (as in McCarthy 2000) set a
threshold to divide the verbs into causative (smaller distance values) and non-causative
(larger distance values). FollowingMcCarthy, we experimented with both the mean and
median values as the threshold, but found little difference. We report the results using
themedian distance as the threshold, because this providedmore consistent results with
our method.

Because we label all verbs in our experiments as causative or non-causative, we use
accuracy as the performance measure. Since we have balanced data sets, the random
baseline is 50%. We compare our results as well to a number of distributional methods
(as enumerated in the next section). Given the small size of our data sets, a simple
statistical test on the resulting accuracies is not powerful enough to reveal differences
when the accuracies are close. However, because the difference in methods is due to
variation in how they rank the experimental items, we perform a Wilcoxon signed
rank test (Wilcoxon 1945) to determine when the rankings between two methods are
significantly different, using a p value of .05.

4.2 Results and Analysis

As noted herein, we present results on two sets of data, and also examine the effect of us-
ing alternative profile generation methods. We compare our network flow distance (NF)
to a number of other distance measures including probability distributional distances
given by Jensen-Shannon divergence (JS) and skew divergence (skew div) (Lee 2001),
as well as the general vector distances of cosine, Manhattan distance, and Euclidean
distance.

4.2.1 Experimental Results. On dataset1, our network flow distance performs better than
or as well as all other measures on the individual frequency bands, as shown in Table 1.
On all verbs combined (the “All” column) the performance of our method is not the
best, although the Wilcoxon test shows no significant difference between the rankings
of NF and the best measure (Manhattan). (The difference in rankings between NF and
all other measures is significant.)

Interestingly, we find that the ”All Verbs” performance of NF (and that of several
other methods) is indeed worse than the performance on the individual frequency
bands. We examined the distance values across the frequency bands to determine the
cause for this pattern. We found that low frequency verbs tend to have smaller distances
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Table 1
Accuracies on dataset1 by the network flow method (NF), cosine, Manhattan distance, Euclidean
distance, skew divergence (skew div), and Jensen-Shannon divergence (JS). Best accuracies in
each condition are shown in boldface.

All Frequency Bands Avg of
Verbs High Medium Low Bands

NF 0.60 0.70 0.70 0.70 0.70
cosine 0.57 0.60 0.60 0.60 0.60
Manhattan 0.63 0.70 0.70 0.70 0.70
Euclidean 0.47 0.40 0.50 0.40 0.43
skew div 0.57 0.60 0.60 0.50 0.57
JS 0.60 0.70 0.60 0.70 0.67

Table 2
Accuracies on dataset2 by the network flow method (NF), cosine, Manhattan distance, Euclidean
distance, skew divergence (skew div), and Jensen-Shannon divergence (JS). Best accuracies in
each condition are shown in boldface.

All Frequency Bands Avg of
Verbs High Medium Low Bands

NF 0.67 0.60 0.80 0.60 0.67
cosine 0.50 0.60 0.50 0.50 0.53
Manhattan 0.63 0.60 0.80 0.60 0.67
Euclidean 0.60 0.50 0.70 0.50 0.57
skew div 0.63 0.60 0.80 0.60 0.67
JS 0.70 0.60 0.80 0.60 0.67

between the two slots and high frequency verbs tend to have larger distances. This is
due to the fact that higher frequency verbs typically occur with a wider range of nouns,
leading to a more dispersed semantic profile (i.e., a larger number of concepts). As a
result, the best threshold for separating the alternating and non-alternating verbs differs
across the frequency bands, and the threshold for all verbs together lies in between
the thresholds for the high and low frequency bands. When classifying all verbs, the
frequency effect may result in more false positives for low frequency verbs (which have
generally smaller distance values), and more false negatives for high frequency verbs
(which have generally larger distance values). The column labelled “Avg” in Table 1
shows the performance when averaging the results across the individual frequency
bands. For most methods, including ours, the “Avg” results are much better than when
considering all verbs together (the “All” column).

Table 2 reports the performance on dataset2, which is similar to that on dataset1.
Again, we find that our method is tied for the best performance in every condition
except for all verbs combined. (Here we find that all four methods over .60 accuracy
in the “All” condition have statistically indistinguishable rankings of the experimental
items.) On this data set, taking the average of the frequency bands does not help
performance of our method compared to “All,” but neither does it hurt (and for most
methods “Avg” does better or the same as “All”). We conclude that separating items by
frequency may be required to achieve robust results in this type of task.

Although our method is tied for best in every condition except “All,” neither
is our method distinguished from several of the other distance measures. Given the
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Table 3
Average accuracies by the network flow method (NF), Manhattan distance (Man), skew
divergence (skew div), and Jensen-Shannon divergence (JS) on different profiles: original
(“raw”), Li and Abe, and Clark and Weir profiles. Best accuracies in each condition are shown in
boldface.

raw Li and Abe Clark and Weir
Dataset1 Dataset2 Dataset1 Dataset2 Dataset1 Dataset2

NF 0.70 0.67 0.50 0.67 0.73 0.70
Manhattan 0.70 0.67 0.57 0.67 0.60 0.57
skew div 0.57 0.67 0.53 0.67 0.68 0.60
JS 0.67 0.67 0.63 0.67 0.63 0.53

relatively small amounts of data per verb (with profiles averaging about 900 nodes
in size), it is possible that the raw profiles suffer from a sparse data problem and are
not sufficiently capturing the conceptual similarities among alternating slots. McCarthy
(2000) addressed this issue by using a technique for generalizing concept nodes prior to
comparing profiles. We explore this issue next.

4.2.2 Comparing Different Profile Generation Methods. Our experiments use semantic pro-
files created directly from the word frequencies, as described earlier. However, research
has explored the possibility of generalizing this kind of “raw” data to a semantic profile
that more appropriately reflects the coherent concepts expressed in the original set of
weighted concept nodes. This can be especially useful when creating semantic profiles
from small amounts of data, given the noise introduced in the mapping of words to
concepts.6 To explore the effect of different profile generation methods on this task, we
consider here two approaches, that of Li and Abe (1998) and Clark and Weir (2002).
Both these methods start with a semantic profile generated as described in Section 3
and attempt to find the set of nodes in the ontology that appropriately generalize the
concepts in the “raw” profile.

Table 3 compares the performance of the network flow distance with that of several
other measures on the original (“raw”) profiles, the Li and Abe profiles, and the Clark
and Weir profiles. Results are reported for the average of the individual frequency
bands, since that produced the best results overall in our earlier experiments. The results
for cosine and Euclidean distance are omitted, because they perform worse overall than
the other measures.7

The best results across both data sets are achieved by our network flow method on
the Clark andWeir profiles. Considering the results across all profile types, the network
flow approach is most consistent, achieving the best (or tied for best) performance
in but one condition (dataset1 with Li and Abe profiles). The distributional methods

6 Because we divide the frequency of a word uniformly among all the word’s concepts, with no attempt at
disambiguation or informed weighting, much noise is introduced. Given the small amounts of data, the
noise may be sufficient to mislead our network flow method.

7 Because these results use the approach of averaging results across the frequency bands, we cannot apply
the Wilcoxon signed rank test to the rankings. (The individual frequency bands have too few items for
the test to detect differences.) On All Verbs combined (results not reported in this table), the rankings of
NF are different from all other methods on each combination of data set and profile generation approach,
except in the single case of Manhattan and JS on dataset2 using Li and Abe to create the profiles.
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(Manhattan, skew div, JS) in almost all cases perform worse on the generalized profiles
than on the “raw” profiles. (The one exception is that skew divergence does better on
dataset1 on the Clark and Weir profiles.)

