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We address the problem of automatically learning the recurring associations between the visual struc-
tures in images and the words in their associated captions, yielding a set of named object models that
can be used for subsequent image annotation. In previous work, we used language to drive the perceptual
grouping of local features into configurations that capture small parts (patches) of an object. However,
model scope was poor, leading to poor object localization during detection (annotation), and ambiguity
was high when part detections were weak. We extend and significantly revise our previous framework by
using language to drive the perceptual grouping of parts, each a configuration in the previous framework,
into hierarchical configurations that offer greater spatial extent and flexibility. The resulting hierarchical
multipart models remain scale, translation and rotation invariant, but are more reliable detectors and
provide better localization. Moreover, unlike typical frameworks for learning object models, our approach
requires no bounding boxes around the objects to be learned, can handle heavily cluttered training
scenes, and is robust in the face of noisy captions, i.e., where objects in an image may not be named in
the caption, and objects named in the caption may not appear in the image. We demonstrate improved
precision and recall in annotation over the non-hierarchical technique and also show extended spatial
coverage of detected objects.
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1. Introduction

The automatic learning of visual object models from training
images has become a common component of today’s object recog-
nition systems. However, such automatic model learning has pre-
viously required a high degree of supervision. For example,
bounding boxes or bounding contours are typically used to locate
the object in a cluttered training image in order to strongly
constrain the search for recurring (nonaccidental) features [1,2].
Alternatively, if the objects are composed of parts, the number of
parts is typically specified [3]. In other approaches, the image
may be canonically located, oriented, and scaled in the image,
and cropped to avoid significant clutter or occlusion [4]. The pro-
posed methods for learning object models thus depend on strong
explicit or implicit supervision, in the form of bounding boxes, part
constraints, image cropping, or constrained position, scale, or
orientation. Such methods are unable to scale to the problem of
discovering recurring models from entirely unstructured image
collections that contain multiple occluded objects appearing in
cluttered scenes.
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In contrast, a naturally-occurring form of supervision exists in
image captions, which often identify objects of interest in the
images. Captions may be keywords intended to name objects in
the image, as in the case of an annotated photo collection, or
full-sentence captions, in the case of a document containing
images, which typically contain nouns referring to the depicted
objects. However, neither of such captions are explicit, noise-free
supervisory signals. For example, some caption words may corre-
spond to objects that do not appear in the image, or, conversely,
one or more objects in an image may not be mentioned in the
caption. Even if a named object in the caption does appear in the
image, the object may appear at any position, orientation, and
scale; it may be occluded by other objects; or it may be a small part
of a heavily cluttered scene. Still, if a particular image object
co-occurs sufficiently often with an appropriate caption word, we
can exploit this recurring correspondence to learn both a visual
object model as well as its name.

A number of researchers have exploited this observation in
work on automatic image annotation [5-10]. Given cluttered
images of multiple objects paired with noisy captions, such sys-
tems can learn meaningful correspondences between caption
words and appearance models. The learned visual models and their
associated learned names can then be used to annotate uncap-
tioned scenes by adding a model’s name as a keyword to any image
containing the model. However, automatic annotation systems
have generally been limited in their ability to capture structured
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(b) local features

(a) pixels
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Fig. 1. Object model detection and learning progresses in stages. Gradient patterns in the original image (a) are grouped into local features (b). Configurations of local features
with strong word correspondence are captured as part models (c). Finally, we form multipart models (d) that represent meaningful configurations of part models (shown in
yellow) having nonaccidental spatial relationships among them (shown in green). (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

object models, instead using appearance models based on colors or
textures that are best for structureless materials (e.g., [5]), or
appearance models that capture part structure but without spatial
information (e.g., [6,7,9,10]).

By contrast, in our previous work [8], we introduced the first
framework that used language to drive the iterative grouping of
image features into structured appearance models. Given images
of cluttered scenes, associated with potentially noisy captions,
our previous method can discover spatial configurations of local
features that strongly correspond to particular caption words.
However, the framework suffered from a number of limitations.
First, a learned model tended to capture the structured appear-
ance of only a small patch on an object. While such individual
learned parts were often sufficient to indicate the presence of
particular exemplar objects, they had limited spatial extent, and
the system could not distinguish whether a collection of part
detections in an image arose from multiple objects or were mul-
tiple parts of a single object. Moreover, the limited scope of the
parts also led to poor object localization, since the center of the
object would be located at the center of a single patch, which
typically was not the center of the actual object. Finally, the
small size and scope of the models increased their ambiguity,
leading to poor annotation precision when patches were only
weakly detected.

One effective strategy for creating more useful representations
is to learn a hierarchy of parts in which parts at each level are
grouped together into meaningful configurations to form the next
higher level [11-14]. The hierarchical representations are inspired
by and intended to reflect the compositional appearance of natural
objects and artifacts. For instance, each level of the Leaning Tower
of Pisa (Fig. 1) appears as a ring of arches while the tower as a
whole is composed of a nearly vertical stack of such rings. The
broader object recognition literature contains many methods for
grouping individual features into meaningful spatial configurations
(e.g., [15,16]), and even for arranging features into hierarchies of
parts (e.g., [17-22]). Some of these methods can learn an appear-
ance model from training images with cluttered backgrounds,
sometimes without relying on bounding boxes. However, unlike
most automatic annotation work, they are not designed for images
containing multiple objects and multiple annotation words.

Here we have integrated this strategy of hierarchical part mod-
els into our earlier work on language-driven perceptual grouping
[8], producing a system with more accurate image annotation, as
well as improved object scope and localization. The new system
has two important enhancements over the previous method. Fore-
most, our new system constructs spatially-configured multipart
models, or MPMs, by grouping the local configurations built by

our previous method. The local configurations in our previous
method thus become the input parts that are grouped by our
current method to form higher-level structures. The creation of
MPMs, as with the creation of the parts, is driven by the correspon-
dence with the words in the captions. We have also developed a
new initialization process that improves the overall distribution
of the initially discovered local configurations, optimizing the over-
all correspondence of each with its associated word. This has ben-
efits both for the initial approach using only local appearance
models, as well as for the new MPMs. The resulting MPMs are more
robust to occlusion, articulation and changes in perspective than
our earlier appearance models. The use of MPMs further reduces
false annotations resulting from weak part detections, and pro-
vides a better indication of the location and extent of a detected
object. Fig. 1 illustrates how low-level features are assembled in
stages to form a multipart model for the Leaning Tower of
Pisa.!

