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A computational model of learning semantic roles

from child-directed language

Afra Alishahi
Department of Computational Linguistics and Phonetics, Saarland University,

Saarbrücken, Germany

Suzanne Stevenson
Department of Computer Science, University of Toronto, Toronto, Canada

Semantic roles are a critical aspect of linguistic knowledge because they indicate
the relations of the participants in an event to the main predicate. Experimental
studies on children and adults show that both groups use associations between
general semantic roles such as Agent and Theme, and grammatical positions
such as Subject and Object, even in the absence of familiar verbs. Other studies
suggest that semantic roles evolve over time, and might best be viewed as a
collection of verb-based or general semantic properties. A usage-based account
of language acquisition suggests that general roles and their association with
grammatical positions can be learned from the data children are exposed to,
through a process of generalisation and categorisation.

In this paper, we propose a probabilistic usage-based model of semantic role
learning. Our model can acquire associations between the semantic properties
of the arguments of an event, and the syntactic positions that the arguments
appear in. These probabilistic associations enable the model to learn general
conceptions of roles, based only on exposure to individual verb usages, and
without requiring explicit labelling of the roles in the input. The acquired role
properties are a good intuitive match to the expected properties of various roles,
and are useful in guiding comprehension in the model to the most likely
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interpretation in the face of ambiguity. The learned roles can also be used to
select the correct meaning of a novel verb in an ambiguous situation.

Keywords: Verb semantic roles; Verb argument structure; Language acquisition;

Computational modeling; Bayesian modeling.

1. INTRODUCTION

Semantic roles, such as Agent, Theme, and Recipient in (1) and (2) below, are

a critical aspect of linguistic knowledge because they indicate the relations of

the participants in an event to the main predicate.

(1) MomAgent gave thisTheme to herRecipient.
(2) MomAgent gave herRecipient thisTheme.

Moreover, it is known that people use the associations between roles and

their syntactic positions to help guide on-line interpretation (e.g., Carlson &

Tanenhaus, 1988; Kuperberg, Caplan, Sitnikova, Eddy, & Holcomb, 2006;

McRae, Ferretti, & Amyote, 1997; Trueswell, Tanenhaus, & Garnsey, 1994).

For example, upon hearing the partial utterance Mom gave her . . . , most

hearers would guess that her refers to the Recipient of the giving event,
whereas in Mom gave this . . . they would assume that this is the Theme of the

event. How children acquire this kind of complex relational knowledge,

which links predicate-argument structure to syntactic expression, is still not

well understood. Fundamental questions remain concerning what the nature

of semantic roles is, how they are learned, and how associations are

established between roles and the grammatical positions the role-bearing

arguments appear in.

Early theories suggested that roles are drawn from a pre-defined, universal
inventory of semantic symbols or relations, and that innate ‘linking rules’

that map roles to sentence structure enable children to infer associations

between role properties and syntactic positions (e.g., Pinker, 1989). However,

numerous questions have been raised concerning the plausibility of innate

linking rules for language acquisition (e.g., Bowerman, 1990; Fisher, 2000;

Kako, 2006).

An alternative, usage-based view is that children acquire roles gradually

from the input they receive, by generalising over individually learned verb
usages (e.g., Lieven, Pine, & Baldwin, 1997; Tomasello, 2000). For instance,

Tomasello (2000) claims that, initially, there are no general labels such as

Agent and Theme, but rather verb-specific concepts such as ‘hitter’ and

‘hittee’, or ‘sitter’ and ‘thing sat upon’. Recent experimental evidence

confirms that access to general notions like Agent and Theme is age-

dependent (Shayan & Gershkoff-Stowe, 2007). It remains unexplained,

though, precisely how verb-specific roles metamorphose to general semantic
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roles. Moreover, experiments with children have revealed the use of verb-

specific biases in argument interpretation (Nation, Marshall, & Altmann,

2003), as well as of strong associations between general roles and syntactic

positions (Fisher, 1994, 1996, 2002). However, specific computational models
of such processes have been lacking.

