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Abstract

Recent work has attempted to characterize the
structure of semantic memory and the search
algorithms which, together, best approximate
human patterns of search revealed in a se-
mantic fluency task. There are a number of
models that seek to capture semantic search
processes over networks, but they vary in the
cognitive plausibility of their implementation.
Existing work has also neglected to consider
the constraints that the incremental process of
language acquisition must place on the struc-
ture of semantic memory. Here we present
a model that incrementally updates a seman-
tic network, with limited computational steps,
and replicates many patterns found in human
semantic fluency using a simple random walk.
We also perform thorough analyses showing
that a combination of both structural and se-
mantic features are correlated with human per-
formance patterns.

1 Human Semantic Processing
The study of human semantic memory—word mean-
ings, their relations, and their storage—is challenging
due to the complexity of factors involved. Finding (1)
the right representation for word meanings and their
relations, (2) the mechanism responsible for learning
the representation, (3) the appropriate search algorithm
to efficiently retrieve information from semantic mem-
ory, and (4) the suitable empirical data to evaluate the
proposed representations and algorithms is a difficult
task. Previous research has extensively explored each
of these areas (e.g., Collins and Loftus, 1975; Steyvers
and Tenenbaum, 2005; Griffiths et al., 2007).

Psychologists frequently use a task known as se-
mantic fluency (or verbal fluency) to examine human
semantic representation and processing (Troyer et al.,
1997; Ardila et al., 2006). Participants are asked to
produce as many words as they can from a given cate-
gory (e.g., animal) in a fixed amount of time (e.g., three
minutes). The resulting data—which words people re-
call and in what order—can shed light on how peo-
ple represent word meanings and their relationships,

and how they search such semantic information. For
example, Hills et al. (2012) found that participants
tend to reply in semantically-related bursts of words—
e.g., they recall words from the pet subcategory of
animals (dog, cat) then switch to a different subcat-
egory, such as African animals (lion, zebra), etc.—
indicating that people tend to follow a strategy of ex-
ploiting a semantically-related patch of words, then ex-
ploring to find a new patch, much like animals foraging
for patches of food in their environment.

Recent work has investigated the properties of se-
mantic representations and processing algorithms that
can account for this type of behavior in the semantic
fluency task. Different researchers have found that a
match to human behavior can be achieved in either of
two ways: (a) using a simple (vector-based) semantic
representation in combination with an informed, two-
stage algorithm to exploit and explore the space (Hills
et al., 2012); or (b) creating a richer representation—
structured as a semantic network—and using a sim-
ple random walk to access it (Abbott et al., 2015; Ne-
matzadeh et al., 2016). These findings suggest that the
choice of representation and search algorithm are in-
terdependent, such that the same empirical data can be
replicated through different combinations of represen-
tation and algorithm that make different trade-offs on
the locus of complexity (Abbott et al., 2015).

However, if both combinations account for the hu-
man data considered thus far, the question of which
model more plausibly captures what occurs in a search
in human semantic memory remains open. As Abbott
et al. (2015) suggest, further experiments, such as those
performed by Hills et al. (2015), can help elucidate the
differences between these approaches to modelling hu-
man semantic memory. In particular, if there are key
aspects of human semantic search that can be explained
by one model and not the other, then this goes towards
disconfirming the latter. One of the goals of the cur-
rent paper is to show that a random walk over a se-
mantic network reproduces even the additional empiri-
cal patterns of human semantic fluency task examined
by Hills et al. (2015).

In addition to these experimental approaches, other
findings and theoretical considerations may come to
bear on resolving the question of which model most



aptly reflects human semantic search.
For example, people appear to have a structured se-

mantic memory that encodes many kinds of relational
knowledge (Miller and Fellbaum, 1991). In this way,
complexity costs are incurred during learning (while
creating the structured representation) rather than ev-
ery time the representations are accessed. As such, ac-
cessing the knowledge later becomes a more efficient
process. Hence, it may be reasonable to suggest that
a simple search algorithm operating over a structured
semantic network is a preferable model.

Another open issue is precisely what kind of se-
mantic representations realistically capture word rela-
tions, especially semantic similarity, which typically
form the basic structure of a semantic network (e.g.,
Miller and Fellbaum, 1991). Work modeling human
semantic fluency behavior using a simple random walk
over a semantic network has drawn on several differ-
ent kinds of semantic word representations. Abbott
et al. (2015) constructed their semantic network us-
ing human association norms (Nelson et al., 1998), so
that weighted edges between words directly capture the
similarities between them that are relevant to the flu-
ency task (Jones et al., 2015). Nematzadeh et al. (2016)
built two networks based on different semantic repre-
sentations learned from text corpora: a simple vector-
based representation model, called BEAGLE, learned
from Wikipedia (Jones and Mewhort, 2007, previously
used by Hills et al. (2012)), and probability distribu-
tions learned from child-directed corpora (Fazly et al.,
2010). Given that a random walk over semantic net-
works from each of these sources—human association
norms, vector-space representations, and probability
distributions—all model human fluency behavior, how
do we choose between them?