The paper is organized as follows. In Section 2, we review our
part representation from [8] and introduce our multipart model
representation as a hierarchy of such parts. Section 3 describes
our improved strategy for discovering recurring part—noun cor-
respondences in a set of captioned training images. Next, in Sec-
tion 4, we present our method for building multipart models out
of these detected parts. Given a set of named multipart models,
we then describe in Section 5 how the models are detected in
new images, allowing an uncaptioned image to be annotated
with the models present in the image. In Section 6, we evaluate
the approach on three different datasets, discussing improve-
ments in performance as well as remaining limitations of the
method. We close in Section 7 with our conclusions and future
work.

2. Images, parts and multipart models (MPMs)

Our system learns multipart models (MPMs) by detecting recur-
ring configurations of lower-level parts that together appear to
have a strong correspondence with a particular caption word.
The parts are themselves configurations of image features. Though
our overall approach is compatible with a variety of image feature
representations, in the system here we use interest points as in [8].
The description below of local features and part models is taken
from that work.

! Note that while the system as implemented here uses exemplar-specific SIFT
features, the framework we have developed could employ categorical features, such
as contours of higher-order shape parts [1].
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H G

Fig. 2. A multipart model H is a graph with parts u; € U and spatial relationships
djx € D, where each part is a graph G with local features »;€V and spatial
relationships e € E.

An image is represented as a set of local interest points,
I={pmim=1...]l|}. These points are detected using [23], which
defines each point’s spatial coordinates Xx,,, scale 1., and orienta-
tion 0. A PCA-SIFT [24] feature vector (f,;) describes the portion
of the image around each point. In addition, a vector of scale-,
translation-, and rotation-invariant spatial relationships ry,, is de-
fined between each pair of points, p,, and p,. This includes the rel-
ative distance between the two points (Ax,,,) normalized by the
scale of the finer point, the relative scale difference (AZ;,) and
the relative bearings in each direction (A¢mn, Adnm). That is,
Tmn = (AXmn, Adinn, Admn, Apnm)-

A part appearance model describes the distinctive appearance
of an object part as a graph G=(V,E). Each vertex ¢; € V is com-
posed of a continuous feature vector f; (describing an interest
point), and each edge e;; € E encodes the expected spatial relation-
ship between two vertices, #; and v;. Model detections have a con-
fidence score, Confyee(0,G)€[0,1], based on the relative
likelihood that the part model G generates the observed set of
points O and the associated spatial relations, as opposed to them
being part of the unstructured background.

We represent multipart models using a similar graph structure,
but one in which the vertices are the parts just described (rather
than image features), and the edges are spatial relations among
those parts. That is, a multipart model is a graph H = (U,D) where
vertices u;, u, € U are part appearance model detections, and each
edge d;, € D encodes the spatial relationships between them. We
use the same spatial relations as in the part model: dj = (AXji, A,
Adjr, Adyj). Thus the vertices of the MPM represent a set of local
appearances that tend to co-occur in a loose spatial configuration
encoded in the graph edges. Fig. 2 shows an example MPM and
one of its parts.

3. Discovering parts

Our MPMs use as their parts the same type of individual appear-
ance models as in our earlier work. However, the means for discov-
ering such parts requires some modification, since models trained
to maximize stand-alone detection performance are generally not
ideal as parts of a larger appearance model. In particular, single-
part appearance models, as we used before, need to act as high-
precision detectors. In contrast, when used as components of an
MPM, the parts need to be more individually ambiguous to allow
sharing of such representations across a variety of MPMs. We then
rely on the structure of the MPMs to reduce false-positive detec-
tions by imposing co-occurrence and spatial constraints on the
parts. Thus when learning parts for use in an MPM, we accept some
loss of precision in exchange for better recall and better spatial
coverage of the object of interest. We implement this shift toward
weaker parts with better coverage by replacing the part initializa-
tion process in [8] with an improved approach that makes earlier
use of language information, as described below. We also limit

the size of learned part models to eight vertices, to avoid the crea-
tion of parts that are overly specific.

3.1. Part model initialization through image pair sampling

In performing part model initialization, we need to efficiently
identify (albeit noisily) recurring structure that is larger than a
single local feature, in order to begin building configurations of
such points. Our previous system summarized the visual informa-
tion within each local area of all the images in a dataset as a
quantized bag-of-features descriptor called a neighborhood pat-
tern. The system then clustered similar neighborhood patterns
in order to focus the search for recurring structure within areas
of high similarity across images. Next, the system checked for
promising co-occurrence patterns between each neighborhood
cluster and each word. Finally, the system extracted initial two-
vertex appearance models from those clusters with the best cor-
respondences for each word.

This clustering approach to initializing part models has serious
limitations. Because the neighborhood patterns are noisy, due to
feature quantization and detector errors, a low similarity thresh-
old is needed to reliably group similar appearances. However, the
low threshold also incorrectly allows dissimilar neighborhoods to
join in a cluster. Especially on large image sets, this can add sub-
stantial noise in determining the cluster—word co-occurrences.
These noise inclusions have a larger effect on correspondence
when the true appearance cluster is small. Therefore recurring
visual structure corresponding to rarer object views is often
overlooked.

Our new initialization method avoids feature quantization and
uses word labels early in the process. Instead of using a neighbor-
hood pattern, we compare visual features directly. Rather than
coarsely clustering visual structure across the entire training set,
we look for instances of shared appearance between pairs of
images with the same word label. That is, for a given word w,
the system randomly samples pairs of images I, and Iz from those
with captions containing w, and identifies neighborhoods in the
two images that share visual structure.

