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Abstract. Even a relatively unstructured captioned image set depict-
ing a variety of objects in cluttered scenes contains strong correlations
between caption words and repeated visual structures. We exploit these
correlations to discover named objects and learn hierarchical models of
their appearance. Revising and extending a previous technique for finding
small, distinctive configurations of local features, our method assembles
these co-occurring parts into graphs with greater spatial extent and flex-
ibility. The resulting multipart appearance models remain scale, transla-
tion and rotation invariant, but are more reliable detectors and provide
better localization. We demonstrate improved annotation precision and
recall on datasets to which the non-hierarchical technique was previously
applied and show extended spatial coverage of detected objects.

1 Introduction

Computer vision tasks from image retrieval to object class recognition are based
on discovering similarities between images. For all but the simplest tasks, mean-
ingful similarity does not exist at the level of basic pixels, and so system design-
ers create image representations that abstract away irrelevant information. One
popular strategy for creating more useful representations is to learn a hierarchy
of parts in which parts at one level represent meaningful configurations of sub-
parts at the next level down. Thus salient patterns of pixels are represented by
local features, and recurring configurations of features can, in turn, be grouped
into higher-level parts, and so on, until ideally the parts represent the objects
that compose the scene. The hierarchical representations are inspired by and in-
tended to reflect the compositional appearance of natural objects and artifacts.
For instance, each level of the Leaning Tower of Pisa appears as a ring of arches
while the tower as a whole is composed of a (nearly) vertical stack of levels.

With this strategy in mind, we build upon the approach of [1] to produce a
system with more accurate image annotation and improved object localization.
Given images of cluttered scenes, each associated with potentially noisy cap-
tions, our previous method [1] can discover configurations of local features that
strongly correspond to particular caption words. Our system improves the overall
distribution of these local configurations to optimize the overall correspondence
with the word. While individual learned parts are often sufficient to indicate the
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presence of particular exemplar objects, they have limited spatial extent and it
is difficult to know whether a collection of part detections in a particular image
are from multiple objects or multiple parts of a single object. Our system learns
meaningful configurations of parts wherever possible, allowing us to reduce false
annotations due to weak part detections and provide a better indication of the
extent of detected objects. Figure 1 illustrates how low-level features are assem-
bled in stages to form a multipart model (MPM) for the Leaning Tower. MPMs
are more robust to occlusion, articulation and changes in perspective than a flat
configuration of features. While the instantiated system uses exemplar-specific
SIFT features, the framework can support more categorical features.

(a) pixels (b) local features (c) parts (d) multipart models

Fig. 1. Object model detection and learning progresses in stages. Gradient patterns
in the original image (a) are grouped into local features (b). Configurations of local
features with strong word correspondence are captured as part models (c). Finally, we
represent meaningful configurations of part models as multipart models (d).

2 Related Work

A number of researchers have studied the problem of automatic image annotation
in recent years [2–6, 1]. Given cluttered images of multiple objects paired with
noisy captions, these systems can learn meaningful correspondences between
caption words and appearance models.

In many automatic annotation systems, the main component of the appear-
ance model is a distribution over colors and textures. This kind of representation
is a good fit for relatively structureless materials such as grass, sand or water
and is relatively robust to grouping or segmentation errors. However, objects
such as buildings and bicycles often lack a distinctive color or texture, and re-
quire representations that can capture a particular configuration of individually
ambiguous parts. Most of these automatic annotation systems do not focus on
learning such feature configurations. Often, appearance is modeled as a mixture
of features (e.g., [5, 3, 6]) in which common part configurations are reflected in
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co-occurrence statistics but without spatial information. Similarly, the Markov
random field model proposed by Carbonetto et al. [4] can represent adjacency
relationships but not spatial configurations.