An important set of considerations that we explore
here involves the cognitive plausibility of how a se-
mantic representation could be learned. While the hu-
man association norms used by Abbott et al. (2015)
accurately reflect human judgments of word related-
ness, it is not clear how the similarity assessments cap-
tured in such norms can be learned through exposure
to language. The BEAGLE vector-space representa-
tions, on the other hand, are learned from instances
of natural language. However, acquisition is a batch
process over Wikipedia data, which is arguably not a
good proxy for the linguistic input from which indi-
viduals acquire their semantic lexicon. The probability
distributions used by Fazly et al. (2010), however, are
learned by a cognitive model from a corpus of child-
directed speech. These representations thus meet im-
portant criteria for cognitive plausibility, in that they
are learned from naturalistic linguistic input.

One final crucial issue that has remained unad-
dressed to date is the incremental learnability of the
semantic network structure itself. Children simultane-
ously learn word meanings as well as the relations be-
tween them (Jones et al., 1991). Thus, it is important

to model the simultaneous incremental learning of both
semantic word representations and their structure in a
semantic network. This has been neglected by previous
work discussed so far. Even in the work where seman-
tic representations are learned, only the word represen-
tations and not their relations are learned. Instead, the
semantic network is created by exhaustively comparing
all the word representations after training—a process
that is too computationally demanding to be cognitively
plausible.

Our contributions in this paper are threefold: First,
we show that a semantic network created incrementally
within an online word learning model—from naturalis-
tic child language acquisition data—can yield human
performance in semantic search using a simple random
walk. Our work here confirms that a semantic network
created and updated incrementally—while the model is
learning words—has the appropriate structure to yield
patterns observed in the semantic fluency task, despite
having noisy and incomplete connections as a result
of being generated from partial knowledge acquired at
each time step. Second, as mentioned, we show that
the new approach to creating the semantic network pro-
duces a structure that also mimics other aspects of hu-
man behavior in semantic fluency, going beyond ear-
lier models in the scope of empirical data accounted
for (Abbott et al., 2015; Nematzadeh et al., 2016).

Finally, we extend previous analyses of semantic
organization to determine more precisely which net-
work properties are correlated with the observed hu-
man performance patterns. While other work has fo-
cused on the importance of structural properties of the
network in determining human behavior (Goñi et al.,
2010; Steyvers and Tenenbaum, 2005), we find that
both structural and semantic properties are necessary
to generate patterns observed in human semantic flu-
ency data.

2 Incremental Network Creation
We use the approach of Nematzadeh et al. (2014) to in-
crementally build a semantic network, which draws on
the probabilistic cross-situational word learning model
developed by Fazly et al. (2010).

2.1 Incremental Word Learning Model
The semantic network is generated from word mean-
ings (representations) learned by the model of Fazly
et al. (2010), trained on the Manchester corpus (Theak-
ston et al., 2001) of the CHILDES database (MacWhin-
ney, 2000). Each input to the model consists of an utter-
ance from the corpus, labelled with a scene consisting
of semantic features for each word. For example, con-
sider the following utterance (U) and selected features
from its accompanying scene (S):

U: {look, at, the, monkey, eat, a, banana}
S: { . . . , VERTEBRATE, MAMMAL, . . . , FRUIT, . . . }

Just as a child must learn the referent of each word



in a sentence, the learner must infer which features in
the scene are associated—or aligned—with each word.
The model captures this association as the probability
of a feature f given a word w, P( f |w), which it incre-
mentally updates from the co-occurrence of f with w
across all observed utterance–scene pairs. The mean-
ing of each word w is then represented as the probabil-
ity distribution P(·|w) over all semantic features, which
is estimated through latent variables that model the pos-
sible alignments of words and features in an utterance–
scene pair. An incremental Expectation Maximization
algorithm is used to update P(·|w) (Neal and Hinton,
1998). Hence, as in children, word meanings are grad-
ually learned after many exposures to utterances and
scenes.