We identify shared neighborhoods in three steps. First, the sys-
tem looks for the best-matching features that are potential anchors
for shared neighborhoods. Following [23], we identify matching
features that are significantly closer to each other than to either
feature’s second-best match, i.e., features f, €I, and f, € Iz that
satisfy Eqs. 1 and 2:

[ — £
[

Uplfm — £i* VEi € {I — £} 1)
Wl — €ul?, VE € {In — fin} )

NN

where 1/, < 1 controls the quality of the best anchor matches. This
is illustrated in Fig. 3a. For each pair of best-matching features,
the system checks for supporting matches in the surrounding
neighborhood, as illustrated in Fig. 3b. These supporting matches
are not required to be the best; that is, we use s> 1. For each
supporting match pair f;eIx and f; € I, the system then verifies
that the point-wise spatial relationships between the best feature
and the supporting feature in the two images (1, and ry;) are con-
sistent. A shared neighborhood has a pair of best matching fea-
tures and at least two spatially consistent pairs of supporting
matches.

Given this evidence of shared visual structure, we construct a
set of two-vertex part models, each with one vertex based on the
best match and the other on a strong supporting match, as illus-
trated in Fig. 3c. These two-vertex models represent shared visual
structure between two images labeled with word w. To check
whether the part models correspond with w, the system detects
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Fig. 3. (a) A pair of images, I4 and Ip, associated with caption word w, have best-
matching features. (b) One of the matches has supporting features that (c) generate
potential initial two-vertex part models G; and G, (we select the two best-matching
potential models). (d) G, passes the correspondence threshold with w.

each model G across the training image set and compares its occur-
rence pattern with that of w. Below, we explain how we sample
image pairs and filter the resulting initial part models to maximize
overall coverage of the object.

3.2. Part coverage objective

Our earlier system developed the n neighborhood clusters hav-
ing the best correspondence with w into full appearance models.
This approach concentrated parts on the most common views of
an object, neglecting less common views and appearances
associated with w. Our new method instead selects initial part
models so that, as a group, they have good coverage of w through-
out the training set, as illustrated in Fig. 3d.

The ideal set of models would have multiple, non-overlapping
detections in every training set image annotated with word w,
and no detections in other training images. We evaluate how well
a given distribution of model detections approaches this ideal
using a correspondence measure F between a binary vector r,,
indicating images with w in the caption, and a continuous vector
Q,,, whose scores assess the detections of parts in the image. We
devise Q,, (detailed shortly) to range from 0 to 1, with multiple
detections of the same part having a lower value than many detec-

(a) r ' I II II I I word occurrence
w
1
n h I I I I I I part set occurrence
w
1
2 “JJ_H_LI_L par i
7

K sample weights

7
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G
%

F(r""') QVV)
(c) Qi. b Ll 1,
add 0.65
1
2, i . I I I
replace 0.69 \/
7

( ) s updated
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1

Fig. 4. (a) The distribution of word w (r,,) and the distribution of detections of the
current part set (n,, converted to Q,,) determine the image sampling distribution
(sw) for (b) new part detection. (c) For each potential part G, we use the
correspondence between r,, and Q,, to determine whether G should be added to
the current part set, replace spatially overlapping parts, or be rejected. (d) If the part
set changes, the image sample weights are updated.

tions of different parts; good coverage is indicated by Q,, having
values close to 1.

The part initialization process, shown in Fig. 4 (and described
in more detail below), greedily grows and modifies a collection
of non-overlapping two-vertex part models to maximize
F(r,,Q,). At each iteration, we draw a pair of images according
to a sampling distribution s,,, and use the image pair to generate
potential part models. The algorithm then calculates, for each
potential model, the effects on the correspondence score F of
adding the model to the current part set, of replacing, in turn,
each of the models (parts) in the current part set, and of reject-
ing the model. The algorithm implements the option which leads
to the greatest improvement in correspondence. The process
stops once no new models have been accepted in the last Npgirs
image-pair samples.

Specifically, the initialization process proceeds as follows. Given
a set of training images I, Qy, = {Quwili=1 ... |I|} is a detection vector
representing the distribution of appearance model detections
throughout the training set. Given n; representing the number of
distinct models detected in image i, Q,; = 1 — V"%, v < 1. The vector
Q. approaches 1 when there are multiple detections per image, but
each successive detection has a smaller effect on Q,,;. Therefore
there is little potential reward (or penalty) for introducing new
part detections in images that already have several different parts.
The detection vector Q,, also influences the sample distribution
from which we draw the image pairs: s,, ~1 —r,, * Q,, (suitably
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normalized). This focuses the search for new models on images
with word w in the caption that do not already contain several
model detections.

As the overall objective function Kr,,Q,,), we use F-measure.
For a positive real value g, F-measure is a weighted average of pre-
cision and recall:

(1+ p%) - precision - recall
(p* - precision) + recall

Fg= 3)

Later, during individual model improvement, in which preci-
sion is more important, we use the correspondence confidence
score, Conf.,(G,w) from [8] as our objective. To calculate corre-
spondence confidence, we find the pattern of occurrence of a
part model G across the training set using the maximum detec-
tion confidence (Confyeee(O,G)) per image and evaluate whether
G could be a high-precision predictor of the word w. Con-
foor(G, W) is the log-likelihood ratio of this ‘reliable indicator’
hypothesis and the hypothesis that G and w are independent.
Given a per-image detection confidence for multipart models,
the same method is used to evaluat correspondence confidence
for MPMs.

Besides optimizing the explicit objective function, the initializa-
tion system also avoids redundant models with many overlapping
detections. Two models are considered to be redundant when their
detections overlap nearly as often as they occur separately. When a
new two-vertex model is considered, if selected it must replace any
models that it makes redundant. Algorithm 1 summarizes the steps
of part initialization.