Overall, then, it seems that raw data is likely best for a purely distributional method,
but the Clark andWeir profiles enable the network flowmethod to outperform them by
exploiting the graph structure of the ontology. Indeed, when comparing our method
to the others on the Clark and Weir profiles for the individual frequency bands (not
shown in the table), we find that much of our performance advantage comes on the
low frequency verbs. This indicates that the combination of our method with a suitable
generalization technique is especially important when dealing with sparse data.

We examine the data further to discover why the Li and Abe profiles yield poorer
performance inmost cases on dataset1.We find that Li andAbe’s (1998) method tends to
generate profiles with more general concepts. For example, when given an original set
of concepts such as Edam, Brie, Sockeye, and Chinook, the method may produce a single
general concept such as food instead of the two concepts cheese and salmon that capture
the two kinds of food that are indicated. The loss of semantic information from using
overly general concepts may produce the decrease in performance.

For comparison, we also apply McCarthy’s (2000) method to our dataset2, and
find that it achieves only 0.60 on all verbs and 0.53 averaged over the three frequency
bands. Her method is especially poor on low frequency verbs (below chance at 0.40).
We hypothesize that her method is less robust to low frequency counts because it
may overgeneralize the data by first applying Li and Abe’s (1998) method, and then
generalizing the nodes even further.

We see that although some amount of generalization of the semantic profiles is
useful in this task, overgeneralization may be harmful. We leave it to future work
to explore the interaction of our network flow method with different types of profile
generation across various tasks. Because the next two tasks we consider use larger
amounts of data, we only experiment with raw profiles in these cases.

5. Task 2: Name Disambiguation

Interest in the NLP problem of name disambiguation has increased as the growth of
the World Wide Web has led to large numbers of ambiguous name references in on-
line text. For example, Web sites or documents containing the name John Edwards may
refer to the U.S. presidential candidate for 2008, an NBA basketball player, or a British
medical geneticist. An ambiguous name may be resolved by comparing its local textual
context—the set of words it co-occurs with—with the local textual contexts of the name
when its reference is known. For example, the text surrounding the name John Edwards
in its various uses are very likely to include distinguishing words such as politician vs.
game vs. research. Many approaches have been proposed for resolving name ambiguity
by using distributional methods over contextual information (Xu, Liu, and Gong 2003;
Han, Zha, and Giles 2005; Pedersen, Purandare, and Kulkarni 2005).

In this section, we present the application of our network flow distance measure to a
name disambiguation task, and demonstrate the benefits of combining ontological and
distributional knowledge in this task. The particular task we examine is one of “pseudo
name disambiguation,” in which the texts containing matched pairs of different names
are extracted, and then the two different names are replaced by a single symbol, leading
to an ambiguous “name” across the two sets of texts. The goal is to recover the correct
target name in each instance. For example, the names of two soccer players (Ronaldo
and David Beckham) form one disambiguation task, and the names of an ethnic group
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and a diplomat (Tajik and Rolf Ekeus) form another. This task was established by
Pedersen, Purandare, and Kulkarni (2005) to provide “annotated” experimental data
(with each text indicating the correct name) without the need for expensive manual
annotation.

In Pedersen, Purandare, and Kulkarni (2005), an unsupervised method of name
discrimination through text clustering was used to address this task. This is infeasible
for a method like ours, in which each distance calculation requires access to an ontology.
(The worst-case complexity of clustering with our method is quadratic in the size of the
ontology used; a detailed discussion can be found in Tsang and Stevenson [2006].) In-
stead, we use a supervisedmethodology, but experiment with varying small amounts of
data in a minimally supervised approach. Although our method requires extra manual
effort in the form of data annotation for training, we find that the amount of annotated
data required is modest.

5.1 Experimental Methodology
5.1.1 Corpus Data. We use Pedersen, Purandare, and Kulkarni’s (2005) data set, which
was taken from the Agence France-Press English Service portion of the GigaWord
English corpus distributed by the Linguistic Data Consortium. They extracted the local
context of six pairs of names of varying confusability, including: the names of two
soccer players (Ronaldo and David Beckham); an ethnic group and a diplomat (Tajik
and Rolf Ekeus); two companies (Microsoft and IBM); two politicians (Shimon Peres
and Slobodan Milošević); a nation and a nationality (Jordan and Egyptian); and two
countries (France and Japan). For each name instance, the extracted text consists of
50 words (25 words to the left and to the right of the target name), with the target
name obfuscated. For example, for the task of distinguishingDavid Beckham andRonaldo,
the target name in each instance becomes David BeckhamRonaldo. The original name in
each instance is retained only for evaluating the results (and for training, in the case
of our method, as described subsequently). (Note that this approach to data creation
avoids the use of manually annotated data for this experimental task, but in an actual
application, manual annotation of truly ambiguous names would be necessary.) Each
pair of names thus serves as one of six name disambiguation tasks. Table 4 shows the
number of instances per task (name pair). The “Majority” column also indicates the
relative frequency of the majority name in each pair, which we adopt as the baseline
accuracy.

5.1.2 Classification Using the Network Flow Method. As mentioned previously, we take a
supervised approach, in which name instances are classified with the use of training

Table 4
The pairs to be identified, the raw frequencies, and the relative frequency of the majority name.

Name 1 Count Name 2 Count Total Majority

Ronaldo 1,700 David Beckham 752 2,452 0.69
Tajik 3,002 Rolf Ekeus 1,071 4,073 0.74
Microsoft 3,401 IBM 2,406 5,807 0.59
Shimon Peres 7,686 Slobodan Milošević 6,048 13,734 0.56
Jordan 25,039 Egyptian 21,392 46,431 0.54
Japan 116,379 France 110,435 226,814 0.51
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data annotated by the original name in the instance. To generate our training data, we
randomly select a portion of the instances for each of the 12 names. All the training
instances for a name are used to form a single aggregate semantic profile, which serves
as the gold-standard for that name. The remaining instances serve as test data; for
each of these, we build an individual semantic profile. All profiles are generated as
described in Section 3, namely, each frequency count for a word is distributed uniformly
among the corresponding concepts in WordNet. A gold-standard profile is constructed
in exactly the same way except that its word frequency vector is created by aggregating
the word counts from all the relevant training instances. Note that there is nothing
special about such a profile or how it is formed; it simply aggregates counts from
multiple contexts.8

To classify a name instance, we measure the network-flow distance between the
individual profile of the ambiguous instance and each of the two gold-standard profiles
for that task. The name whose gold-standard profile has the shortest distance to the
instance profile is the name assigned to the ambiguous instance. For example, assume
we have a “David BeckhamRonaldo” instance to be classified. We compare its profile to
each of the gold standard profiles for “David Beckham” and “Ronaldo” by measuring
the distance between each of the two pairs of profiles. If the instance profile has a
shorter distance to the profile for “David Beckham” than to that of “Ronaldo,” then
it is classified as “David Beckham,” otherwise as “Ronaldo.”

5.1.3 Evaluation Methodology. We use the accuracy of labelling all instances as our eval-
uation measure. To compare to prior results using F-measure, we report that in some
tables. Because we label all instances, accuracy and F-measure are equivalent in our
method, using 2rp/(r + p) as the definition of F-measure.