We have proposed a usage-based computational model of early verb

learning that uses Bayesian clustering and prediction to model language

acquisition and use. Our previous experiments demonstrated that the model

learns basic syntactic constructions such as the transitive and intransitive,

and exhibits patterns of errors and recovery in their use similar to those of

children (Alishahi & Stevenson, 2008). A shortcoming of the model was that

roles were explicit labels, such as Agent, which were assumed to be
‘perceptible’ to the child from the scene. In this paper, we have extended

our model to directly address the learning and use of semantic roles.

Our Bayesian model associates each argument position of a predicate with

a probability distribution over a set of semantic properties � a semantic

profile. We show that initially the semantic profiles of an argument position

yield verb-specific conceptualisations of the role associated with that

position. As the model is exposed to more input, these verb-based roles

gradually transform into more abstract representations that reflect the
general properties of arguments across the observed verbs. We further

establish that such representations can be useful in guiding the argument

interpretation of ambiguous input, as well as in aiding word learning in

unclear contexts. Our focus is on developing a computational-level model

(Marr, 1982), characterising the functional capacities of human language

acquisition rather than specific psychological processes that implement those

functions.1

2. THE MULTIDISCIPLINARY STUDY OF SEMANTIC
ROLE LEARNING

2.1 Linguistic theories

The notion of thematic roles was first introduced by semanticists as the

relationship between a predicate and its arguments (Fillmore, 1968; Jackendoff,

1972). However, this notion was extensively used by syntacticians as a

theoretical device to explain argument indexing (i.e., linking grammatical

relations to semantic structure) and grammatical generalisation (Chomsky,
1981; Pinker, 1984). In many theories of syntax such as Government and

1 Bayesian models are shown to be successful in modelling a variety of cognitive processes,

and are becoming increasingly popular in cognitive modelling. For a broad overview of recent

Bayesian models of cognition, see Griffiths, Kemp, and Tenenbaum (2008).
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Binding Theory (Chomsky, 1981) and Lexical�Functional Grammar (Bresnan,

2001; Falk, 2001), thematic roles are believed to be discrete, limited in number,

and universal. The mapping between roles and the sentence structure is defined

through a set of universal ‘linking rules’. These rules are argued to be innate,

and to help children in learning the syntax of their language. A strong version

of these rules suggests that the mapping of a thematic role to a particular

grammatical function is rigid (Baker, 1988; Pinker, 1984). A weaker position

proposes that thematic roles and syntactic positions are matched by means of a

hierarchy, such that the highest-ranked thematic role occupies the highest-

ranked syntactic position (i.e., the Subject), continuing down the two

hierarchies in parallel until one runs out of arguments (Grimshaw, 1990;

Jackendoff, 1990; VanValin & LaPolla, 1997).

Researchers have proposed various lists of thematic roles, mostly different

in size and granularity. But there is little consensus about the ‘correct’ set of

thematic roles. That is mainly due to the fact that, in order for the universal

linking rules to be useful, it should be possible to assign each argument of

every verb in the language to one and only one thematic role. That is, what a

verb semantically entails about each of its arguments must permit us to

assign the argument, clearly and definitely, to some role or other, and what

the meaning of the verb entails about every argument must always be distinct

enough that two arguments clearly do not fall under the same role definition.

However, it seems that there is no cross-linguistically consistent definition of

thematic roles that satisfies these criteria.
Dowty (1991) proposes a different theory of thematic roles: the Proto-

Role Hypothesis. According to his theory, thematic roles draw from a pool of

more basic semantic properties such as sentience, volition, and movement.

No single thematic role necessarily has all of these properties, and some have

more than others. The mapping of an argument to a grammatical position is

decided based on the number of proto-role properties that the argument has

in a particular event; for example, in a causal action event, the argument that

demonstrates more proto-agent properties is assigned to the Subject

position. The proposed proto-roles are based on analysis of linguistic data.

However, Dowty (1991) does not give any explicit account on whether these

proto-roles are innate or learned from experience.