Algorithm 1. Choose initial part models to maximize overall
coverage

FindlInitialParts(r,,)

1. Start with n; =0, Vi, indicating no part models detected in
the image set; therefore Q,, and s,, are uniform.
2. Draw I, and Ig (without replacement) from s,,.
3. Find shared neighborhoods and construct the set of poten-
tial part models, %po.
4. Filter 9,y based on Fy 25 correspondence with w.
5. For each remaining part model G € %
e Calculate overlap of G with set of current part models,
gcurr-
e If G overlaps with some elements of %, calculate Q,,
for G replacing overlapping models.
e Else calculate Q;, for addition and for replacement of
each element of %, by G
e Accept best change Q;, if F1(rw,Q,,) > F1(rw,Q,,).
e Update Q, according to Q.
6. Update s,, and go to step 2.
7. If Npgirs samples with no change in model set accepted,
return.

4. Building multipart models

After learning distinctive part models, but before assembling
them into multipart models, we perform several stages of pre-
processing. Algorithm 2 summarizes both the preprocessing
steps and the MPM initialization and assembly process, with ref-
erence to the sections of the text that explain the steps of the
algorithm.

Algorithm 2. Assemble MPMs from parts associated with word w.

ConstructMPMs(w)

1. For each part G associated with w, find the set ¢ of obser-
vations of G in training images.

2. Identify and remove redundant parts (Section 4.1).

3. For each G, set the spatial coordinates of each observation

O € O¢ (Section 4.2):

e Choose representative vertex 7. to act as the “center” of
G (the vertex with minimum graph eccentricity).

e For each v; €vg, find average spatial relationship, r,
between co-occurrences of (v;, v¢) € 0.

e For each O¢ € (g, and each observed vertex p; € O cal-
culate expected spatial coordinates (x.) of the central
vertex (7.) based on (T, X;). The spatial coordinates Xg
of the overall part are the average of the expected cen-
ter coordinates X.. The scale of X; is the average of the
expected scales multiplied by the spread of part G.

4. Sort all parts G associated with w by Conf,,(G,w).
5. For each G:

e Skip expansion if most O¢ € (¢ are already incorported
into existing MPMs (Section 4.3).

o Initialize a new MPM H using G as the seed part.

e I[teratively expand H using same method as for part
models (Section 4.4):

- Search for parts and spatial relationships co-occur-
ring with the detections of H.

- Expand MPM H to H* by adding new part or spatial
relationship.

- Detect H* across the training imageset (Section 5).

- If new MPM-word correspondence, Conf,,.(H*,w) >
Confon(Hw), H<= H".

- Reject H if it cannot be expanded beyond a single
part G.

e If at least Nypy multipart models have been created,
return.

4.1. Detecting duplicate parts

Our initialization method avoids excessive overlap of initial part
models. However, during model refinement, two distinct part
models can converge to cover the same portion of an object’s
appearance. In forming multipart models, near-duplicate parts
could be erroneously interpreted as a pair of independent parts
that are strongly co-occurring. We prune such parts as follows.

Detecting near-duplicates by searching for partial isomor-
phisms between part models would be overly complex. Instead
we look for groups of parts that tend to be detected in the same
images at overlapping locations. If a vertex u4; in model G4 maps
to the same image point as vertex vg; in model Gz in more than half
of detections, then we draw an equivalence between z; and ;. If
more than half of the vertices in either part are equivalent, we re-
move the part with the weakest model—word correspondence con-
fidence score Conf.,{Gw).

4.2. Locating part detections

Just as a part is comprised of local interest points in certain spa-
tial configurations, so too a multipart model is comprised of parts
that have certain spatial relationships among them. Note that a lo-
cal interest point detector provides that point’s scale, orientation
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and location, which we can use to encode spatial relationships
within our parts (see Section 3). However, the part detector does
not provide such information for the part itself—we must discover
the spatial relationships between the detected parts. We do this by
setting the spatial coordinates for each part detection based on the
underlying image points in a way that is robust to occlusion and
errors in feature detection, as follows.

For each part we select a vertex to serve as the “center” for the
part—i.e., the vertex that has minimum eccentricity, equal to the
graph radius. (Ties are resolved in favor of vertices that have ap-
peared more often in detections of the part.) Then, for each vertex
in the part, we average the spatial relationship between it and the
central vertex across all of their cooccurrences in the part detec-
tions. Now we can estimate the location of this central vertex even
for part detections in which it is not observed, by using the ob-
served vertices to predict its expected location. Fig. 5 illustrates
this approach. We use the estimated location and orientation of
the central vertex as the location and orientation of the part, and
multiply the estimated scale of the central vertex by a part-specific
factor so that the detected part scale reflects the normal spread of
the part’s vertices.

4.3. Choosing initial multipart models

Our system uses the most promising individual part models as
seeds for constructing multipart models. Parts that have good cor-
respondence with a word are likely to co-occur with other parts in
stable patterns from which large MPMs with good spatial coverage
can be constructed. However, if only the strongest part models are
expanded, the resulting MPMs may be overly clustered around
only the most popular views of the object. This would neglect

G o o L ©
e Py

Fig. 5. The spatial coordinates of a part detection are based on a central vertex a.
We estimate a’s coordinates based on observed vertices, even if a itself is not
observed.
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views with weaker, more ambiguous individual parts. It is pre-
cisely these views where MPMs can be most helpful in improving
precision by adding additional constraints.

Therefore initial model selection proceeds as follows. Part mod-
els are evaluated in the order of their correspondence with a word
w. A model is used as a seed for an MPM if at least half of its ‘good’
detections (in images labeled with w) have not been incorporated
into any of the already-expanded MPMs. Selective expansion con-
tinues until the list of part models is exhausted or Nypy, distinct
multipart models have been constructed for a given word.

4.4. Expansion of multipart models

In order to expand the multipart models, we use an approach
very similar to that used in our earlier work (and described above)
to expand part models—i.e., we use the correspondence strength
Conf,,,(H,w) between a multipart model H and a word w to guide
its expansion into a larger multipart model. The correspondence
score is calculated in the same way for parts and MPMs. It reflects
the amount of evidence, available in a set of training images, that a
word and a part model are generated from a common underlying
source object, as opposed to appearing independently.