The random baseline for our task is the accuracy of labelling all instances with the
predominant name, as shown in the “Majority” column of Table 4. Because we use the
data set of Pedersen, Purandare, and Kulkarni (2005), we compare our performance to
their distributional method (reporting their best results both with and without singular
value decomposition). Because their method is an unsupervised one, we also train and
test a supervised learner using distributional data (LIBSVM by Chang and Lin [2001]).
For each set of training data, we remove stopwords and use the remaining words (with
their frequencies) as input features for the SVM. We then obtain the optimal parameters
(i.e., optimal values for cost and gamma in LIBSVM) by using 10-fold cross-validation
over the training data. Finally, we perform classification on the test data using those
parameters. This enables us to compare our results to a purely distributional method
with access to the same training data.

Because our method is supervised, it is important to minimize the amount of
annotated data required to build the gold-standard profiles. (Lengthy training time can
also be an issue for a supervised method, but here “training” is the straightforward
task of building an aggregate semantic profile.) Because it is unclear a priori what
amount of training data is sufficient, we experiment with several quantities. We initially
select 200 random instances per pair of names, respecting the relative proportions of
the two names overall. (Two hundred instances constitute about 0.1–10% of the data
per pair of names.) Subsequently, we decrease the quantity further, to one-half and one-
quarter the original amount (100 and 50 instances, respectively) to observe how the

8 In our later experiment in document classification, on a subset of our data, we tried a nearest neighbor
approach to all training instances rather than aggregating them, but this did not perform as well.
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Table 5
Network flow results using 200 training instances on the random samples and their average
performance.

Name Pair Random Samples Average of
1 2 3 4 5 Samples

Ronaldo/Beckham 0.78 0.83 0.76 0.79 0.84 0.80
Tajik/Ekeus 0.98 0.98 0.97 0.96 0.98 0.97
Microsoft/IBM 0.73 0.72 0.73 0.74 0.73 0.73
Peres/Milošević 0.96 0.96 0.97 0.96 0.97 0.96
Jordan/Egyptian 0.79 0.78 0.78 0.77 0.76 0.77
Japan/France 0.79 0.73 0.77 0.70 0.73 0.75

Table 6
Average results for the network flow (NF) results using 200 instances per gold-standard profile,
SVM using 200 training vectors, and Ped05 and Ped05SVD (the best results without and with
SVD, respectively). All results are F-measure (the same as accuracy for our method and SVM).
The weighted average is calculated based on the number of instances in each pair of names. The
best result for each name pair is indicated in boldface.

Name Pair Majority Ped05 Ped05SVD SVM200 NF200

Ronaldo/Beckham 0.69 0.73 0.65 0.85 0.80
Tajik/Ekeus 0.74 0.96 0.89 0.90 0.97
Microsoft/IBM 0.59 0.51 0.59 0.62 0.73
Peres/Milošević 0.56 0.97 0.94 0.90 0.96
Jordan/Egyptian 0.54 0.59 0.62 0.72 0.77
Japan/France 0.51 0.51 0.50 0.48 0.75

Unweighted Average 0.61 0.71 0.70 0.75 0.84
Weighted Average 0.53 0.55 0.55 0.55 0.77

performance is influenced by the amount of data used to construct the gold standard
profiles.9 To reduce the impact of possible skewed sampling of training data, we repeat
the random sampling five times, with no overlap between the random samples. We
report the performance of each sample set as well as the average over the five samples.

5.2 Results and Analysis
5.2.1 Initial Experiments. Table 5 shows the performance of our method over five random
samples of 200 training instances per task. Observe that the performance over the five
rounds varies very little (a maximum difference of 0.08, and most are much closer).
This shows the robustness of our method to different make-ups of training data. Table 6
shows the average performance of our method, in comparison to the chance (majority)
baseline, as well as the results produced by the unsupervised method of Pedersen,
Purandare, and Kulkarni (2005) (with singular value decomposition [SVD] reported as

9 We also experiment with 400 training instances to see whether increasing the amount of training data
helps. The performance benefit is minimal: two tasks have the same average performance, three improve
by 1%, and one by 2%, with an improvement in the average over all the tasks of 1.25%. A paired t-test
between the results on 400 and 200 training instances yields a high p value (p = 0.73), indicating that the
differences between the two are statistically insignificant.
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Ped05SVD, and without SVD as Ped05), and the supervised SVM on the same training
data as our method. Observe that our method not only significantly outperforms the
random baseline, it is moreover the best performer among all the methods (paired
t-test, p < 0.05).

There are cases for which Pedersen, Purandare, and Kulkarni’s (2005) methods
have at best chance performance (Microsoft/IBM and Japan/France). The authors suggest
that these pairs of names arise in the context of news text in which there are “no consis-
tently strong discriminating features” useful in the clustering algorithm. (Interestingly,
this is the case even with SVD, where words are grouped into a small number of un-
named concepts.) Even the SVM has difficulty with these pairs, also performing at just
around chance. Yet our method performs well above chance for these pairs. In general,
SVM produces results that are little better on average than the unsupervised results in
Pedersen, Purandare, and Kulkarni (2005) (with some tasks performing better, and some
worse). This shows that the performance improvement from the network flow method
does not depend solely on access to training data. Instead, it seems that the use of
ontological relations in calculating distance can significantly enhance the discriminatory
power over simply using words.

Note that there is one difference between the data used in the SVM and the network
flow experiments: The SVM is trained using all words as features, while only WordNet
noun concepts are used in the network flow experiments. It is possible that using just
nouns or a mapping of nouns to WordNet concepts could bring the performance of the
SVM into line with our network flow measure. We thus perform two replications of the
SVM experiments, one using only nouns as features and one using noun concepts as
features (with the relevant frequencies as the feature values in both cases). However,
both of these approaches produce little to no improvement over the all-words results
reported in Table 6. We conclude that our network flow method is superior to, and
more consistent than, the purely distributional methods, and that this difference is
attributable to the integration of distributional and ontological (relational) information
in our measure.

5.2.2 Reducing the Amount of Training Data. Because, in contrast to Pedersen, Purandare,
and Kulkarni (2005), we use a supervised approach, we want to determine whether we
can reduce our dependence on training data. Here, we report experiments using one-
half (100 instances) and one-quarter (50 instances) of the training data used earlier. As
before, we repeat the random sampling of the training instances five times in each case,
and report the average performance here.

Table 7 shows the network flow performance for 200, 100, and 50 training instances.
Numerically, the results do not differ by much when the training data is reduced from
200 to 100 instances, and a paired t-test finds the difference to be non-significant. The
performance drop is more pronounced in the 50-instance experiment, where every pair
of names shows some drop in performance compared to 100 instances. Here, a paired
t-test shows that the performance drop in the 50-instance experiment is statistically
significant (p = 0.04). Despite this, we still outperform the other methods: Our results
using 50 training instances are much better than those of Pedersen, Purandare, and
Kulkarni (2005) in all but one task, and even better overall than the SVM in 200 training
instances (compare the SVM column of Table 6).

For comparison, we also train the SVM in 100 training instances, and find a decrease
of 3% on average from using 200 training instances. We conclude that our method is
more robust to minimal training conditions. To explore the least amount of training data
needed for our measure, we further reduce the amount for producing gold-standard

50



Tsang and Stevenson A Graph-Theoretic Framework for Semantic Distance

Table 7
Average classification results of the network flow method using 200, 100, and 50 training data
per classification task. The weighted average is calculated based on the number of test instances
per task.