In particular, for a single utterance–scene pair pro-
cessed at time t, the alignment (a) probability of each
feature ( fi) in the scene and word in the utterance (w j)
is calculated by:

Pt(ai j| fi) =
Pt−1( fi|w j)

∑w′∈u Pt−1( fi|w′)

Pt=0( fi|w j) is initially randomly uniformly distributed.
Once the alignment probabilities are calculated, the
word meanings are updated:

Pt( fi|w j) =
∑u∈Ut Pt(ai j|u, fi)

∑ f ′∈Mt ∑u∈Ut Pt(ai j|u, f ′)

Here, Ut represents the set of utterances processed up
to and including time t, and Mt is the set of features ob-
served up to and including time t. Note that the summa-
tions do not have to be calculated anew each time; the
terms from the first t− 1 utterances can be stored and
updated with the contributions from the tth utterance–
scene pair.

The learned representation for a word, P(·|w), can
be treated as a vector representation of the word over
all semantic features. In the present study, we fo-
cus on animal nouns, as they are the target of the se-
mantic fluency task in humans. The semantic fea-
tures of noun meanings used are derived from Word-
Net hypernyms (Fellbaum, 1998, http://wordnet.
princeton.edu), and embed hierarchical conceptual
knowledge of nouns.

The more features (hypernyms, in this case) two an-
imal words (e.g., “CAT”,“DOG” vs. “CAT”,“FROG”)
have in common, the more similar their learned repre-
sentations will be. The model learns not only the fea-
tures associated with that particular word, however, but
also features that often occur in the same context as
the word. For example, in the above utterance–scene
pair, the model may come to associate a non-zero prob-
ability with the feature FRUIT and the word monkey.
Hence, the learned meanings of words capture not only
a conceptual hierarchy for that word but also informa-
tion learned from the context of their usage.

2.2 Incremental Learning of Semantic Networks

Children do not just learn the meanings of words, they
also learn the relations between them at the same time
(Jones et al., 1991). We use the approach taken by Ne-
matzadeh et al. (2014) to enable the model to learn
word meanings and the relationships between them
simultaneously, without exhaustively considering all
possible relationships between the words.

Since the probability distribution P(·|w) for a given
word w is stored as a vector over all semantic features,
the cosine of the angle between them can be computed
as a measure of their similarity. A semantic network
can thus be constructed by representing each word as a
node in the network, with an edge between them if the
cosine similarity between two words is greater than a
threshold ρ.

Whenever a new utterance–scene pair U–S is pro-
cessed, the probabilities P(·|wu) of all wu ∈U are up-
dated, affecting the cosine similarities between words
wu and all other words. The semantic network must be
updated to reflect these changes in cosine similarities—
i.e., some edges may be added, some removed, some
changed in weight. However, rather than calculating
the (new) cosine similarities between each wu and all
other words, the model use a limited set of calculations.
It first updates the current edges connecting wu to its
neighbors. Then it selects a small set of new words wi
that potentially have a high probability of being similar
to wu. This is accomplished by incrementally form-
ing semantic clusters over word meanings that are ad-
justed when a word’s meaning is updated (Anderson
and Matessa, 1992). Each newly updated word mean-
ing wu is compared to an average (i.e., prototype) rep-
resentation of each cluster to determine its probability
of belonging to that cluster. Finally, n words are se-
lected from each cluster and their cosine similarity to
wu updated, where n is proportional to the probability
of wu belonging to that cluster. The number of compu-
tations is limited as wu is only compared to the cluster
prototypes and a restricted number of words from each
cluster.

By limiting the number of computations at each step
of learning, the model is more cognitively plausible
than exhaustively updating the semantic network after
each utterance. However, it also means that the result-
ing semantic network will be noisy—it may have miss-
ing, superfluous or incorrectly-weighted edges.

3 Experimental Data and Approach

In this section, we explain the details of the semantic
fluency experiment as well as the semantic represen-
tation and search algorithm used in our simulations.
All of the code and data necessary to reproduce our
experiments are available at https://github.com/
FilipMiscevic/random_walk.