2.2 Psycholinguistic studies

Although several experimental studies have been performed to explore the

role of thematic roles in language processing (see, for example, Kuperberg

et al., 2006; Trueswell et al., 1994), there is little agreement on what the

nature of thematic roles is. McRae et al.’s (1997) experiments on human

subjects’ ranking of role/filler featural similarity for Agent and Patient roles

suggests that thematic roles might best be viewed as verb-specific concepts.
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On the other hand, there is evidence that in the absence of any verb-specific

information, humans have some conception of the general semantic roles in

familiar constructions. Kako (2006) shows that human subjects assign proto-

role properties to grammatical roles such as Subject and Object, even for a

novel verb (or a familiar verb in an unusual construction). Based on such

results, proponents of the usage-based framework for language acquisition

and use have suggested that children do not have access to a pre-defined set

of thematic roles or proto-role properties. Instead, children learn thematic

roles gradually from the input they receive, through a process of categorisa-

tion and generalisation (e.g., Lieven et al., 1997; Tomasello, 2000). However,

a detailed account of the transformation of verb-specific to general semantic

roles, and their association with grammatical positions, is yet to be proposed.

There are few experiments on how children learn general semantic roles.

Shayan and Gershkoff-Stowe (2007) show that children indeed demonstrate

a pattern of gradually learning thematic roles, and that both age and access

to linguistic cues affect the learning process. In their experiments, 3- and 5-

year-old children’s knowledge of Agent and Patient roles is tested in simple

transitive events with two participants. It is shown that older children have a

better understanding of the relational similarity across Agents and Patients

in animated scenes presented side-by-side on a computer screen. It is also

shown that providing linguistic cues (i.e., using a novel verb in a transitive

frame to describe the scenes) makes it easier for both age groups to grasp

relational similarity across semantic roles. Moreover, experiments with

children have revealed the use of verb-specific biases in argument inter-

pretation (Nation et al., 2003), as well as of strong associations between

general roles and syntactic positions (Fisher, 1994, 1996, 2002). However, the

how and when of the emergence and learning of thematic roles, and their

mapping to syntactic positions, is yet to be explored through further

psycholinguistic experiments and computational modelling.

2.3 Computational models

The study of the learnability of general roles can benefit from computational

modelling, by exploring explicit mechanisms for a psychologically plausible

usage-based learning strategy for semantic roles. Computational experiments

must show the feasibility of learning a general conception of semantic roles

from individual verb usages, as well as of establishing an association between

general roles and syntactic positions, without built-in knowledge of linking

rules.

Learning relationships between entities or concepts has been studied

through a number of computational models. Doumas and Hummel (2005)

and Doumas, Hummel, and Sandhofer (2008) present DORA, a connec-

tionist model that can discover relational concepts from unstructured
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examples by comparing instances of relations and extracting their common

features. The model can also learn ‘meta relations’, i.e., the relations between

other relations (e.g., learning the same_colour relationship based on the

relations red(x), red(y), blue(x), and blue(y)). In a similar vein, Kemp,
Tenenbaum, Griffiths, Yamada and Ueda (2006) propose a Bayesian model

of discovering systems of related concepts which, given various sets of

entities, clusters these entities into different ‘kinds’, and chooses the most

likely relations between kinds. These models, however, are presented for and

evaluated in non-linguistic domains, and are not concerned about the specific

problems that language learners face. Specifically, they do not attempt to

learn the association between relationship arguments and syntactic positions,

or to generalise the argument profiles across different relations.
When attempting to learn the thematic relations from instances of language

use, the predicate terms of the language such as verbs and adjectives can be

considered as the relational concepts, and nouns as the arguments. However,

learning the relations in the language domain is especially complicated due to

linguistic ambiguity, and the variation in the argument structure of most verbs.

For example, the verb break can be used with one argument (the window broke),

two arguments (he broke the window), or three arguments (he broke the window

with a hammer). On the other hand, even the same set of verb arguments can be
expressed in more than one way (e.g., she gave me the book and she gave the

book to me). Therefore, the existing models of learning non-linguistic relations

cannot be directly applied to the language domain.