In contrast, the broader object recognition literature contains many methods
for grouping individual features into meaningful configurations and even arrang-
ing features into hierarchies of parts. For instance, Fergus et al. [7] and Crandall
and Huttenlocher [8] look for features and relationships that recur across a col-
lection of object images in order to learn object appearance models consisting of
a distinctive subset of features and their relative positions. A natural strategy
to improve the flexibility and robustness of such models is to organize the ob-
ject representation as a parts hierarchy (e.g., [9–14]). The part hierarchy can be
formed by composing low-level features into higher and higher level parts (e.g.
Kokkinos and Yuille [9], Zhu et al. [10]) or by decomposing larger-scale shared
structures into recurring parts (e.g., Epshtein and Ullman [13]). The composi-
tion and learning method of parts at different levels of the hierarchy may be
highly similar (e.g., Bouchard and Triggs [11], Fidler et al. [12]) or heteroge-
neous (e.g., Ommer and Buhmann [14]). Some of these methods can learn an
appearance model from training images with cluttered backgrounds, sometimes
without relying on bounding boxes. However, unlike most automatic annotation
work, they are not designed for images containing multiple objects and multiple
annotation words.

In [1], we describe an automatic annotation system that can capture explicit
spatial configurations of features while retaining the ability to learn from noisy,
unstructured collections of captioned images. Guided by correspondence with
caption words, the system iteratively constructs appearance graphs in which ver-
tices represent local features and edges represent spatial relationships between
them. However, the learned appearance models usually have limited spatial ex-
tent, with each model typically describing only a distinctive portion of an object.
There is no way to determine whether a set of detections in a given image repre-
sents multiple objects or different parts of the same object. Our system addresses
these limitations by using the appearance models as parts in larger hierarchical
object models.

3 Images, Parts and Multipart Models

Our system learns multipart appearance models (MPMs) by detecting recurring
configurations of lower-level ‘parts’ that together appear to have a strong corre-
spondence with a particular caption word. Though our overall approach could
be appropriate for a variety of part features, in this paper our parts are local
configurations of interest points as in [1].

In [1], an image is represented as a set of local interest points, I = {pm|m =
1 . . . |I|}. These points are detected using Lowe’s SIFT method [15], which defines
each point’s spatial coordinates, xm, scale λm and orientation θm. A PCA-SIFT
[16] feature vector (fm) describes the portion of the image around each point. In
addition, a vector of transformation-invariant spatial relationships rmn is defined
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between each pair of points, pm and pn, including the relative distance between
the two points (∆xmn), the relative scale difference between them (∆λmn) and
the relative bearings in each direction (∆φmn, ∆φnm).

A part appearance model describes the distinctive appearance of an object
part as a graph G = (V,E). Each vertex vi ∈ V is composed of a continuous
feature vector fi and each edge eij ∈ E encodes the expected spatial relation-
ship between two vertices, vi and vj . Model detections have a confidence score,
Confdetect (O,G) ∈ [0, 1], based on the relative likelihood of an observed set of
points O and the associated spatial relations being generated by the part model
G versus unstructured background.

Multipart models are very similar in structure to the local appearance models
described in [1]. As shown in Figure 2, a multipart model is a graph H = (U,D)
where vertices uj , uk ∈ U are part appearance model detections and each edge
djk ∈ D encodes the spatial relationships between them, using the same rela-
tionships as in the part model: djk = (∆xjk, ∆λjk, ∆φjk, ∆φkj).


 















 



Fig. 2. A multipart model H is a graph with parts uj ∈ U and spatial relationships
djk ∈ D, where each part is a graph G with local features vi ∈ V and spatial relation-
ships eis ∈ E.