3.1 Evaluation: Semantic Fluency Data

We evaluate our simulations using data from a semantic
fluency experiment in which participants were tasked
with naming as many animals as they can in three min-
utes (Hills et al., 2012, 2015). Hills et al. (2012) in-
ferred that the recalled words (e.g., dog, cat, lion, ze-
bra) form semantically-related categories or “patches”,
based on their inter-item retrieval times (IRT)—the
time elapsed between the naming of two sequential
items that have not previously been recalled. They find
that the IRT increases as search within a semantically-
related category progresses. A switch into a differ-
ent semantic category occurs when the IRT exceeds
the participant’s average IRT across the entire trial.
The IRT then decreases and the pattern begins again
(see Figure 2a). This result shows that participants
exhibit different behavior when recalling words from
within a semantic category compared to switching into
a new semantic category. Hills et al. (2012) argue that
this pattern is a consequence of an informed two-stage
search process: local cues, such as similarity to the
most recent response, are used to search within patches,
and global cues, such as the overall frequency of a
word, are used to switch into new patches. Here we
replicate previous results that demonstrate that the IRT
pattern (Figure 2a) can be predicted by a simple search
given structured representations (Abbott et al., 2015;
Nematzadeh et al., 2016). In addition, we show that
this process matches other patterns observed in the se-
mantic fluency experiment (Hills et al., 2015).

3.2 Representation: A Semantic Network

We assume words and their relations are structured as
a semantic network—a graph whose nodes are words,
and edges reflect the similarity between the word mean-
ings. We compare two sets of semantic networks, one
set created after training the word learner explained in
Section 2.1, while the other is built incrementally dur-
ing the training, as described in Section 2.2. While
the model learns many words, we only consider animal
words, as we can evaluate those against the semantic
fluency experiment of Hills et al. (2012). We also in-
clude the word animal itself in the semantic networks,
as this is the cue word used in the experiment.

Two words wi and w j are connected in the semantic
network if the cosine similarity between their feature
vectors, P(·|wi) and P(·|w j), is above the threshold,
ρ = 0.8. An exception is made for words connected to
the word animal: because animal is a hypernym of the
other animals, its cosine similarity will be less than the
cosine between animals of the same subcategory. As
such, to ensure that animal remains connected to some
words in the network, edges radiating from it are kept
if the similarity is at least ρanimal = 0.4. Both models
learn the representations of all 93 animal words present
in the corpus; however, not all nodes are guaranteed
to be connected to the rest of the network due to this
thresholding. These thresholds were determined by a

grid search over the possible values of ρ and ρanimal
(i.e., (0,1]). The model predicts the human data over
a notable range of parameter values; nonetheless, there
are still more networks in that parameter space that do
not predict the data. In Section 5, we will explore what
characteristics of the networks are responsible for their
successful prediction of data.
Batch Network. The word learner was trained on
120k utterance–scene pairs, with the meaning repre-
sentation of a word, P(·|w), calculated as described in
Section 2.1. After training has concluded, a semantic
network is constructed using the final learned represen-
tations. A total of 70 words is present in this network.
Incremental Network. The learner is trained on 28k
utterance–scene pairs.1 After each utterance–scene
pair is processed, the connections in the semantic net-
work are updated as described in Section 2.2. A total
of 75 words is present in this network.

Note that although the word representations of each
model are learned by the same learning algorithm, they
produce very different semantic networks. In the Batch
Network, the edges are created only after training is
completed, and is accomplished by exhaustively com-
puting the cosine similarity between all word-pair com-
binations. The Incremental Network, on the other hand,
uses a more cognitively plausible approximation of this
process whereby edges are incrementally created by
comparing only a small percentage of the word pairs.2

This means that relations captured by the edges of the
Incremental Network are noisier and incomplete.

The Incremental Network still only approximates the
process of semantic acquisition in people, albeit more
plausibly compared with previous work. As described
above, however, we empirically set two thresholds that
determine whether words are connected or not: one for
the word animal and another one for all other animal
words. Future work will need to explore whether this
distinction can be learned while the network is incre-
mentally created.

3.3 Search Algorithm: A Random Walk

We model the search process as a random walk in
which semantic information is retrieved by randomly
visiting nodes in the semantic network. Recall that
in the semantic fluency experiment, the participants
were cued by the word animal and were asked to name
as many animals they can in three minutes. Follow-
ing Abbott et al. (2015), we simulate this experiment
by performing a weighted random walk on each net-
work, beginning with the word animal. At each step in
the random walk, a neighboring node is visited with a
probability proportional to the edge weight connecting

1Even with the smaller corpus (28k as opposed to 120k
input pairs), the model predicts the semantic fluency data;
thus, we used the smaller corpus to speed up our simulations.

2This ends up being only 8% of all n(n−1)
2 possible com-

parisons at each time step, where n is the total number of
words seen by the learner at each time step.



them, and the visited word is stored. Just as repeated
words are not considered in the human recall data,
we assume the output of a random walk to be the se-
quence of unique words encountered—i.e., each word
is counted in the output only when retrieved for the first
time. The number of steps taken before the walk termi-
nates (including steps to already-visited nodes) is 70,
which produces about the same number of words on
the networks as human participants on average do (i.e.,
37± 5). The results we report are averages over 300
such walks.