Name Pair Number of Training Instances
200 100 50

Ronaldo/Beckham 0.80 0.79 0.76
Tajik/Ekeus 0.97 0.98 0.96
Microsoft/IBM 0.73 0.73 0.72
Peres/Milošević 0.96 0.97 0.94
Jordan/Egyptian 0.77 0.74 0.70
Japan/France 0.75 0.75 0.70

Unweighted Average 0.83 0.83 0.80
Weighted Average 0.77 0.76 0.72

profiles to 20 and 5 instances per task, and observe a continual drop in performance. The
performance of one task (Ronaldo/David Beckham) drops below chance with 20 training
instances and another (Microsoft/IBM) drops below chance with 5. For this set of data,
we conclude that 50 instances per task are required to provide enough discriminatory
power for our method.

Although unsupervised methods have the advantage of requiring no training data,
in our case, 50 to 100 training instances constitute only a very small portion of the
data, as well as a small amount of annotation effort in absolute terms. We conclude
that the (small) labelling effort is justified by the performance gain achieved using our
minimally supervised approach.

6. Task 3: Document Classification

Document classification is an NLP task in which a previously unseen document is given
a topic label (or a set of such labels) based on its subject matter. For example, a financial
document discussing the fluctuation of crude oil prices may be labelled “commerce” or
“crude oil” in the Reuters Corpus (Lewis et al. 2004). In our version of the task, each
document has a single topic label. Document classification is typically performed by
comparing the text of an unlabelled document to the text of documents whose topics
(labels) are known, and assigning the label of the closest such document (Joachims 2002;
Iwayama et al. 2003; Esuli, Fagni, and Sebastiani 2006; Nigam, McCallum, and Mitchell
2006). This task is thus similar to the name disambiguation task in the previous section,
and our approach is similar as well: Here again, we form gold-standard profiles from a
small collection of texts of known classes, and then compare each test instance to each
of the gold-standard profiles. As in name disambiguation, we experiment with different
amounts of training data for creating the gold-standard profiles.

There are two differences of note in comparison to name disambiguation. First, in
document classification we use the entire set of words constituting the document to
create a semantic profile, rather than a smaller window around a target word. Second,
whereas each ambiguous name instance in the earlier task had exactly two potential
labels (and thus there were two gold-standard profiles for comparison), the number of
labels in the document classification task is much larger, leading to more ambiguity in
the task.
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6.1 Experimental Set-up
6.1.1 Corpus Data. Our data is a corpus of articles from 20 different Usenet newsgroups
released by Mitchell (1999). Because each newsgroup corresponds to a topic, the articles
can be classified using the (single) newsgroup label. We use the collectionmaintained by
Rennie (2001), in which all the duplicates (cross-posts) are removed, resulting in 18,828
articles. The articles are approximately evenly distributed among the 20 newsgroups.
Stopwords and article headers are removed before processing each text.

Work that relies on word frequency vectors to represent the texts in document
classification has revealed the importance of preprocessing the word frequency data to
emphasize those terms that are likely to be most meaningful. For example, word fre-
quencies have typically been weighted by inverse document frequencies (tf · idf ) to
lessen the impact of very common but less distinguishing words. According to
Rennie (2001), their best system on the same corpus uses the log tf+1

log idf weighting scheme.
In order to compare our system to theirs, we use this same word weighting scheme
in the creation of the word vectors that are used to produce our semantic profiles.
(We have experimented with using raw word frequencies as well as tf · idf to pro-
duce profiles. Both methods yield approximately the same results as the log tf+1

log idf
frequency weighting scheme.)

6.1.2 Training and Evaluation. As mentioned before, we treat the classification task simi-
larly to name disambiguation, taking a minimally supervised approach. We randomly
select a small number of documents as training data for creating the gold-standard
semantic profiles. We use 10 or 30 documents per newsgroup, or approximately 1–3%
of the documents. The remaining documents are used as testing data. Again, we use
a random sample of documents for each gold-standard profile, repeated five times to
minimize the impact of a possible skewed sampling. We report the average accuracy
over the five samples.

Because there are 20 possible topic labels, the random baseline is very low, at 5%.
(Using the predominant label raises this only slightly.) A more informative evaluation
of our method is to compare to a state-of-the-art approach that is purely distributional.
A comparison to Rennie (2001) is natural, since we use the same data set. However,
they trained an SVM on 30 documents per class and tested on 10% of the documents,
repeated 10 times. Because our training approach differs somewhat (training on 10 or
30 documents per class, testing on all remaining documents, repeated 5 times), we
also replicate their SVM experiment using our training and test sets. As in the name
disambiguation task, we use the LIBSVM software package (Chang and Lin 2001) and
tune the classifier in the training phase for the best SVM parameters prior to the testing.
Also as in our name disambiguation task, we additionally train and test the SVM on
just the nouns in a document (rather than all words), and also on the nouns mapped
to concepts (with the relevant frequencies as the feature values in both cases). Thus we
report results of the SVM on three different types of input frequency vectors: all words,
nouns, and concepts.

6.2 Results and Analysis
6.2.1 Initial Results. Table 8 presents the classification results using 10 and 30 training
documents per class for our network flow and SVMmethods. Our network flowmethod
performs well above the random baseline, but is far from achieving state-of-the-art
results. The SVM experiments using all words in the document perform much better
than our network flow method, and are consistent with the accuracy of 68.7% achieved
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Table 8
Average classification results using 10 and 30 training documents per newsgroup.

Training Size / Class SVM SVM SVM NF
All words Nouns (Words) Noun Concepts

10 47.1 47.8 42.7 31.2
30 66.2 66.4 61.4 32.0

by Rennie (2001) using an SVM. One possible reason is that the SVM is trained on
all words (minus stopwords and article headers), whereas our network flow method
applies to noun concepts only. The SVM performance on noun-only data is similar to
that of all words. Although there is a marked decrease in performance on the concept
frequency vectors, SVM still outperforms our method.

The poorer SVM performance on concept frequencies suggests that concept fre-
quency vectors are less easily distinguishable than word frequency vectors. Recall,
however, that we found no difference with these various training approaches for SVM
in name disambiguation. It is possible that the mapping from words to concepts is a
problem here because the full text is used, rather than a relatively small window around
a target word. Because each word can map to multiple (potentially unrelated) concepts,
the use of a larger, unconstrained bag of words may lead to a high degree of ambiguity,
introducing more noise in the semantic profile than our method can handle. This may
also explain why the network flow method does not improve with additional training
data, showing virtually no improvement between 10 and 30 training instances (0.8%
difference). We speculate that the amount of noise in a semantic profile based on the
larger amount of text may increase along with the increase in the training size, offsetting
any potential gain from having additional data.

If this hypothesis is correct, it is natural to ask why the SVM result using concepts
shows a substantial increase in accuracy from 10 to 30 training documents. If larger texts
yield nosier semantic profiles, why does this not negatively affect the SVM as well? This
highlights a fundamental distinction of our approach: our method is novel because it
finds the distance between concepts as embedded in a graph (the ontology), not just between
concept vectors. Generally, our thesis is that this is an advantage of our model: It entails
that all concepts generated from a text play a role in determining the distance of that
text from another. As we noted earlier, this allows us to find similarity between texts
that use related but not equivalent concepts. However, the performance of our method
in this document classification task reveals a potential drawback of this property of our
method. Because it takes all concepts into account in determining distance, it is more
susceptible to noise. Figure 5 illustrates the problem.We see that the square and triangle
profiles are noisy—that is, they each have a number of nodes that are not part of their
coherent semantic content. These noisy aspects of the two profiles are less separated
in ontological space, making the two profiles more similar according to our measure
than their “true” semantic content would indicate. Because a vector representation of
concepts does not form connections between differing concepts, it is not led astray in
the way our method is.