4 Discovering Parts

Multipart models are composed of the same type of individual appearance mod-
els that were discovered in [1]. However, models trained to maximize stand-
alone detection performance are generally not ideal as parts of a larger appear-
ance model. Singleton appearance models need to act as high-precision detectors
while MPM parts can be individually more ambiguous and rely on the MPM
layer to weed out false-positive detections by imposing co-occurrence and spatial
constraints. Therefore, when learning MPM parts, we can accept some loss of
precision in exchange for better recall and better spatial coverage of the object
of interest. We implement this shift toward weaker parts with better coverage
by replacing the part initialization process in [1] with our own improved process
and by limiting the size of learned part models to eight vertices.
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4.1 Model Initialization through Image Pair Sampling

We replace the clustering-based model initialization method of [1] with an ap-
proach that makes earlier use of language information. The system in [1] sum-
marizes the visual information within each neighborhood of an image set as a
quantized bag-of-features descriptor called a neighborhood pattern and then uses
clustering to group similar neighborhood patterns. Next, the system checks for
promising correspondences between the occurrence patterns of each neighbor-
hood cluster and each word. Finally, clusters with the best correspondences for
each word are used to extract initial two-vertex appearance models.

This clustering approach has several drawbacks. The neighborhood patterns
are noisy due to features quantization and detector errors. Therefore a low sim-
ilarity threshold is needed to reliably group similar appearances. However, this
allows unrelated neighborhoods to join the cluster. Especially on large image
sets, this can add substantial noise to the cluster occurrence pattern, obscuring
its true word correspondences. Therefore recurring visual structure correspond-
ing to rarer object views is often overlooked.

Our initialization method avoids feature quantization and uses word labels
early-on in the process. Instead of using a neighborhood pattern, we compare
visual features directly. Rather than cluster visual structure across the entire
training set, we look for instances of shared appearance between pairs of images
with the same word label. For a given word w, the system randomly samples
pairs of images IA and IB from those with captions containing w and identifies
neighborhoods in the two images that share visual structure.

We identify shared neighborhoods in three steps. First, the system looks for
uniquely-matching features that are potential anchors for shared neighborhoods.
Following [15], we identify matching features that are significantly closer to each
other than to either feature’s second-best match, i.e., features fm ∈ IA and
fn ∈ IB that satisfy equations 1 and 2:

|fm − fn|2 ≤ ψu|fm − fk|2, ∀fk ∈ {IB − fn} (1)

|fm − fn|2 ≤ ψu|fl − fn|2, ∀fl ∈ {IA − fm} (2)

where ψu < 1 controls degree of uniqueness of anchor matches. For each pair of
uniquely-matching features, the system checks for supporting matches in the sur-
rounding neighborhood. These supporting matches aren’t required to be unique,
so the corresponding uniqueness quantifier ψs > 1. For each supporting match
pair fi ∈ IA and fj ∈ IB , the system then verifies that the spatial relationships
between the unique feature and the supporting feature in the two images (rmi

and rnj) are consistent. A shared neighborhood has a pair of unique matches
and at least two spatially consistent supporting matches.

Given this evidence of shared visual structure, we construct a set of two-
vertex part models, each with one vertex based on the unique match and the
other on a strong supporting match. These two-vertex models represent shared
visual structure between two images labeled with word w. To check whether
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the models correspond with w, the system detects each model G across the
training image set and compares its occurrence pattern with that of w. Below,
we explain how we sample image pairs and filter the resulting initial part models
to maximize overall coverage of the object.

4.2 Part Coverage Objective

In [1], the system develops the n neighborhood clusters with the best correspon-
dence with w into full appearance models. This approach concentrates parts on
the most common views of an object, neglecting less common views and appear-
ances associated with w. Our method instead selects initial part models so that,
as a group, they have good coverage of w throughout the training set.

Ideally, a set of part models G would have multiple, non-overlapping de-
tections in every training set image annotated with word w and no detections
elsewhere. We represent the distribution of model detections throughout the k
training images with the vector Qw = {Qwi|i = 1, . . . , k}. If ni is the number of
independent model detections in image i, Qwi = 1 − νni , ν < 1. With multiple
detections, Qwi approaches 1, but each successive detection has a smaller effect.