3.4 Analyzing Random Walks

In the semantic fluency task, the human response pat-
terns are reflected in changes in the inter-item retrieval
time (IRT) over the list of responses. In the empiri-
cal data, IRT is the time elapsed from one word until
the next word is recalled, and increases and decreases
are observed as people switch from one semantic patch
of words to another, as noted above. Thus, to evalu-
ate the random walks in our semantic networks against
this IRT pattern, we must define a measure of time in
the simulated walks (since actual model speed is not
an appropriate proxy). We also must determine what
constitutes a patch and a switch between two patches.

3.4.1 Measuring Time and Semantic Distance
We follow Abbott et al. (2015) in defining the IRT in a
random walk on a semantic network as the number of
steps taken (i.e., number of edges crossed) between two
words. More specifically, we define IRTs for our walks
as follows: for each word that has not previously been
visited by the random walk, the IRT is the number of
steps taken in the random walk since the last word that
was seen for the first time. For example, if the model
visits the sequence of nodes “CAT,DOG,CAT,RAT”, the
random walk output is “CAT,DOG,RAT”, and the IRT
between CAT and DOG is 1, whereas the IRT between
DOG and RAT is 2.

The IRT is considered a proxy for semantic distance
between the words. Hills et al. (2015) also looked di-
rectly at semantic distances in the sequences generated
in the human fluency task: They used vector-space rep-
resentations (of the BEAGLE model) to calculate co-
sine similarity between consecutive words. As such, in
addition to using IRT in assessing our walks, we also
draw on the cosine similarities between words.

3.4.2 Identifying Patch Switches
Each word in a random walk is labeled by the cate-
gory/categories it belongs to, as defined by Troyer et al.
(1997). Words (e.g., DOG) can belong to more than
one category (e.g., PETS, CANINE). As a result, there
are different possibilities for defining what constitutes a
patch and where the patch switches occur. We explore
two different ways of defining patches over Troyer’s
categories, following Hills et al. (2015), as summarized
in Figure 1.

Figure 1: The difference between categorical and associative
patch switches, based on Hills et al. (2015).

Categorical patch switch. A patch switch occurs
when a word in the sequence has no category in com-
mon with all of the words in the current patch. In the
sequence “CAT,DOG,WOLF”, “DOG,WOLF” is a patch
switch because WOLF is not in the same category as
CAT (is not a PET).
Associative patch switch. A patch switch occurs when
a word in the sequence has no category in common with
the last word in the patch. For example, “DOG,WOLF”
is not a patch switch because both words share the
Troyer category CANINE, but “WOLF,COW” is a patch
switch because they have no categories in common.

From this definition it follows that all associative
patch switches are also categorical patch switches.
However, a categorical patch switch may not be as-
sociative; one such “categorical only” patch switch is
illustrated in Figure 1. Hills et al. (2015) argue that hu-
man search through memory is more like an associative
search, and that the associative patch switch model bet-
ter explains human IRT patterns. We use the associative
patch switch model except where explicitly comparing
the differences between the alternatives.

4 Predicting Semantic Fluency Data

Here we compare the results of random walks over the
Batch and Incremental Networks in mimicking human
semantic fluency data. First, we focus on predicting
the pattern of recall observed in human data, then we
examine the properties of each patch switch model.

4.1 Recall Patterns

In the human semantic fluency data (Figure 2a), the
longest IRTs tend to occur between successive words
that do not share a semantic category, presumably
reflecting their greater distance in semantic memory
(Hills et al., 2012, 2015). This is referred to as a patch
switch. In the figure, a patch entry position of 1 indi-
cates the average IRT between the first item in a patch
and the item retrieved before it. Similarly, a patch en-
try position of −1 is the average IRT between the two
items preceding a patch switch. Human IRTs in patch
entry position 1 (patch switch) are higher than the aver-
age IRT, as people take longer to switch to a new patch,
then dip below the average IRT at patch position 2 as
people recall words within a patch.