6.2.2 Removing Noise from the Profiles. Our conjecture is that the poor performance of our
network flowmethod is due to noise caused by ambiguity in the mapping of each word
to all of its concepts (i.e., not just the relevant ones to the topic). This effect could also be
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Figure 5
Two noisy profiles, one represented by squares, the other by triangles.

exacerbated by the fact that, in using the full document, we may have a higher number
of less relevant words than when a profile is formed from a more constrained set of
words (as in verb alternation detection and name disambiguation). If this hypothesis
is true, then the noisy (irrelevant) concepts should be distributed within each profile
according to some prior probability distribution. If we knew that distribution, then we
could “subtract out” the noise and form more semantically coherent profiles. Referring
to Figure 5, the idea is that we would like to remove the small, dispersed squares and
triangles, leaving only the larger ones that form a semantically more coherent set.

We test this idea, experimenting with two possible noise distributions. The first is
simply the uniform distribution, and the second is a distribution determined empiri-
cally using frequency counts from a domain-general corpus. For the latter, we determine
a distribution over concepts based on the nouns in the BNC. Because the BNC is a
balanced corpus, the distribution of its nouns can be considered a prior that is treatable
as noise compared to the distribution in a newsgroup posting that is specific to a
particular topic. In each case, we create a semantic profile representing the expected
noise, and then “subtract” the resulting noise profile from each of our gold-standard
semantic profiles in the document classification task. The “subtraction” is actually a
process of setting to zero all of the semantic profile frequencies that are less than the
noise value for that concept. Any node with a value higher than the noise value for
that node is expected to be a potentially relevant concept. We leave such nodes at their
original value so that they are more distinguished from the remaining values (now set
to zero). Figure 6 illustrates the result of applying this kind of noise reduction to the
profiles in Figure 5. We can see that low-frequency concept nodes are zeroed out, with
higher frequency nodes maintaining their concept weight.

Table 9 presents the network flow results on the noise-subtracted data, showing a
3–5% increase in the performance using 30 training documents per class. The perfor-
mance decreases with noise-subtraction when we have only 10 training documents per
class, suggesting that there may not be enough data in this case to use this simplistic
subtractive method.

Interestingly, subtracting the uniform noise distribution from the profiles has amore
favorable effect than subtracting the BNC noise distribution. The BNC distribution is
perhaps inappropriate for our data. Newsgroup data includes a variety of subjects
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Figure 6
The same two profiles in Figure 5. The profile masses that are “subtracted” are shaded in gray.

which may make it more similar to a balanced corpus than we have originally antic-
ipated, thus what we are treating as a “noise” distribution in this case may not actually
represent noise. That said, there is a small but notable increase even using the BNC
noise distribution when we have sufficient training data. The idea of subtracting out
noise seems promising, but we leave the appropriate representation of noise, and the
mechanism for removing it effectively, as an area of future research.

7. Profile Density: A Measure of Coherence of Semantic Profiles

We have seen a performance difference across the three tasks we used in evaluation:
the network flow method outperforms purely distributional measures on verb alterna-
tion detection and name disambiguation, but does poorly on document classification
compared to a distributional approach. (See Table 10 for a summary of the results.) We
use the same ontology (WordNet) and the same concept distance (number of edges) in
our network flow measure across all three tasks, hence there must be some difference
in the three data sets themselves that impacts the ability of our method to distinguish
the semantic profiles corresponding to one class of data (one usage of an ambiguous
name, for example) from the profiles of a different class of data (the other usage of the
name). In this section, we develop a measure that can capture this property and explain
the performance differential we have observed for our method.

Table 9
Average classification results using 30 and 10 training documents per newsgroup, using the
original profiles (NF), and using profiles after the “noise subtraction” process described in the
text (“NF − Uniform” and “NF − BNC” are results subtracting the uniform distribution and
the BNC noun frequency distribution, respectively).

Training Size / Class NF NF − Uniform NF − BNC

10 31.2 28.2 27.4
30 32.0 37.2 35.6
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Table 10
Summary of task-based results. The numbers in parentheses indicate the number of training
instances used. The best result for each task is shown in bold.

Verb Alternation Detection random Manhattan skew div JS NF

Dataset1 Avg 0.50 0.70 0.57 0.67 0.70
Dataset2 Avg 0.50 0.67 0.67 0.67 0.67

Name Disambiguation random SVM (100) SVM (200) NF (100) NF (200)

Unweighted Avg 0.61 0.72 0.75 0.83 0.83
Weighted Avg 0.53 0.52 0.55 0.76 0.77

Document Classification random SVM (10) SVM (30) NF (10) NF (30)

20 newsgroups 0.05 0.43 0.61 0.31 0.32

7.1 Profile Coherence

Our goal is to find a property of individual semantic profiles that, when averaged across
the profiles in a data set, indicates whether our method will be able to distinguish
profiles of different classes in that data set. That is, we aim to learn about the overall
separability of the classes in a data set by investigating the properties of individual
profiles that constitute the data set. Our hypothesis is that the important factor for our
method is what we refer to as profile coherence: the degree to which profile mass is
concentrated within a constrained space (or set of constrained spaces) of the ontology.
The more spatially coherent the sets of weighted concepts are for the profiles in a data
set, the more likely it is that our method will be able to distinguish contrasting profiles.
Conversely, less coherent profiles, whose frequency mass is more distributed across a
wider area of the ontology, will be more difficult to separate into classes. (Note that
profile coherence is not a sufficient condition for data separability, but we hypothesize
that it can be a useful indicator.)

For example, consider the square and triangle profiles in Figure 7. Coherent profiles
have their profile mass (the concept weights) focused within small, distinct regions of
the ontology, as in Figure 7(a). These types of profiles tend to be highly distinguishable
from each other. Less coherent profiles, whose mass is more dispersed through the on-
tology, such as those in Figure 7(b), are likely to be less distinguishable. Note, however,
that it is not simply occupying greater or fewer nodes in the hierarchy that determines
profile coherence (and distinguishability). The profiles in Figure 7(c) are “spread out”
as in (b), but are more coherent (and distinguishable) due to having areas of high mass.

The considerations illustrated in Figure 7 suggest that both distributional and onto-
logical factors contribute to the coherence of a semantic profile, and that we must deter-
mine a suitable measure of coherence that captures both factors. A simpler, alternative
hypothesis is that either purely distributional or purely ontological factors may suffi-
ciently capture the coherence of a semantic profile. To explore these ideas, we examine
different ways to assess the coherence of the semantic profiles in our example data sets.
We develop various measures of coherence, and then evaluate whether the degree of
coherence as determined by each measure indeed corresponds to the performance of
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Figure 7
Examples of two profiles (indicated by squares and triangles) of varying coherence. The profiles
in (a) are more distinguishable than those in (b) and (c); the profile in (c) is in turn more
distinguishable than that in (b). The degree of distinguishability of these profiles is reflected in
their degree of coherence.

our network flowmethod on the data sets in our three tasks. We expect a useful measure
of profile coherence to have a high average value across the data sets on which we
perform well (verb alternation and name disambiguation), and a low average value
across the data set on which we perform poorly (document classification).

In Section 7.2, we briefly review several measures intended to separately capture
the distributional or ontological coherence of a semantic profile. We show that such
measures are insufficient for accounting for the performance differences of our method
across the data sets. In Section 7.3, we develop a novel measure to capture the coherence
of our profiles in terms of both distributional and ontological information. Thismeasure,
called profile density, expresses the degree to which a semantic profile forms a coherent
clustering of weighted concepts in an ontology. We demonstrate that our profile density
measure can account for the performance differential across our data sets.