Within models of language acquisition, a number of computational

models learn verb-specific roles that are not generalised. For example, Chang

(2004) presents a model that learns associations between form relations

(typically word order) and meaning relations (typically role-filler bindings)

from input data, and uses them in language comprehension. However, the
acquired associations are not generalised beyond the scope of the individual

verbs. Verb-specific roles are, in nature, very similar to the selectional

preferences of a verb (i.e., the properties that a verb demands from its

arguments), and many computational models have been proposed to learn

them. Most of these models use WordNet (Miller, 1990) as their underlying

ontology: they first initialise WordNet concepts with their frequency of use

as the particular argument of a verb, and then find the appropriate level in

the WordNet hierarchy for capturing the verb’s restrictions on that argument
(e.g., Clark & Weir, 2002; Resnik, 1996). However, none of these models

generalise their acquired verb-based knowledge to a higher level, which

would yield constraints on the arguments of general constructions such as

the transitive or intransitive.

In a contrasting approach, many computational systems model human

learning of the assignment of general pre-defined roles to sentence

constituents. McClelland and Kawamoto (1986), Allen (1997) and Morris,
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Cottrell, and Elman (2000) present connectionist models for assigning roles

to constituents of sentences, by using as input a multi-feature representation

of the semantic properties of arguments and the surface structure of the

sentence. The output of these models is the assignment of a limited number

of fixed thematic roles such as Agent and Instrument to the arguments of a

verb. These models can also guess certain properties (semantic features) of a

missing argument in a sentence, but the roles themselves are not learned.

Allen’s (1997) model treats the representation of thematic roles differently in

that each role is further elaborated by additional proto-role units. However,

the explicit role-labelling of the arguments in the training data is critical to

these models, and it has not been demonstrated that they can learn general

roles based only on the semantic properties of the arguments and the set of

proto-role properties specified in the training data. Bates and MacWhinney

(1989) and Matessa and Anderson (2000) take a different approach to role

assignment, as learning the relative importance of specific cues such as word

order, noun animacy, and case inflection. Both models learn a cue

dominance hierarchy of the language from input data, but the roles

themselves are assumed to be pre-defined.

As in our previous work on argument structure acquisition, all of these

computational models require explicit labelling of the arguments that receive

the same role in order to learn the association of the roles to semantic

properties and/or syntactic positions. In this paper, we show that our

extended model can learn general semantic profiles of arguments, as well as

their association with grammatical positions, without the need for role-

annotated training data, or even a list of known roles to draw from.

3. A COMPUTATIONAL MODEL FOR LEARNING
SEMANTIC ROLES

We present an implemented computational model of the learning of general

semantic roles. We take a statistical usage-based approach, in which the

model learns semantic conceptions of general roles given examples of verb

usages paired with a semantic representation of the event. Following Alishahi

and Stevenson’s (2008) proposal, generalisation in our model is achieved

through an unsupervised Bayesian algorithm that groups similar verb usages:

the general constructions of language, such as transitive and intransitive

constructions in English, can be modelled as a cluster of individual verb

usages that share similar syntactic and semantic features.

We propose a new view of semantic roles as a distributed representation of

semantic properties that each verb argument can take on. In this view,

general semantic roles are not pre-defined universal labels, or sets of

fixed and innately specified proto-role properties. Instead, each role is a
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generalisation of the semantic properties of the arguments appearing in a

particular syntactic position in input data. More specifically, we represent

each general semantic role in the form of a semantic profile, a probability

distribution over the semantic properties of the arguments. Moreover, our

model forms probabilistic associations between syntactic positions of

arguments, their semantic properties, and the semantic primitives of the

verb. These associations are generalised (through the constructions) to form

more abstract notions of role semantics. We show through computational

simulation that the model can use these associations to guide language

comprehension and acquisition in the face of ambiguity.

A preliminary version of this model was presented in Alishahi and

Stevenson (2007b). In this paper we describe an improved version of the

model, present additional experiments, and discuss the results and their

import for modelling the acquisition of general semantic roles. Our

assumptions regarding the input to the model and the properties of a verb

usage are described in detail in Sections 3.1 and 3.2, respectively. The process

of learning general constructions and the formation of semantic profiles for

argument positions are described in Sections 3.3 and 3.4.