We evaluate how well G approximates the ideal by evaluating the correspon-
dence between Qw and a vector rw indicating images with w in the caption
using an F-Measure, F (rw,Qw). The part initialization process greedily grows
and modifies a collection of non-overlapping two-vertex part models G to max-
imize F (rw,Qw). At each iteration, it draws a pair of images from the sample
distribution sw and uses them to generate potential part models. Qw influences
the sample distribution: sw ∼ 1 −Qw. This focuses the search for new models
in images that do not already contain several model detections. The algorithm
calculates, for each potential model, the effects on the correspondence score F
of adding the model to the current part set, of replacing each of the models in
the current set and of rejecting the model. The algorithm implements the option
which leads to the greatest improvement in correspondence. The process stops
once no new models have been accepted in the last Npairs image-pair samples.

Besides optimizing the explicit objective function, the initialization system
also avoids redundant models with many overlapping detections. Two models
are considered to be redundant when their detections overlap nearly as often as
they occur separately. When a new two-vertex model is considered, if selected it
must replace any models that it makes redundant.

5 Building Multipart Models

After learning distinctive part models, but before assembling them into multipart
models, we perform several stages of processing. Algorithm 1 summarizes both
the preprocessing steps and the MPM initialization and assembly process, with
reference to the subsections below that explain the steps of the algorithm.
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Algorithm 1 Uses parts associated with word w to assemble multipart models.
ConstructMPMs(w)

1. For each part G associated with w, find the set OG of observations of G in training images.
2. Identify and remove redundant parts (section 5.1).
3. For each G, set the spatial coordinates of each observation OG ∈ OG (section 5.2):

– Choose representative vertex vc to act as center of G.
– For each vi ∈ vG, find average relationship, r̄ic, between co-occurences of (vi, vc) ∈ OG.
– For each OG ∈ OG, and each observed vertex pi ∈ OG calculate expected position of xc

based on (r̄ic,xi). Part spatial coordinate xG is the average expected center x̄c.
4. Sort parts by Confcorr (G,w).
5. For each G:

– Skip expansion if most OG ∈ OG are already incorported into existing MPMs (section 5.3).
– Iteratively expand G into an MPM H using same method as part models (section 5.4):

• Expand MPM H to H∗ by adding new part or spatial relationship.
• Detect H∗ across the training image set (section 5.5).
• If new MPM–word correspondence, Confcorr (H

∗, w) > Confcorr (H,w), H ⇐ H∗.
– If at least NMPM multipart models have been created, return.

5.1 Detecting Duplicate Parts

Our initialization method avoids excessive overlap of initial part models. How-
ever, during model refinement, two distinct part models can converge to cover the
same portion of an object’s appearance. Near-duplicate parts must be pruned
or they could complicate the search for multipart models since they could be
interpreted as a pair of strongly co-occurring, independent parts.

Rather than detect near-duplicates by searching for partial isomorphisms
between part models, we look for groups of parts that tend to be detected in the
same images at overlapping locations. If a vertex vAi in model GA maps to the
same image point as vertex vBj in model GB in more than half of detections, then
we draw an equivalence between vAi and vBj . If more than half of the vertices
in either part are equivalent, we remove the part with the weakest word–model
correspondence confidence Confcorr (G,w).

5.2 Locating Part Detections

The parts described in [1] encode spatial relationships among local interest
points; we construct multipart models by discovering spatial relationships be-
tween such detected parts. However, while a local interest point detector provides
that point’s scale, orientation and location, the part detector does not. We there-
fore set the spatial coordinates for each part detection based on the underlying
image points in a way that is robust to occlusion and errors in feature detection.

For each part we select a central vertex and for each detection we estimate
the center’s spatial coordinates. The center vertex need not be observed in every
detection, since each observed vertex contributes to a weighted estimate of the
center’s coordinates. Figure 3 illustrates this approach. We use the estimated
location and orientation of the center and multiply the estimated scale of the
center vertex by a part-specific factor so that the detected part scale reflects the
normal spread of the part’s vertices.
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Fig. 3. The spatial coordinates of a part detection are tied to a central vertex c. We
estimate c’s coordinates based on observed vertices, even if c itself is not observed.