7.2 Separate Distributional and Ontological Approaches

We explored several (unsuccessful) means for capturing profile coherence with a purely
distributional or purely ontological measure. Although we could not exhaustively
investigate all possible measures of this kind, the underlying reasons for the lack of
success of these measures in explaining the differing performance of our method across
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the data sets convinced us of the need for a measure that integrates distributional and
ontological factors (which we present in the following section). We mention the single-
factor measures here for completeness.

7.2.1 Potential Distributional Coherence. Recall that Section 6.2.2 shows that removing
the “noise” distribution from each profile improves the document classification per-
formance of our method. In other words, subtracting the noise distribution from a
profile can make it distributionally more distinct from other profiles. Based on this
observation, we hypothesize that the less a profile resembles a noise distribution over
the ontology, the more coherent it is—that is, the more likely the frequency mass is
situated in meaningful clusters of concepts. To test this hypothesis, we calculate the
average distance (using KL-divergence [Kullback and Leibler 1951]) of the profiles in
a data set from a profile created from a noise distribution (the uniform distribution
of words, or their distribution in the BNC, as in Section 6.2.2). Higher values of this
measure indicate further distance from the noise distribution.

7.2.2 Potential Ontological Coherence. Here we consider two observations. First, we
hypothesize that profiles with fewer concepts are more coherent, because a smaller
number of concepts is more likely to be less dispersed in the ontology. We simply
use average profile size to capture this property (here, smaller values of profile size
indicate greater coherence). Second, we hypothesize that profiles whose concepts have
greater specificity are more coherent, because use of less specific concepts is indicative
of vagueness and potential lack of coherence. Because specificity corresponds well to
depth in WordNet, we use a simple measure of average profile depth to indicate the
specificity of the set of concepts in a profile (here, greater values of depth should indicate
greater coherence).

7.2.3 Analysis of the Single-Factor Measures. For each task, we calculate the average of
each of the hypothesized distributional and ontological coherence measures over the
profiles in the data set, and find that there is no consistent correspondence with the
performance of our network flow method across the tasks. Despite the intuitions and
observations presented herein, these results are not surprising. For example, the profiles
of a data set may all be distributionally very similar overall to the noise profile, sup-
posedly indicating low coherence, but they may be quite coherent in the actual ontolog-
ical space they occupy. Similarly, the profiles in a data set may all have a small average
depth in the ontology or large size (again supposedly indicating low coherence), but
their distributional properties (the weights on the concepts that are occupied) may yield
coherent clusters of mass in the profile. This analysis then confirms our hypothesis that,
because distributional and ontological information are intertwined in the representation
of a semantic profile, a useful measure of profile coherence must take into account an
integration of these two information sources.

7.3 Integrating Distributional and Ontological Factors in a Coherence Measure

As noted earlier, and tentatively confirmed by the results herein, we assume that the
interaction of distributional and ontological factors determines the coherence of pro-
files (i.e., a coherent profile has its frequency mass concentrated within a reasonably
constrained space [or set of constrained spaces] of the ontology). We observe that this
is similar to the geographical notion of population density, which is determined by
the population mass divided by the area occupied. Here we extend the geographical
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Figure 8
Two examples of profile density within an ontology. The hollow triangles are the common
ancestors of the filled triangles, which are concept nodes in the profile. The profile in (a) is fairly
dispersed, requiring a single but distant ancestor node. The profile in (b) is more clustered; two
ancestor nodes are required but each is close to its descendants.

definition of density within our network framework by relating population mass to
distributional weights on concepts, and occupied area to the spread of the weighted
concepts in the ontology. We call the resulting measure of profile coherence profile
density.

7.3.1 The Profile Density Measure. To adapt the definition of geographical density to our
problem, we first need to determine the analogs of population mass and occupied area
in a semantic profile. The profile mass at each concept node is directly analogous to
the population mass. Defining the occupied area within an ontology is not as straight-
forward, as there is no simple definition of area within a graph. For example, Agirre and
Rigau (1996) use the number of nodes within a subgraph as its area, but this fails to take
into account how dispersed the nodes are throughout the ontology. We instead develop
a definition of area that captures the actual spatial spread of the profile mass through
the ontology.

To begin, we note that any subgraph of the WordNet hypernym hierarchy is hi-
erarchical itself. Thus, any region of the ontology that contains some profile mass is
a hierarchy rooted at some common ancestor of those profile nodes.10 As shown in
Figure 8, themore dispersed (less closely clustered together) a set of nodes is, the further
away their common ancestor is. That is, a highly related (and spatially constrained) set
of concept nodes can be generalized to a more specific ancestor concept (i.e., near the
descendants, as in Figure 8(b)), whereas a semantically distant set of concepts will be
generalized to a semantically general ancestor concept (i.e., far from the descendants,
as in Figure 8(a)). The ontological distance between a set of nodes and their common
ancestor thus indicates how closely clustered the descendant nodes are.

Next note that any semantic profile can be represented by a set of ancestor nodes,
and these ancestor nodes capture the spatial clusterings of the profilemass. For example,

10 Although WordNet contains instances of multiple inheritance, the rate is low. As a result, the likelihood
of a set of profile nodes sharing multiple ancestors is low as well.
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Figure 9
These two profiles have equal density value given our original profile density formula in
Equation (5), but are suitable distinguished (with the profile in (b) having higher density than
that in (a)) by the norm density formula in Equation (6). See the text for discussion.

the profile in Figure 8(a) is represented by one ancestor node, and that in Figure 8(b) by
two such nodes. Combining these observations, we see that given a suitable manner for
identifying ancestor nodes to represent a profile, we can use the combined ontological
distance between each of those nodes and their descendants as an indication of how
closely clustered the concepts of the profile are. We can now complete our definition
of profile density by using the total distance between each identified ancestor and its
descendants as an indication of the occupied area of the ontology.

Formally, let P be a profile and A be a set of ancestor concept nodes such that
each profile node d ∈ P is guaranteed to have an ancestor a ∈ A. (We will explain in
Section 7.3.2 how to find the set A.) The profile density of P is then defined as follows:

profile density(P) =
∑

a∈A

∑

d∈P,
d∈descendant(a)

mass(d)
distance(d, a)

(5)

where mass(d) is the profile mass (concept frequency) at node d, and distance(d, a) is the
distance in the ontology between node d and node a, as given by a suitable concept-to-
concept distancemeasure (such as the edge distance that we have used in our task-based
evaluations).

There is one more subtle detail we must address. Consider the two examples in
Figure 9, where the distance between each ancestor and all its descendants is the same
(here, say, a distance of 1), but the distribution of the profile mass differs. The first
diagram has ten equally weighted profile nodes, and the second has two. Our current
formulation in Equation (5) yields a density of 1 for both diagrams (i.e., (0.1/1)× 10 =
1 = (0.5/1)× 2). However, the profile mass in diagram (a) is distributed among more
nodes than that in diagram (b). Intuitively, the second profile is more densely clustered
and should have a higher density value.

Looking more closely at our density formula in Equation (5), observe that the
number of profile nodes has an impact on the calculation—that is, density increases
as the number of profile nodes increases due to the inner summation in the formula. To
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achieve an appropriate density measure, then, we normalize the original density value
by the number of profile nodes, resulting in a normalized density for a profile:

norm density(P) =
density(P)
sizeof (P)

= 1
sizeof (P)

∑

a∈A

∑

d∈P,
d∈descendant(a)

mass(d)
distance(d, a)

(6)

Returning to our example in Figure 9, Equation (6) assigns the first profile a normalized
density of 0.1, and the second profile a normalized density of 0.5. The modified measure
now appropriately distinguishes the two profile densities, indicating that the profile in
Figure 9(a) is less tightly clustered than the profile in Figure 9(b).