3.1 The input to our model

We assume that, upon observing a simple event, the child can infer certain

semantic properties of both the event itself and the arguments that

participate in it. Moreover, if the child hears a sentence while watching the

scene, they can establish a link between the linguistic description of the event

and the relevant semantics inferred through observation. We use such

pairings of utterance and semantic elements as the basic input to our model.
In real situations, it is not always easy to find the appropriate semantics

for the utterance from the full representation of the perceived aspects of the

scene, a well-known problem referred to as referential uncertainty (e.g.,

Pinker, 1989; Quine, 1960). Learning the correct meaning for both verbs and

nouns has been suggested to be based on cross-situational observation

(Fisher, Hall, Rakowitz, & Gleitman, 1994; Pinker, 1989); that is, frequent

usage of a word in the presence of a concept or an event guides the child to

establish a link between that word and its corresponding meaning. A number

of computational models have dealt with the problem of picking the right

meaning for an utterance, as well as learning the meaning of individual words

(e.g., Fazly, Alishahi, & Stevenson, 2008; Yu, Ballard, & Aslin, 2005; Siskind,

1996). To simplify the learning problem that we focus on in this paper, we

assume here that the (non-trivial) task of picking out the appropriate

semantics for the utterance from the full representation of the perceived

aspects of the scene has been performed, and that for each word, the child

knows the corresponding meaning.
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The cross-situational account of word learning is confirmed by child

experimental data: Forbes and Farrar (1995) show that training with variable

events makes children and adults more likely to generalise verbs to label

modified test events. However, many verbs describe a particular perspective

on events that cannot be inferred merely by cross-situational analysis. For

example, ‘buying’ and ‘selling’ almost always happen at the same time. The

knowledge of thematic roles and their association with grammatical

positions has been suggested to guide children in acquiring the meaning of

verbs in such cases. We will return to this issue in Section 6.2.2, and show a

similar trend in the behaviour of our model. However, as input data to our

model, we use a small set of the most frequent verbs in a corpus of child-

directed conversations, assuming that their meaning can be inferred through

successive usage of each verb in the presence of the corresponding event in an

unambiguous context. For example, the verb eat is mostly used in a context

where no counterpart feeding event is happening, and therefore the issue of

finding the right perspective does not cause a problem for the word learner.

We then show that the general conceptions that the model acquires based on

this limited set of verbs can be successfully used to guide the acquisition of

other verbs in ambiguous contexts.

3.2 Verb usages and argument properties

We mentioned in the previous section that the input to our model consists of

pairings of a natural language utterance and the semantic elements of an

event that the utterance describes. It has been shown that children are

sensitive to certain properties of the event, such as causation and movement,

from an early age (Cohen & Oakes, 1993; Gentner, 1978; Fisher, 1996;

Naigles & Kako, 1993). Also, children show sensitivity to the semantic

properties of the arguments, such as animacy and being human (Braine,

Brody, Fisch, Weisberger, & Blum, 1990; Fisher, 1996; Gropen, Pinker,

Hollander, & Goldberg, 1991). Some of these properties are intrinsic to the

actual participants in an event; for example, in an eating scene, the observer

may notice the eater’s gender and age, as well as more general properties such

as being human. Others are exhibited by the participants in virtue of the

roles they take on in the event, such as ‘moving in a rhythmic manner’ in a

dancing scene. We capture each of these types of properties in the semantic

representation of an event. We make no claims regarding the psychological

reality of the specific properties associated with the participants in an event.

Rather, our goal is to show that given sets of such properties, our model

learns roles based on the shared properties of the arguments that are mapped

to certain grammatical positions in similar usages, and the shared properties

of the events that are expressed in similar syntactic patterns.
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Figure 1 shows a sample verb usage, consisting of a natural language

utterance paired with the semantic information that is inferred through

observing the corresponding event given to our model as a sequence of

words in root form.

The meaning of the utterance is represented as three sets of semantic

features:

. Semantic primitives of the verb: the basic characteristics of the predicate

are described as semantic primitives (e.g., {cause, become, rotating}).

Some of the primitives are general and shared by many verbs (e.g.,

‘movement’ or ‘act’), whereas others are verb-specific (e.g., ‘consume’

or ‘play’).