5.3 Choosing Initial Multipart Models

Our system uses the most promising individual part models as seeds for con-
structing multipart models. Parts that have good correspondence with a word
are likely to co-occur with other parts in stable patterns from which large MPMs
with good spatial coverage can be constructed. However, if only the strongest
part models are expanded, the resulting MPMs may be too clustered around
only the most popular views of the object. This would neglect views with weaker
individual parts where MPMs can make the biggest difference in precision.

Therefore initial model selection proceeds as follows. Part models are evalu-
ated in the order of their correspondence with a word w. A model is expanded
if at least half of its ‘good’ detections (in images labeled with w) have not been
incorporated into any of the already-expanded MPMs. Selective expansion con-
tinues until the list of part models is exhausted or NMPM distinct multipart
models have been trained for a given word.

5.4 Refinement and Expansion of Multipart Models

In order to expand the multipart models, we take an approach very similar to [1],
in that we use the correspondence strength Confcorr (H,w) between a multipart
model H and word w to guide the expansion of these two-vertex graphs into
larger multipart models. Introduced in [1], the correspondence score reflects the
amount of evidence, available in a set of training images, that a word and a part
model are generated from a common underlying source object, as opposed to
appearing independently.

Each iteration of the expansion algorithm begins by detecting all instances
of the current multipart model in the training set (section 5.5) and identifying
additional parts that tend to co-occur with a particular spatial relationship rel-
ative to the multipart model. We propose an expansion of the MPM H either by
adding a new part model and spatial relationship from among these candidates
or by adding a new edge between existing vertices. The proposal is accepted if it
improves Confcorr (H,w) (starting a new iteration), and rejected otherwise. The
expansion process continues until potential additions to H have been exhausted.
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5.5 Detecting Multipart Models

As in part model detection, multipart detection must be robust to changes in
viewpoint, occlusion and lighting that can cause individual part detections to
be somewhat out of place or missing entirely. We use a simple generative model
illustrated in Figure 4 to explain the pattern of part detections both in images
that contain a particular multipart model and those that do not.

Each image i has an independent probability P (hi = 1) of containing the
multipart model H. Given hi, the presence of each model part is determined
independently (P (uij = 1|hi)). The foreground probability of a model part be-
ing present is relatively high (P (uij = 1|hi = 1) = 0.95), while the background
probability, P (uij = 1|hi = 0), is equal to its normalized frequency across the
training image set. If a part is present, it tends to have a higher observed de-
tection confidence, oij (p(oij |uij = 1) = 2oij , p(oij |uij = 0) = 2(1 − oij)). If
the multipart model is present (hi = 1) and contains an edge rjk, and the parts
uij and uik are present, then the observed spatial relationship sijk between the
two parts has a relatively narrow distribution centered at the edge parameters.
Otherwise, all spatial relationships follow a broad background distribution.

 

     

   


Fig. 4. A graphical model of the generative process with multipart model indicator h,
part indicators u, part detection confidences o and observed spatial relations s.

In any given image, there may be many possible assignments between mul-
tipart model vertices and observed part detections. We choose assignments in a
greedy fashion in order to maximize P (hi = 1|oi, si). First we choose the best-fit
assignment of two linked vertices, then one by one we choose the vertex assign-
ment that makes the largest improvement in P (hi = 1|oi, si) and is consistent
with existing assignments.

The prior probability P (hi = 1) depends on the complexity of the MPM, with
more complex multipart models having a lower prior probability. Specifically:

P (hi = 1) = α|U | · β|D|. (3)

where α,β < 1 and |U | and |D| are, respectively, the number of vertices and edges
in H. The constants α and β were selected based on detection experiments on
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random synthetic MPMs with a wide range of sizes in order to prevent large,
complex models from being detected when only a tiny fraction of their vertices
are present.