As illustrated in Fig. 6, each iteration of the expansion algorithm
begins by detecting all instances of the current multipart model in
the training set (Section 5) and identifying additional parts that
tend to co-occur with a particular spatial relationship relative to
the multipart model. We expand the multipart model by adding
new vertices (part models) and edges (spatial relationships) one
at a time from among the candidate parts. An expansion of the
multipart model H is accepted if it improves Conf,,.{H,w) (starting
a new iteration), and rejected otherwise. The expansion process
continues until potential additions to H have been exhausted.

5. Detecting multipart models

As in part model detection, multipart detection must be robust
to changes in viewpoint, occlusion or lighting that can cause indi-
vidual part detections to be somewhat out of place or missing en-
tirely. We use a simple generative model illustrated in Fig. 7 to
explain the pattern of part detections both in images that contain
a particular multipart model and those that do not.

Each image i has an independent probability P(h;=1) of con-
taining the multipart model H. Given h;, the presence of each model
part is determined independently (P(u;=1|h;)). The foreground
probability, P(u; = 1|h; = 1), is the likelihood of a model part being
present when the model is present; it is set to a relatively high va-
lue (.95). This reflects our desire for an MPM to represent a recur-
ring configuration of parts rather than possibly a disjunction of
stable part configurations. The background probability, P(u;; = 1|h; =
0), is the likelihood of a model part being present when the model
is not; it is equal to the part’s normalized frequency across the
training image set. If a part is present (u;=1), it tends to have a
higher observed part detection confidence, oy, than if it is not

Fig. 7. A graphical model of the generative process with multipart model indicator
h, part indicators u, part detection confidences o and observed spatial relations z.
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present (u;=0). We therefore set p(ou;=1)xo05 and
p(ogu; =0) < (1 — 0y). If the multipart model is present (h;=1)
and contains an edge dj, and the parts u;; and uy are present, then
the observed spatial relationship z;x between the two parts has a
relatively narrow distribution centered at the spatial relationships
encoded in the edge, dj. Otherwise, all spatial relationships follow
a broad background distribution.

The MPM detection confidence, Confye.(i,H) is the probability
of the MPM H being present, given its part detection confidences o;
and observed spatial relations z;:

Confeect (i, H) = P(hi = 1]0;,2;) (4)

In any given image, there may be many possible assignments
between multipart model vertices and observed part detections.
We choose assignments in a greedy fashion in order to maximize
P(h; = 1]0;, ;). First we choose the best-fit assignment of two linked
vertices, then one by one we choose the vertex assignment that
makes the largest improvement in P(h; = 1|0;z;) and is consistent
with existing assignments.

The prior probability P(h; = 1) depends on the complexity of the
MPM, with more complex multipart models having a lower prior
probability. Specifically:

P(hi=1) = oVl - pP! (5)

where o, f<1 and |U| and |D| are, respectively, the number of ver-
tices and edges in H. The constants o and 8 were selected based on
detection experiments on random synthetic MPMs with a wide
range of sizes. This prior is designed to prevent the detection of
large, complete models when only a small subset of vertices is pres-
ent, helping to ensure that MPMs represent a single view of the
named object, rather than a set of loosely connected views.

6. Results on annotation

Once we have discovered a set of individual part models and
learned multipart models from configurations of those parts, we
can use these learned structures to annotate new images. For ease
of comparison, we run our system on the three image sets used in
[8] and described below.? In all three cases, the addition of MPM
models, in conjunction with our new part initialization method, im-
proves both the precision and the recall of annotation on new images
compared to our earlier system. The extent of improvement appears
to depend on the scale and degree of articulation of named objects.
We first describe our annotation method, datasets, and parameter
settings, and in subsequent subsections present detailed results on
annotating each dataset.

6.1. Annotation method, datasets, and system parameters

To annotate an image, we select all words whose annotation
confidence is sufficiently high for that image. We begin by detect-
ing all part models in the image, including those that are relatively
weakly detected or have relatively low individual correspondence
confidence. Based on these part observations, we then evaluate
detection confidence for all learned MPMs, as well as the corre-
spondence confidence between the detected MPMs and words.
As in our earlier work, the annotation confidence of both parts
and multipart models, for a word and an image, is the product of
detection confidence and correspondence confidence; i.e., for
MPMs, this is Confyere(i, H) * Conf,,{ H,w). Overall annotation con-

2 We created each of these benchmarks and have made them available to the
community, as no such benchmarks exist, ie., benchmarks consisting of cluttered
scenes containing multiple, possibly occluding objects, where objects are not
localized by bounding boxes and captions (labels) are noisy (words may or may not
refer to objects in scene and objects in scene may or may not be named in caption).

fidence for word w in image i is the maximum annotation confi-
dence over w’s detected models in i. A word is included in the
image annotation if its overall annotation confidence reaches a
user-defined threshold. For the results in this paper, we use a
threshold of 95%.

We apply this annotation method to three datasets. The Toys
dataset is a small collection of images of groups of children’s toys,
first introduced in [25]. The much larger Hockey dataset was pre-
sented in [26] contains images and full-sentence captions of pro-
fessional hockey teams in action. Finally, in [8], we introduced
the tanpmark dataset, composed of thousands of tourist photos
and associated tags of famous structures throughout the world.
These three datasets are described in more detail and with annota-
tion results in the following three subsections.

Our system has a number of parameters whose values must be
determined. In experimentation on the small Toys image set, we
find that the particular values of our system parameters do not
have a substantial effect on our results. The same parameter values
chosen based on the Toys dataset are carried over to the two larger,
real-world datasets without modification. We set uniqueness fac-
tors ¥, = 0.9 and 1 = 1.2 (see Section 4.1). Npqirs = 50 (in Algorithm
1) allows a large number of failed pair samples before ending
initial model search. v=0.75 allows Q,,; to build gradually (see
Section 4.2). We set the maximum number of MPMs per word,
Nypv = 25 (in Algorithm 2), to be more than the number of distinct
views available for individual objects in these image collections.
Finally, we choose MPM detection parameters o =0.25 and
B =0.33 (Section 6) based on experiments on synthetic data.