As Hills et al. (2012) point out, this behavior is con-
sistent with the marginal value theorem (MVT) of op-
timal foraging for patches of food in physical space



(Charnov, 1976). In particular, MVT demonstrates that
to maximize foraging gains, the optimal moment to
leave a current patch is when the instantaneous reward
drops below the average reward. In the human semantic
search task, since participants are asked to retrieve as
many words as they can, shorter IRTs lead to a bigger
‘reward’, as more words can thus be retrieved within
the time limit. Indeed, Hills et al. (2012) demonstrated
that those subjects whose search patterns conformed
with MVT retrieved the most words. We evaluate
whether the IRT patterns of our models also conform
to the predictions of MVT as observed in the human
data. As such, the first patch-entry position IRT must
be significantly greater than the mean IRT (e.g., the ra-
tio between the two is greater than 1) and all other patch
entry positions must be no greater than the mean IRT.
Finally, successive IRTs within the same patch should
be non-decreasing.

As shown in Figure 2, we observe a similar pattern
to the human IRT data in both the Batch and Incre-
mental Networks: the IRT drops between the first and
second items in a patch, then steadily increases until
the IRT exceeds the long-term average IRT, reflecting
a patch switch. A single-sided t-test confirms that the
first patch entry IRT is greater than the average IRT
(p� 0.001). We accept the null hypothesis that the
patch entry IRT at position -1 is no greater than the
average IRT (0.08≤ p≤ 0.20). The other IRTs are sig-
nificantly less than the average IRT (p < 0.02) and suc-
cessive IRTs within a patch are indeed non-decreasing.

This demonstrates, for the first time, that the com-
bination of a simple search and structured representa-
tion that is incrementally created—simultaneously, as
words are learned—can predict basic patterns observed
in human semantic fluency. Next, we model additional
aspects of the human data that have not been consid-
ered in previous work (Abbott et al., 2015; Nematzadeh
et al., 2016).

A roughly analogous pattern with respect to patch
entry positions is found with the average cosine simi-
larities, although here, because cosine represents sim-
ilarity rather than distance, the direction is reversed,
as seen in Figure 3. Words at a patch switch are the
least similar to one another. Again, the first patch en-
try position cosine similarity is significantly less than
the average cosine simimlarity (p < 0.05). The other
patch entry position cosines are on average no smaller
than the average (p ≥ 0.05). This supports the notion
that words within patches are more similar (and hence,
closer in semantic memory) to each other than words
between patches.

4.2 Patch Switch Type Proportion and Duration

Hills et al. (2015) categorize patch switches on
the human data by whether they are associative or
categorical-only (see Figure 1). Two observations are
made from this data. Firstly, as in Figure 4a, the
proportion of associative patch switches steadily in-

(a) Human data

(b) Batch Network (c) Incremental Network

Figure 2: (a) Human IRTs reproduced from Hills et al.
(2012). (b,c) IRTs from random walks generated from the
simulated semantic networks. Bars are SEM.

(a) Human data

(b) Batch Network (c) Incremental Network

Figure 3: Cosine similarities between words in successive
patch positions normalized by the average long-term cosine
similarity in (a) BEAGLE vectors for items retrieved by hu-
mans (Hills et al., 2012), (b,c) our semantic networks.



(a) Human data

(b) Batch Network (c) Incremental Network

Figure 4: Average proportion of patch switch type on each
quartile of the random walk for (a) human data (Hills et al.,
2012), (b,c) our semantic networks.

creases throughout the four quartiles of the walk, but
the number of categorical-only patch switches stays
the same. This suggests that as more words are re-
trieved and semantic patches are depleted, new seman-
tic patches must be explored. However, the categorical-
only switches do not change in frequency. We specu-
late this may either be because they do not contribute
to the need to explore different patches, or that they are
so uncommon to begin with.

Secondly, as in Figure 5a, associative and
categorical-only switches take longer than non-
switches, which is expected, as non-switches search
within a patch of semantically-related words. Asso-
ciative switches take the longest, as they delineate the
boundaries between the most semantically-different
categories (compared to categorical-only switches).

Model Predictions. When we subject the random
walks on our networks to these analyses, we observe
the same pattern (Figures 4,5). This is the first work
to confirm that a random walk on semantic network is
consistent with the observed pattern on the duration and
proportion of different types of switches.

Hills et al. (2015) point out the associative patch
switch model has a Markov property, insofar as that
only the proceeding word’s category affects the exis-
tence of a patch switch with the next word. This is
an interesting observation because it suggests that the
associative switches may simply be easier to make, as
only the previous word’s categories affect the transi-
tion to the current word. In contrast, a categorical-
only switch demands higher memory overhead as the
next word is affected by the overall category/categories
shared by members in the current patch. Our results
show that a random walk on a structured semantic net-
work can predict the timing and proportion of these dif-
ferent types of switches.

(a) Human data

(b) Batch Network (c) Incremental Network

Figure 5: Average IRTs based on patch switch types for (a)
human data (Hills et al., 2012), (b,c) our semantic networks.