6 Results

Once we have discovered a set of individual part models and learned multipart
models from configurations of the parts, we can use these learned structures
to annotate new images. We begin by detecting all part models in the image
(even those that are relatively weakly detected or have relatively low individual
correspondence confidence). Based on these part observations, we then evaluate
detection confidence for all learned MPMs. Following [1], our annotation confi-
dence for both parts and multipart models is the product of detection confidence,
Confdetect (i,H), and correspondence confidence Confcorr (H,w). Overall anno-
tation confidence is the maximum annotation confidence over word w’s detected
models in image i.

For ease of comparison, we ran our system on three image sets described
in [1]. In all three cases, the changes to part initialization combined with the
addition of MPM models improve the precision and recall of annotation on new
images compared to the system in [1]. The degree of improvement seems to
depend on the scale and degree of articulation of named objects.

In experimentation on the small toys image set, we find that the particular
values of our system parameters do not have a significant effect on our results.
The same parameter values chosen based on the toys set results are carried
over to the two larger and more significant sets without modification. We set
uniqueness factors ψu = 0.9 and ψs = 1.2. Npairs = 50 allows a large number
of failed pair samples before ending initial model search. ν = 0.75 allows Qwi to
build gradually. We set the maximum number of MPMs per word, NMPM = 25,
more than the number of distinct views available for individual objects in these
image collections. Finally, we choose MPM detection parameters α = 0.25 and
β = 0.33 based on experiments on synthetic data.

The first set, toys, is a small collection of 228 images of arrangements of
children’s toys captured and annotated by the authors of [1]. For the sake of
completeness, we report our results on this set while focusing on the larger and
more natural hockey and landmark sets. Without MPMs, our new model
initialization method modestly improves recall on the toys set while slightly
lowering overall precision. Including MPMs corrects precision, resulting in a net
improvement in recall of about 3% at 95% precision.

6.1 Experiments on the HOCKEY Data Set

The hockey set includes 2526 images of National Hockey League (NHL) play-
ers and games, with associated captions, downloaded from a variety of sports
websites. It contains examples of all 30 NHL teams and is divided into 2026
training and 500 test image–caption pairs. About two-thirds of the captions are
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(a) Red Wings and Stars (b) Stars and Canucks (c) Lightning and Panthers

(d) Maple Leafs and Islanders (e) Maple Leafs (f) Stars

Fig. 5. Sample detections of objects in the hockey test set. Part detections are drawn
in yellow, supporting interest points in red and spatial relationships in blue.

full sentence descriptions, whereas the remainder simply name the two teams
involved in the game.

Figure 5 shows sample multipart model detections on test-set images and the
associated team names. Compared to MPMs in the toy and landmark sets,
most MPMs in the hockey set are relatively simple. They typically consist of
2 to 4 parts clustered around the team’s chest logo. Since the chest logos are
already reasonably well covered by individual part models, there is little reward
for developing extensive MPMs. In principle, MPMs could tie together parts
that describe other sections of the uniform (socks, pants, shoulder insignia) like
those shown in Figure 5(e), but this type of MPM (seen in Figure 5(f)) is quite
rare. There may be too much articulation and too few instances of co-occurrence
of these parts in the training set to support such MPMs.

Figure 6(a) indicates that our new approach for initializing part models leads
to about a 12% improvement in recall. Considering the barriers to achieving
high recall on the hockey set (discussed in [1]), this represents a substantial
gain. Our initialization system is better able to identify regions of distinctive
appearance than the approach in [1]. For instance, one of the best-recognized
NHL teams using our method was completely undetected in [1]. On the other
hand, the addition of MPMs does not improve annotation performance at all.
This is probably due to the relatively small size of distinctive regions in the
hockey images combined with a degree of articulation and occlusion that make
larger models unreliable.
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(a) hockey set (b) landmark set

Fig. 6. A comparison of precision–recall curves over the hockey (a) and landmark
test sets, for three systems: MPMs with our new initialization, our new initialization
alone and the system described in [1]. Our initialization system substantially improves
overall recall in both image sets. MPMs have little effect in the hockey set, where
the distinctive portions of a player’s appearance are of limited size and do not tend
to co-occur in repeating patterns. In contrast, MPMs significantly improve precision
for the landmark set, perhaps because distinctive portions of landmarks more often
co-occur with stable spatial relationships.