We compare two versions of our new system to the earlier sys-
tem proposed in [8], referred to here as parts. parTs used the old ini-
tialization method and only singleton part models, rather than
MPMs. The first version of our new system uses just the new part
initialization along with our earlier singleton part models; this is
referred to in the results figures as rarts+. The second one uses both
the new part initialization and the MPMs in addition to singletons;
this is referred to in the results figures as MPMs+. Testing both of
these versions of the system allows us to evaluate the contribution
of each change (initialization and MPMs) to the performance of the
new system.

Annotation results are evaluated primarily in terms of precision
and recall of image labels detected at various confidence levels. Ta-
bles and summary results are given for a 95% annotation confi-
dence threshold while precision-recall curves display results for
the full range of possible confidence thresholds. For each of the
three datasets (in Sections 7.2-7.4), we provide a figure comparing
the performance of the parts, parTs+, and MPMs+ systems. We also
give the performance of the MPMs+ system in a table for each data-
set reporting the per-object-name precision and recall. In each of
these three tables, the Frequency column shows the number of
captions within the test set that contain at least one instance of
the given word (the Name). All of the per-object-name precision
and recall values we report are based on the occurrence of the
name in the captions of the test set; if the system does not detect
an object for a word that appears in the caption, that instance is
counted as a false negative, even if the named object does not actu-
ally appear in the image.

6.2. Experiments on the TOYS dataset

This section examines the annotation performance of our new
system on the Toys dataset. This dataset contains images of 10
named toys, posed in groups so that no image contains fewer than
3 toys. There are 128 training images and results are evaluated on
100 test images.

Fig. 8 displays some example images from the test set along
with the highest-confidence MPM for each object and the associ-
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(a) Horse, Rocket, Bug

(b) Horse, Bus, Drum, Bongos, Cash, Bug

Fig. 8. Sample detections of MPMs for objects in the Toys test set. In these examples, all named objects were correctly detected.

ated annotations produced by the MPMs+ system. Each MPM part
is displayed as a yellow, five-sided figure indicating canonical po-
sition, orientation and scale. The underlying interest points for
each part are drawn in red and the edges connecting MPM parts
are drawn in blue. The detections illustrate how MPMs are able
to integrate many local patches of distinctive appearance into a
single structure. However, the MPM coverage is uneven, with some
areas of the objects covered with a large number of overlapping
parts while coverage in other areas is relatively sparse.

Although MPMs do integrate local detections, Fig. 9 indicates
that they have only a minor effect on overall precision and recall

Performance on the TOYS Image Set
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Fig. 9. A comparison of precision-recall curves over the Toys test set, for three
systems: the new initialization method using singleton models only, parTs+; the new
initialization method with multipart models, MPMs+; and the system described in
[8], parts. The new initialization method [parTs+] improves recall somewhat over the
earlier system [parTs], while the addition of MPMs [MPMs+] corrects a slight drop in
precision shown by the parts+ system.

Table 1
Per-object-name precision and recall of the MPMs+ system on the Toys test set; mean
precision = 99%, mean recall = 60%.

Name Precision Recall Frequency
Franklin 1.00 0.88 33
Rocket 1.00 0.80 44
Drum 1.00 0.69 32
Bus 1.00 0.51 57
Bongos 1.00 0.50 36
Bug 1.00 0.49 51
Dino 1.00 0.38 42
Ernie 1.00 0.28 39
Cash 0.97 0.78 46
Horse 0.96 0.86 28

in the Tovs dataset. The system with the new initialization only
[parTs+] improves recall by a small amount, with a slight loss of pre-
cision at lower recall levels. Adding the multipart models [MPMs+]
corrects the precision while retaining most of the gains in recall.
We attribute the relatively small impact of the changes in our
new system to the already good performance of our earlier system
[parTs] on this dataset. Most of the remaining missed object detec-
tions are more difficult cases with a high degree of occlusion. Also,
some of the objects (Bug, Bus, and Dino) are small enough that
individual part models can cover most of the area of distinctive
appearance.

Table 1 shows the per-object precision and recall values of the
MPMs+ system. Overall, our system achieves about a 3% improve-
ment in recall on the Toys set over our previous approach in the
PARTS system. As in past evaluations, the two books (Franklin and
Rocket), which have large, detailed planar surfaces, were easiest
to detect. The two most difficult objects (Dino and Ernie) are nota-
ble for their curved surfaces and lack of distinctive fine-scale tex-
ture. That said, most of the recall improvement was due to a
roughly threefold increase in recall for the Dino object.

6.3. Experiments on the HOCKEY dataset

The Hockey set includes 2526 images of National Hockey League
(NHL) players and games, with associated captions, downloaded
from a variety of sports websites. It contains examples of all 30
NHL teams, and is divided into 2026 training and 500 test im-
age-caption pairs. About two-thirds of the captions are full sen-
tence descriptions, whereas the remainder simply name the two
teams involved in the game.

Fig. 10 shows sample multipart model detections on test-set
images and the associated team names. Compared to MPMs in
the oy and LaNDMARK sets, most MPMs in the HockEy set are relatively
simple. They typically consist of 2-4 parts clustered around the
team’s chest logo. Since the chest logos are already reasonably well
covered by individual part models, there is little reward for devel-
oping extensive MPMs. In principle, MPMs could tie together parts
that describe other sections of the uniform (socks, pants, shoulder
insignia) like those shown in Fig. 10e, but this type of MPM (seen in
Fig. 10f) is quite rare. There may be too much articulation and (per-
haps more importantly) too few instances of co-occurrence of
these parts in the training set to support such MPMs.