5 Explaining Semantic Fluency Data
While our results confirm that a simple search on an
incrementally-created semantic network mimics many
aspects of semantic fluency behavior, not all the seman-
tic networks predict aspects of the human data, such as
adherence to MVT. Adding edges to the semantic net-
work depends on the similarity between words reach-
ing a certain threshold. We experimented with a wide
range of thresholds on similarity of word pairs (see
Section 3.2) and observed that patterns consistent with
MVT, as in the human IRT data (Figure 2a), appear
only within a certain parameter range. Since the choice
of threshold affects the overall structure of the semantic
network, we explore the features that distinguish those
semantic networks that reproduce human semantic flu-
ency patterns from those that do not.

Previous research has emphasized that semantic net-
works representing human knowledge have particular
structural properties; namely, a small-world structure,
as explained below (Steyvers and Tenenbaum, 2005).
However, Nematzadeh et al. (2016) observe that hav-
ing a small-world structure is not a sufficient condi-
tion to guarantee a match to the observed human be-
havior in semantic search. A factor that has remained
unexplored is how the quality of a network’s semantic
connections—whether semantically similar words are
connected through a path or not—affects a network’s
ability to replicate findings in human semantic search.
We hypothesize that this semantic quality is also im-
portant in predicting the semantic fluency data, because
even two networks identical in every way except for
their node labels would produce very different behav-
ior as the relationships between the words they repre-
sent would be completely different.

Here we perform an extensive analysis considering
both structural and semantic properties of the networks
to assess which features contribute to the model’s ad-
herence to MVT, a major pattern in the human data.



By identifying these features, we can better understand
the salient aspects of semantic memory that give rise
to patterns in human semantic search. We first explain
how we measure the structural and semantic features of
the networks. Then we discuss how we build a regres-
sion model to determine which features are responsible
in predicting the semantic fluency data.

5.1 Measuring Structure and Semantics
A network exhibits small-world structure if it is sparse
and highly connected at the same time—there are not
a lot of edges in the network, but most nodes are con-
nected through a set of high-degree nodes. As a re-
sult, the network consists of a set of highly-connected
components that are connected through the high-degree
nodes. Small-worldness is often quantified by σ:

γ =
C

Crandom
, λ =

L
Lrandom

, σ =
γ

λ

where C is the average local clustering coefficient and
L is the average path length, and the subscript ran-
dom refers to the metric of an equivalent Erdős-Renyi
network. A network is considered to be small-world
when σ > 1 (or more strictly, γ� 1, λ≈ 1) (Watts and
Strogatz, 1998). Intuitively, γ� 1 reflects a structure
of tightly connected components in the network, and
λ ≈ 1 reflects relatively short path distances between
nodes compared to a random network.

We observe that all of the semantic networks capable
of reproducing the human patterns are small-world, but
not all small-world networks generate these patterns,
which is consistent with the findings of Nematzadeh
et al. (2016). As a result, we consider other structural
and semantic features. The structural features include
the number of vertices (|V |), number of edges (|E|), and
the sparsity of the network (average nodal degree).
Quality of semantic connections. In addition to the
structure of a network, we examine the quality of its
semantic connections. We explore this by first identify-
ing the semantic clusters formed in each network using
the HDBSCAN algorithm (Campello et al., 2013), and
then evaluating these clusters using Troyer’s categories
as our gold-standard data Troyer et al. (1997). We as-
sume that each cluster in the network can have exactly
one category (e.g., pets). To determine the category la-
bel of a cluster, we examine the Troyer category mem-
berships of each of its words, and assign the category
label based on which category is shared by the most
words of the cluster.

We use the standard measures of precision, recall,
and F-score to assess the quality of each cluster, and
average these across all clusters, weighted by cluster
size, to obtain weighted precision, weighted recall, and
weighted F-score for a network. We also consider the
number of clusters in each network as a feature, |H|.

5.2 Analyzing the Contribution of Features
We characterize which structural and semantic features
of a network are most important (in predicting human

data) by fitting logistic regression models on all the
possible combinations of features.