7.3.2 Finding the Ancestor Set for Profile Density. As noted earlier, our definition of profile
density depends on identifying a suitable set of ancestor nodes of the concept nodes
in the profile: the aggregate distance of the ancestors to the profile nodes indirectly
indicates the degree to which the profile nodes are spatially clustered close together.
Thus, given a profile P, we need to find A, the set of nodes that are ancestors of the
profile nodes d ∈ P. (The nodes a ∈ A correspond to the hollow triangles indicated in
Figure 8 and Figure 9.) Recall that these ancestor nodes are intended to be a set of
concepts that serve as an appropriate generalization of the nodes in the profile—each
ancestor in a sense represents a coherent cluster of profile nodes. However, we do not
know a priori what the appropriate level of generalization is—we simply want a level
that gives a useful assessment of how clustered together the profile nodes are.

For this purpose, we make use of Clark and Weir’s (2002) method for generalizing
a set of weighted concept nodes in an ontology. As we noted in Section 4, given a
frequency distribution over all concept nodes, Clark andWeir use a statistical method to
search for the set of nodes (i.e., our node setA) that best generalize the original weighted
concepts. This method is particularly appropriate for our purposes because it includes a
parameter,α ∈ (0, 1), that controls the level of generalization.We varyα over five values
(0.05, 0.25, 0.5, 0.75, and 0.95) to obtain five different (more to less generalized) sets of
ancestors. In our analysis, we calculate the density using each ancestor set in order to
evaluate the impact of the precise choice of ancestor nodes on our measure.

7.3.3 Results and Analysis. For each of the three tasks in our earlier task-based evaluation,
we calculate the profile density of the corresponding data set. We define the profile
density of a data set to be the average of the normalized density values over its profiles.
For the verb alternation detection task, we perform the analysis on all 240 profiles used
in the task (120 verbs, with 2 profiles per verb, one for the subject slot, one for the object
slot). In the remaining two tasks, because each instance profile is compared to a gold-
standard profile, we believe that the performance depends primarily on the coherence of
the gold-standard profiles. We thus perform our analysis on the gold-standard profiles
only. For name disambiguation, we have 60 profiles (5 samplings with 12 gold-standard
profiles each); for document classification, we have 100 profiles (5 samplings with 20
gold-standard profiles each). For each profile, we calculate the normalized density using
each of five ancestor sets (based on the α value, as noted above). For the concept-to-
concept distance measure, distance(d, a) in Equation (6), we use edge distance, the same
measure used in the tasks in earlier sections of the paper.
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Table 11
The profile density scores for each data set at five different values of α, as well as the average
scores across the α values.

α value 0.05 0.25 0.5 0.75 0.95 Avg

Verb Alternation 5.59e-4 5.90e-4 6.32e-4 7.14e-4 8.87e-4 6.76e-4

Name Disambiguation (200) 8.93e-5 9.89e-5 1.08e-4 1.18e-4 1.35e-4 1.10e-4
Name Disambiguation (100) 1.11e-4 1.26e-4 1.38e-4 1.52e-4 1.78e-4 1.41e-4

Doc Classification (30) 5.25e-5 5.94e-5 6.59e-5 7.43e-5 8.78e-5 6.80e-5
Doc Classification (10) 8.03e-5 8.85e-5 9.87e-5 1.11e-5 1.33e-5 5.84e-5

We expect that, if our profile density measure does indeed reflect the coherence
of a data set, then we will see a correspondence between the density values and the
performance of our network flow method. Higher density values indicate a profile
whose weighted concepts form more coherent clusters in the ontology. Specifically,
then, we expect higher density values for the data sets from our verb alternation de-
tection and name disambiguation tasks (on which our method had better performance
than distributional methods), and lower density values for the document classification
data set (on which our method had worse performance than a purely distributional
method).11

Table 11 shows the profile densities of each data set. First note that the density
values are relatively stable across all values of α, indicating that the precise level of
generalization is not critical to the usefulness of our density measure. Next, observe
that, as predicted, the document classification data set is shown to have the lowest
density for both training set sizes. This observation is in accord with our hypothesis
that the profile density measure indicates the coherence of the profiles in a data set and
is therefore informative about the network flow performance on that data set.

Interestingly, we also observe that, across all values of α and training set sizes, the
verb alternation data set has the largest densities, followed by the name disambiguation
data set, then the document classification data. (The differences between all three data
sets are statistically significant, p� 0.05.) This result might stem from the fact that
there are varying degrees of constraint placed upon the data in the three tasks. In
verb alternation, the nouns used to generate a profile appear either all in the subject
or all in the object position of the target verb. In name disambiguation, we loosen the
restriction to include all nouns in a small window surrounding the target word. Lastly,
in document classification, the only restriction on the nouns used to generate a profile
is that they appear in the same document. This suggests that the syntactic and semantic
constraints placed upon a set of nouns can have an impact on the coherence of the profile
created from them.

This latter observation suggests that our profile density measure may be useful
not only in indicating the ability of our network flow method to distinguish relevant
profiles. More generally, it may also reflect the varying degrees of syntactic and semantic

11 Note that because our method in each task is compared to different kinds of alternative distributional
methods, we do not expect to find a mathematical correlation between the performance improvement
and the density values; rather, good performance should be reflected in higher density values and poor
performance in lower density values.
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constraints placed upon the set of words that generate a profile. Our profile density
measure may indeed be generally useful as a measure of the semantic coherence of a set
of concepts in an ontology (Gurevych et al. 2003), a matter we plan to explore in future
work.

In summary, our analysis in this section has shown that both distributional and
ontological properties contribute to the coherence of a profile, but neither alone is
indicative of the network flow performance in a particular task. Our new measure of
profile density serves as a tool for analyzing profiles that integrates their distributional
and ontological coherence, and provides a post hoc means for explaining the perfor-
mance differential of our method across the different tasks we performed here. The
results also point to the possibility of devising a diagnostic tool for the suitability of the
network flow method on novel data. An analysis of the data and results across a larger
set of tasks will allow us to investigate the possibility of determining a density threshold
that would be indicative of expected positive results with our method.

8. Related Work

To the best of our knowledge, our method is the only work that measures text distance
by combining ontological knowledge and distributional information together via a
graph-based algorithm. Although there are existing methods that use either or both
types of information in measuring the semantic distance of texts (Corley and Mihalcea
2005; Mohammad and Hirst 2006), our work is unique in that it integrates the ontolog-
ical distance between individual words across two texts as well as the distributional
differences between the texts. Here we review existing work on both text comparison
and graph-based approaches in CL, given the relevance of these two areas to our
research.

8.1 Text Comparison

Our work stems from the studies on measuring the semantic distance between two
words or concepts using an ontological resource (which is extensively covered in
Pedersen, Banerjee, and Patwardhan [2005] and Budanitsky andHirst [2006]). To extend
these methods for the comparison of two texts, we incorporate ontological distance
between concepts and distributional information in a systematic and efficient manner.
Other research that attempts to include the two takes a more modular approach. For
example, Corley and Mihalcea (2005) consider the ontological distance between the
concepts representing the texts but ignore their distributional information. On the other
hand, Scott andMatwin (1998), McCarthy (2000), andMohammad and Hirst (2006) take
the distributional distance between concept vectors representing the texts but do not
consider the ontological relations among the concepts.