Fig. 11 indicates that our new approach for initializing part
models leads to an improvement in recall of about 10-12%. Consid-
ering the barriers to achieving high recall on the nockey set (dis-
cussed in [8]), this represents a substantial gain. Our system with
the new initialization [parTs+] is better able to identify regions of
distinctive appearance than the parts system. For instance, one of
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(d) Maple Leafs and
Islanders

(e) Maple Leafs

Fig. 10. Sample detections of objects in the Hockey test set.

Performance on the HOCKEY Image Set
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Fig. 11. A comparison of precision-recall curves over the Hockey test set, for three
systems: the new initialization method using singleton models only, rarTs+; the new
initialization method with multipart models, MPMs+; and the system described in
[8], rarts. The new initialization method alone, in parTs+, substantially improves
overall recall. However, the addition of MPMs in MPMs+ has little effect. This is
probably because the distinctive portions of a player’s appearance are of limited
size and do not tend to co-occur in repeating patterns.

the best-recognized NHL teams using our new method was com-
pletely undetected in our earlier work. On the other hand, the addi-
tion of MPMs in the MPMs+ system does not improve annotation
performance at all. This is probably due to the relatively small size
of distinctive regions in the Hockey images combined with a degree
of articulation and occlusion that make larger models unreliable.

Table 2 shows the annotation performance of the MPMs+ sys-
tem with respect to individual team names. The system has
high-confidence detections for 27 of the 30 teams, 4 more than
with the parts system. At 95% precision, overall recall is 26%, 12%
higher than the previous method. For example, the Washington
Capitals are one of the better-recognized teams whereas the earlier
system had not detected them in the test set at all. This may be due
to the new system’s focus in initialization on images sharing par-
ticular caption words.

Table 2

Per-object-name precision and recall of the MPMs+ system on 27 (of 30) team names
detected with high confidence in the Hockey test set; mean precision = 95%, mean
recall = 26%.

Name Precision Recall Frequency
Tampa Bay Lightning 1.00 0.61 49
Pittsburgh Penguins 1.00 0.45 29
Minnesota Wild 1.00 0.37 35
Washington Capitals 1.00 0.35 17
Los Angeles Kings 1.00 0.31 36
Dallas Stars 1.00 0.29 42
Detroit Red Wings 1.00 0.26 42
San Jose Sharks 1.00 0.26 23
Buffalo Sabres 1.00 0.25 32
Calgary Flames 1.00 0.23 26
Columbus Blue Jackets 1.00 0.18 11
Philadelphia Flyers 1.00 0.17 46
Carolina Hurricane 1.00 0.17 30
New York Rangers 1.00 0.14 42
Montreal Canadiens 1.00 0.13 23
Colorado Avalanche 1.00 0.09 23
Anaheim Ducks 1.00 0.08 27
Vancouver Canucks 1.00 0.05 40
New York Islanders 0.96 0.45 60
Toronto Maple Leafs 0.92 0.33 73
New Jersey Devils 0.89 0.29 59
Florida Panthers 0.88 0.28 25
Ottawa Senators 0.88 0.12 58
Chicago Blackhawks 0.86 0.34 35
Nashville Predators 0.83 0.25 20
Atlanta Thrashers 0.80 0.23 35
Boston Bruins 0.75 0.18 17

6.4. Experiments on the LANDMARK Dataset

The Lanpmark dataset includes images of 27 famous buildings
and locations with some associated tags downloaded from the
Flickr website, and randomly divided into 2172 training and
1086 test image—caption pairs. Like the NHL logos, each landmark
appears in a variety of perspectives and scales. Compared to the
hockey logos, the landmarks usually cover more of the image and
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(b) Christo Redentor

(g) Taj Mahal

(h) Mount Rushmore

(i) Arc de Triomphe

Fig. 12. Sample detections of objects in the LANDMARKs test set.

have more textured regions in a more stable configuration. On the
other hand, the appearance of the landmarks can vary greatly with
viewpoint and lighting and many of the landmarks feature interior
as well as exterior views.

Fig. 12 provides some sample detections of multipart models in
the LaNDMARK test set. In this dataset, MPMs appear in many cases to
capture some of the distinctive overall part structure of the objects.
The MPMs can integrate widely-separated part detections, thereby
significantly improving detection confidence and localization. Ta-
ken together, individually uncertain part detections often form
an unambiguous whole.

The detailed results also indicate potential areas for further
improvement. Some of the models display a high degree of part
overlap, especially on objects such as the Arc de Triomphe with a
dense underlying array of distinctive features. With MPMs, cover-
age of the object is much better than that of individual parts, but
coverage is not always complete. For instance, the system detects
many more parts on the western face of Notre Dame than are
incorporated into the displayed MPM. In the future, we could ad-
dress this by modifying the MPM training routine to explicitly re-
ward spatial coverage improvements. Finally, MPMs often seem to
have one or two key parts with a large number of long-range edges.
Changes to encourage a more local connection structure could fur-
ther improve robustness to occlusion.

As indicated by Fig. 13, MPMs can significantly improve annota-
tion precision. The new initialization system in paArTs+ improves

overall recall by about 10%, and the addition of MPMs in MPMs+
lifts the precision of the curve towards the 100% boundary. In con-
trast to the performance on the other datasets, the MPMs+ system
shows a very marked improvement over the parts+ system with

Performance on the LANDMARK Image Set
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Fig. 13. A comparison of precision-recall curves over the LANDMARKs test set, for
three systems: the new initialization method using singleton models only, parTs+;
the new initialization method with multipart models, MPMs+; and the system
described in [8], parts. The new initialization method [parts+] substantially improves
overall recall. In this case, the addition of MPMs [MPMs+] improves the precision of
the new detections. Distinctive portions of landmarks sometimes have stable
relationships between one another.
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new initialization alone. We suggest that this is because a view of a
landmark is better represented as a configuration of parts, rather
than independent elements. Architectural elements may be shared
across many buildings, but the ensemble is more distinctive.