Prior to training, feature values were transformed
into z-scores (i.e., for a given feature x for a given net-
work i, the standardized value is (xi − x̄)/ŝ; x̄ is the
sample mean of the feature for all networks and ŝ is
sample standard deviation). This permits the coeffi-
cients of regression to be compared directly in terms
of their contribution in predicting the data.3

5.2.1 Experimental Set-Up
Logistic classifier models were trained on a set of Batch
and Incremental networks. During training, we ensure
an equal representation of networks that adhere to and
do not adhere to MVT. This is a binary condition satis-
fied according to the criteria explained in Section 4.1.
Networks were first generated across the entire param-
eter space of the similarity thresholds (i.e., all combi-
nations of ρ and ρanimal ranging from 0 to 1, in incre-
ments of 0.1). We excluded networks where the num-
ber of nodes reachable by the starting word ‘animal’
was smaller than 30, as they would not be able to pro-
duce as many words as human participants did (37±5)
(Hills et al., 2012). Since the number of non-IRT pro-
ducing networks outnumbered the IRT producing net-
works, we uniformly sampled the parameter space in
which IRT pattern-producing networks occurred so that
the number of each would be equal. Using this pro-
cedure, 42 Batch and 56 Incremental networks were
generated. In each case, exactly half of the networks
produce the IRT pattern consistent with MVT.
Model selection. For each set of Batch and Incre-
mental networks, we examine which features best pre-
dict the human data by building and evaluating logis-
tic regression models for all possible combinations of
the features. Model selection was performed in two
steps. First, the models with the highest stratified-3-
fold (SKF) cross-validation score were taken. From
these, the model with the fewest number of features
was selected.

5.2.2 Results of Logistic Regression
Table 1 shows the features that appeared in the lo-
gistic regression model that achieved the best SKF
cross-validation score for each of the types of net-
works. Since each feature was standardized (with
mean = 0 and variance = 1), the magnitude of the
coefficients can be interpreted directly. We note that
small-worldness (σ) and weighted F-score are influ-
ential predictors for both Batch and Incremental net-
works. In both models, weighted F-score is the most
influential predictor. Although σ is the least influen-
tial predictor, we find it significant that it is a shared

3Although some of these features are dependent (e.g., |E|
and sparsity), we do not include their interactions in our re-
gression analysis. We focus on understanding whether a sub-
set of individual features can explain the human data and thus
examine all possible combinations of features.



Networks Acc. Features and Coefficients
Batch 93% σσσ λ C sparsity weighted F-score

0.58 0.74 -1.92 0.94 0.94
Incremental 90% σσσ γ |E| weighted F-score

0.65 0.71 -1.64 1.07

Table 1: Features used to train the logistic regression models
for predicting IRT pattern production with the highest strati-
fied 3-fold cross-validation accuracy (Acc.). Shared features
are bolded.

predictor for both networks. Structural properties re-
lating to the number of edges (|E|,sparsity) as well
as clustering coefficient (C,γ), are structural proper-
ties that have been previously characterized in semantic
networks (Steyvers and Tenenbaum, 2005; Goñi et al.,
2010). Hence, we conclude that both topological
features—namely, small worldness (high clustering co-
efficient and short average path length)—and semantic
features—high weighted F-score (good precision and
recall in clusters)—are jointly associated with repro-
ducing the IRT pattern.

6 Conclusions
Learning word meanings and representing them in se-
mantic memory are processes that often occur simulta-
neously, notably in early language acquisition. A cog-
nitive model capable of integrating these two processes
will therefore more realistically capture language ac-
quisition and usage. It is noteworthy that both the Batch
and Incremental Networks perform comparably on all
of the data examined here. We consider this strong sup-
port for the hypothesis that semantic networks learned
incrementally on a naturalistic language corpus can
replicate search patterns in the free recall task, a claim
that is neither obvious nor trivial to demonstrate. Fur-
thermore, some of the performance characteristics we
use in measuring the fit of the model to the human
data—namely, whether the IRT patterns produced by
the model are consistent with MVT or not—are binary
conditions: either the behavior is replicated or it is not,
so, barring additional criteria, a graded scale by which
to score performance is not possible. Future work will
seek to better characterize the performance differences
between the two models.

We deploy a model that can generate semantic net-
works incrementally from naturalistic language use,
i.e. child-directed speech, while it gradually learns the
word meanings, lending it plausibility as a cognitive
model. We show this model replicates human perfor-
mance on semantic fluency tasks; namely, with regards
to patch entry IRT, patch entry cosine similarity pat-
terns, patch switch type proportions, and patch switch
type IRTs. We show, furthermore, that the Markov
property of the random walk does indeed align with
the associative nature of search in the human semantic
fluency task (Hills et al., 2015).

By investigating the structural and semantic fea-
tures of these and other networks, we show that small-
worldness alone does not explain the ability of a net-
work to replicate the human patterns. Having highly

connected components, and ones that reflect the se-
mantic categories of words, are both properties that
may be necessary in predicting semantic search behav-
ior observed in humans.
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