Most recent work on text comparison tends to be word-based and distributional
(Lee 2001; Weeds, Weir, and McCarthy 2004; Pedersen, Purandare, and Kulkarni 2005;
Al-Mubaid and Umair 2006). In the case of high dimensionality and data sparseness,
words are grouped into a smaller number of (unnamed) concepts using some matrix
factorization technique (e.g., SVD) or some clustering method (Pereira, Tishby, and
Lee 1993). In other words, words are grouped together based on their distributional
properties instead of their explicit semantic/ontological properties. Furthermore, unlike
in our method, once the words are collapsed into unnamed concepts, the individual
elements (i.e., the unnamed concepts) across data points cannot be compared. As shown
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in our experiments, taking into account this extra piece of information is beneficial for
some applications.

8.2 Graph Approaches

In recent years, we have seen an increasing use of graph-based methods in NLP (Pang
and Lee 2004; Mihalcea 2005; Navigli and Velardi 2005). The graph-theoretic approach
is popular due to the elegance of representing appropriate NLP problems and the
availability of a number of efficient algorithms. One of the most straightforward NLP
examples is the use of WordNet. Besides our work here, much prior research has taken
advantage of the graphical structure of WordNet. For example, Agirre and Rigau’s
(1996) conceptual density uses WordNet as a graph and calculates the density within
a subgraph (the number of relevant concepts within a subgraph), which was found to
be useful for WSD.

Graphs in general are the obvious mathematical formalism to encode the relation-
ships (represented as edges) between either words or longer units of text (represented
as nodes). (The reverse is possible, using nodes to represent relations and edges for
semantic entities. The choice of representation clearly depends on the NLP task itself.)
Once we formulate a problem into a standard graph problem, there are existing efficient
graph-based algorithms that we can use to find an optimal or near-optimal solution.
For example, both Pang and Lee (2004) and Barzilay and Lapata (2005) use a minimum-
cut algorithm for two vastly different applications, document polarity classification and
content selection, respectively. In these approaches, the sentences are represented as
nodes in a graph, and the edge connecting each pair of nodes is weighted with an
association score between the sentences, reflecting, for example, the distance (number
of sentences) between a pair of sentences. The minimum-cut method allows them to
classify the nodes, and thus the sentences, into different categories.

Another popular graphmethod is the randomwalk algorithm, which is successfully
employed by the PageRank approach for ranking Web pages (Brin and Page 1998).
Similar to the minimum-cut algorithm, here, nodes represent semantic entities (e.g.,
words), and edges represent associations between the nodes (e.g., word co-occurrence).
The random walk algorithm allows for the classification of each node based on the
relevance of its neighbors. For example, Mihalcea (2006) uses random walk for WSD
by constructing a graph in the following way. Each node represents an ambiguous (test)
word, or a (training) word labelled with one of its senses. Each edge indicates that the
corresponding two words co-occur in some context. The sense of an ambiguous word
is determined by the sense of its most relevant neighbor(s), by randomly traversing
the graph until an equilibrium state has been reached. Hughes and Ramage (2007)
also use a random walk method, with the goal of determining semantic relatedness
between individual words (not sets of words, as in our work). In their work, the random
walk method computes a probability distribution over WordNet concepts. Note that the
probability distributions resulting from random walks centered at different concepts
in WordNet are distinct. One can then measure the semantic relatedness between two
concepts by calculating the divergence between their probability distributions over
WordNet concepts as a result of the two random walks centered at them.

In comparison to other graph approaches to NLP, we choose to use a minimum-
cost flow algorithm based on our graph formulation. Because a profile is a collection
of frequency-weighted concepts, some concept nodes are weighted more heavily than
others, therefore the routes between such nodes across the two profiles are also
weighted more heavily. An algorithm solving a minimum-cost flow problem provides
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an efficient mechanism to find these weighted routes as our solution, making MCF,
rather than the shortest paths or maximum-flow-minimum-cut, the best choice for
formalizing the constraints we define in the text comparison problem.

9. Conclusion

We have presented a graph-theoretic approach to calculating semantic distance between
two texts, which encompasses both ontological knowledge and distributional informa-
tion. We have developed a network flow method that takes advantage of the graphical
structure of an ontology. Given a suitable ontology, a word frequency vector for a text
can be transformed into a frequency distribution over concept nodes. Hence, we treat
texts as weighted subgraphs within a larger graph (the ontology). By incorporating the
semantic distance between individual concepts, the graphical structure representing
the ontology becomes a metric space in which we can measure the distance between
subgraphs, weighted by their frequencies.

In this article, we use edge distance exclusively for the individual distance between
concepts. Given that the distance between concepts is an integral part of our for-
mulation, and that other sophisticated concept-to-concept distances have been shown
to outperform edge distance for comparing concepts (Jarmasz and Szpakowicz 2003;
Weeds 2003), we also investigate the use of such distances. However, incorporating
them can lead to a quadratic growth in complexity. To remedy this, a pre-processing
step is required to reduce the complexity to reasonable computation time. In Tsang and
Stevenson (2006), we introduce one such method by performing a graph transformation
on the original network prior to the network flow calculation. The transformed network
is more efficient to process without compromising the performance accuracy. We refer
the reader to that paper for further information.

In the task-based evaluation presented here, our method has been shown to provide
superior performance on verb alternation detection and name disambiguation, in com-
parison to alternative distributional approaches—even in cases where the alternative
methods have attempted to incorporate additional semantic knowledge (McCarthy
2000; Pedersen, Purandare, and Kulkarni 2005). Unlike existing distributional distances
and clustering techniques, the use of our text representation as well as the integration
of ontological distance allows a systematic way of capturing appropriate semantic
distinctions between the texts in these tasks.

In contrast, our method does not perform as well on document classification as a
state-of-the-art machine learning algorithm using a purely distributional approach. In
order to examine the performance discrepancy across tasks, we explore measures of the
coherence of the profiles in a data set, as potential indicators of how easily semantic
profiles of different classes can be distinguished. The purely distributional and purely
ontological indicators we consider are not useful in explaining the relatively poor per-
formance of our method on document classification. In response, we develop a measure
of profile coherence, called profile density, that integrates these factors by determining
the degree to which a profile forms distributionally and ontologically coherent clusters
of concepts. As a result, we are able to explain the performance of our method on the
data sets in terms of their density values.

Recall also that we saw a performance difference in the verb alternation task de-
pending on the different method used to generate the semantic profiles from the bag of
words of the text (i.e., using “raw” data, versus a method to generalize to the best set of
concepts for the bag of words). Given also that we found that the profiles in document
classification have a low density (i.e., their concepts are overly dispersed), one focus for
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future work will be to explore further means for generating profiles that best capture the
intended senses of the words within the text. One option may be to use Mohammad’s
(2008) unsupervised method for building concept vectors from word frequency data,
which focuses the frequencies onto the most likely senses of the words according to
coarse ontological categories.

Another strand of future work relates to our profile density measure. We suggest
that not only is our profile density useful in predicting the performance of our network
flowmethod on unseen data, it may also be useful formeasuring the semantic coherence
of a text. Note that a text that is semantically coherent tends to form profiles with
highly frequent and highly related concepts within an ontology. Coincidentally, our
profile density formulation measures the overall relatedness, and thus coherence, of a
collection of concepts by taking into account the distance between the concepts as well
as the frequency distribution. For example, if we relax the notion of a text to include
verbal arguments, semantic coherence of a text can be thought of as the selectional
preference strength a verb imposes on its arguments. As future work, we intend to
investigate profile density as an indicator of selectional preference strength. Generally,
we believe profile density may offer a quantitative measure for semantic coherence and
other related NLP applications.
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