Table 3 breaks the results down by landmark. The structures on
which the MPMs+ system achieved the poorest results were St. Pe-
ter’s Basilica, Chichen Itza, and the Sydney Opera House. (All three
reach 100% precision but have very low recall.) The first two of
these suffer from a multiplicity of viewpoints, with training and
test sets dominated by a variety of interior viewpoints and zoomed
images of different parts of the structure. The Sydney Opera
House’s expressionist design has relatively little texture and is
therefore harder to recognize using local appearance features.

Fig. 14 illustrates the effect of training set size on the ability of
the system to learn landmark appearance. The complete training
set has 2172 image-caption pairs, or about 80 images per land-
mark, distributed among multiple views. Reducing the training
set size to 1400 reduces overall recall by about 5%. Further reduc-

Table 3
Per-object-name precision and recall of the MPMs+ system on the 30 structure names
in the 1ANDMARK test set; mean precision = 98%, mean recall = 51%.

Name Precision Recall Frequency
Leaning Tower 1.00 0.86 43
US Capitol 1.00 0.71 45
Golden Gate Bridge 1.00 0.67 45
Mount Rushmore 1.00 0.66 35
Notre Dame Cathedral 1.00 0.58 40
Great Sphinx 1.00 0.58 40
St. Paul’s Cathedral 1.00 0.56 48
Statue of Liberty 1.00 0.56 36
Reichstag 1.00 0.49 45
Empire State Building 1.00 0.47 38
Burj Al Arab 1.00 0.44 43
Sagrada Familia 1.00 0.29 35
Colosseum 1.00 0.28 39
CN Tower 1.00 0.24 34
Parthenon 1.00 0.23 35
St. Peter’s Basilica 1.00 0.15 41
Sydney Opera House 1.00 0.12 42
Chichen Itza 1.00 0.05 37
Arc de Triomphe 0.97 0.74 42
White House 0.97 0.67 45
Big Ben 0.97 0.64 44
Tower Bridge 0.97 0.55 47
Stonehenge 0.96 0.60 42
St. Basil’s Cathedral 0.96 0.69 35
Taj Mahal 0.95 0.58 33
Eiffel Tower 0.89 0.48 33
Christo Redentor 0.84 0.61 44
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Fig. 14. A comparison of precision-recall curves over the LanDMARKs test set, for
three different training set sizes: the ‘full’ set of 2172 training image-caption pairs,
a ‘medium’ subset of 1400 pairs and a ‘small’ set of 700 pairs.
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Fig. 15. A comparison of precision-recall curves over the LaNDMARKs test set, for four
different levels of false positive caption noise. The ‘baseline’ results on trained on
captions with relatively few, naturally-occurring false positive labels. The ‘FP10’,
‘FP20’ and ‘FP30’ results are trained on data where respectively 10, 20 and 30% of
the captions have an extra random false-positive label inserted.

Performance vs False Negative Annotations

1 T T
0.95 | 4
09 E
c 085f .
ke
2 osf .
o
& o075} .
Baseline
071 - - —Ento
0.65 H = FN20 4
- = =FN30
06 : . . .
0 0.1 0.2 0.3 0.4 . X A 0.8

Recall

Fig. 16. A comparison of precision-recall curves over the LanDMARKsS test set, for four
different levels of false negative caption noise. The ‘baseline’ results on trained on
captions without added false negative labels. The ‘FN10’, ‘FN20’ and ‘FN30’ results
are trained on data where respectively 10%, 20% and 30% of the captions have the
true image label removed.

ing training size to 700 image-caption pairs (about 26 images per
landmark) reduces recall by an additional 10%. This indicates that
at this level, there are many landmark views that have too little
representation in the training set to be effectively learned. On
the other hand, a larger training set would provide enough exam-
ples of even relatively rare views, increasing overall recall.

Though the images of the LanpmARK dataset exhibit a large vari-
ation in viewpoint and time of day, the associated captions contain
relatively little noise. Figs. 15 and 16 indicate that the performance
of the system decays gracefully when random caption noise is
added. Adding 30% false captions or removing 30% of the true
captions reduces recall by 5-8%. The MPM learning stage is not
dependent on reliable labels.

7. Conclusions

Our initialization method and multipart models are designed to
work together to improve annotation accuracy and object localiza-
tion over our earlier approach in [8]. Our initialization mechanism
boosts recall and part coverage by detecting potential parts that
would have been overlooked by the previous system, thereby iden-
tifying more individually ambiguous parts and providing for a bet-
ter distribution of parts over the image set. The MPMs boost
precision and localization by integrating parts that may be individ-
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ually ambiguous into models that can cover an entire view of an
object.

Together, these two enhancements substantially improve anno-
tation accuracy over previous results on the experimental datasets.
Our improvements to part initialization and training have in-
creased recall considerably, though sometimes at the expense of
precision. For objects with recurring patterns of distinctive parts,
the use of MPMs can filter out bad detections, resulting in a sub-
stantially improved precision-recall curve.

The annotation performance improvement due to MPMs de-
pends strongly on the properties of the dataset. MPMs are most
useful for combining multiple part models that, individually, may
be too weak or ambiguous to be informative, but whose co-occur-
rence in repeatable spatial configurations provides strong evidence
of some object. We speculate that MPMs do not improve results on
the Toys and Hockey sets because either the objects (or a sufficiently
distinctive subregion) can be described effectively by a single part,
or parts do not recur often enough in stable configurations (e.g.,
hockey chest, shoulder and sock patterns). Landmarks, being larger
and often with more ambiguous local structure, benefit more from
MPMs. We expect that the use of MPMs will be even more impor-
tant as individual parts are more ambiguous (such as parts for
describing object classes).

Our new initialization mechanism and the development of mul-
tipart models also improve object localization. The initialization
approach ensures that parts have less spatial overlap than before,
cover portions of the object that are less individually distinctive,
and are better distributed across object views. The MPMs tie to-
gether recurring patterns of these parts, allowing us to distinguish
between the presence of multiple parts and multiple objects. Fu-
ture work could further improve localization by ensuring that
MPMs use more of the available parts to maximize spatial coverage
and are themselves well-distributed across object views.
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