6.2 Experiments on the LANDMARK Data Set

The landmark data set includes images of 27 famous buildings and locations
with some associated tags downloaded from the Flickr website, and randomly
divided into 2172 training and 1086 test image–caption pairs. Like the NHL
logos, each landmark appears in a variety of perspectives and scales. Compared
to the hockey logos, the landmarks usually cover more of the image and have
more textured regions in a more stable configuration. On the other hand, the
appearance of the landmarks can vary greatly with viewpoint and lighting, and
many of the landmarks feature interior as well as exterior views.

Figure 7 provides some sample detections of multipart models in the land-
mark test set. The MPMs can integrate widely-separated part detections, thereby
improving detection confidence and localization. However, many of the models
still display a high degree of part overlap, especially on objects such as the Arc
de Triomphe with a dense underlying array of distinctive features. In addition,
MPM coverage of the object, while better than individual parts, is not as ex-
tensive as it could be. For instance, the system detects many more parts on the
western face of Notre Dame than are incorporated into the displayed MPM. In
the future, we may wish to modify the MPM training routine to explicitly re-
ward spatial coverage improvements. Finally, MPMs often seem to have one or
two key parts with a large number of long-range edges. This edge structure may
unnecessarily hamper robustness to occlusion.

Regardless of their limitations, Figure 6(b) indicates that MPMs can sig-
nificantly improve annotation precision. The new initialization system improves
overall recall by about 10%, and the addition of MPMs lifts the precision of the
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(a) Notre Dame (b) Christo Redentor (c) Statue of Liberty

(d) Taj Mahal (e) Mount Rushmore (f) Arc de Triomphe

Fig. 7. Sample detections of objects in the landmarks test set.

curve towards the 100% boundary. The structures on which our system achieved
the poorest results were St. Peter’s Basilica, Chichen Itza and the Sydney Opera
House. The first two of these suffer from a multiplicity of viewpoints, with train-
ing and test sets dominated by a variety of interior viewpoints and zoomed
images of different parts of the structure. The Sydney Opera House’s expres-
sionist design has relatively little texture and is therefore harder to recognize
using local appearance features.

7 Conclusions

Our initialization method and multipart models are designed to work together
to improve annotation accuracy and object localization over the approach in
[1]. Our initialization mechanism boosts recall and part coverage by detecting
potential parts that would have been overlooked by the system in [1], providing
for a better distribution of parts over the image set and including more indi-
vidually ambiguous parts. The MPM layer boosts precision and localization by
integrating parts that may be individually ambiguous into models that can cover
an entire view of an object.

Together, our new methods significantly improve annotation accuracy over
previous results on the experimental data sets, with the amount of improvement
strongly dependent on the image set. Our improvements to part initialization and
training have significantly increased recall, though sometimes at the expense of
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precision. For objects with recurring patterns of distinctive parts, the MPM layer
can filter out bad detections, resulting in a substantially improved precision–
recall curve.

Our initialization mechanism and the development of multipart models also
improves object localization. Parts have less spatial overlap than in [1], they
cover portions of the object that are less individually distinctive and they are
better-distributed across object views. MPMs tie together recurring patterns
of parts, allowing us to distinguish between the presence of multiple parts and
multiple objects. Future work could further improve localization by ensuring that
MPMs use all available parts to maximize spatial coverage and are themselves
well-distributed across object views.
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