. Lexical properties of each argument: the inherent properties of the

argument (e.g., {woman, adult, person, . . . }). These lexical semantic

properties are independent of the event that the argument participates in.

. Event-based properties of each argument: the properties that the

argument takes on in virtue of how it participates in the event. Some

of these properties are similar to the proto-role properties proposed by

Dowty (1991) (e.g., ‘cause’ or ‘affected’) but others are verb-specific

(e.g., ‘eating’ or ‘falling’).

We explain later how we choose the properties for events and arguments

in our experiments.

3.3 General constructions as groups of verb usages

A construction in our model is a group of verb usages that are ‘similar

enough’, according to the probabilities over their features, to be grouped

together. The notion of ‘similar enough’ is described in detail in the next

Sara eat lunch

Semantic primitives: {act, consume}

Lexical properties: {woman, adult female, female, person, individual, somebody, human, ...}

Event-based properties: {volitional, affecting, animate, independently exist, consuming, ...}

Lexical properties: {meal, repast, nutriment, nourishment, sustenance, ...}

Event-based properties: {non-independently exist, affected, change, ...}

Figure 1. A sample verb usage: an utterance paired with the inferred semantic information.

A MODEL OF LEARNING SEMANTIC ROLES 59

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
u
r
w
i
s
s
e
n
s
c
h
a
f
t
l
i
c
h
 
T
e
c
h
n
i
s
c
h
e
]
 
A
t
:
 
1
0
:
1
4
 
1
0
 
D
e
c
e
m
b
e
r
 
2
0
0
9



section of the paper; here we focus on the general properties of constructions,

and their representation in the lexicon.

Verb usages are described by both syntactic and semantic features. The

values for some features, such as the syntactic pattern and the number of

arguments, come from a limited set, due to the regular nature of natural

languages. Therefore, there is often a dominant syntactic pattern and

argument number among usages in each construction. However, due to the

probabilistic nature of our model, a few ‘outliers’ might be found in each

construction as well. Features with more varied values (such as semantic

properties of the arguments and semantic primitives of the verbs) are less

uniform, but typically overlap in value in a construction. Therefore, the

primary property of constructions in our model is that they determine a

probabilistic association between syntactic and semantic features. For

example, usages such as He made dinner and She ate soup may be grouped

into the same (transitive) construction. While the usages share the verb

semantic primitive act, they differ in others (create for the former, and consume

for the latter). If this observation holds across a number of usages that exhibit

this form, then we would find a higher probability for the primitive act given

this construction than for the other semantic primitives. In this way,

constructions probabilistically generalise the properties of a set of usages.

Figure 2 shows a portion of the acquired lexicon, showing the lexical entries of

verbs containing frames, and their links to constructions. A formal account of

the acquisition of constructions in our model is presented in Section 4.1.

3.4 Semantic profiles as probability distributions over
argument properties

Psycholinguistic experiments have shown that children are sensitive at an

early age to the association between grammatical positions, such as Subject

Figure 2. A portion of the lexicon showing three constructions. The usages of each verb are

shown as white squares, and linked to the appropriate constructions. For example, eat has been

seen twice in a transitive construction and twice in an intransitive construction.
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and Object, and the properties of the roles that are typically associated with

those positions (e.g., Fisher, 1996). Our model learns similar associations

between the semantic properties of arguments, their syntactic positions, and

the semantic primitives of verbs. Such associations lead to the formation of

a conception of the general semantic role for each argument position in a

syntactic pattern, similar to the conceptions that humans have of these roles.

More specifically, by knowing the general semantic properties of an event

(such as causal action or directed motion), the number of the arguments that

participate in the event, and the syntactic pattern that the event is described

in (such as the transitive pattern), we want to induce probabilities for both

lexical and event-based properties that each of the arguments in the event

can take. For example, by knowing that ‘blick’ refers to some novel causal

action where one argument turns another argument around, and by hearing

the utterance duppy is blicking the luff, we want to guess both the lexical

properties of duppy and luff (i.e., what they are) and their event-based

properties (i.e., what properties they exhibit in that particular event). To

formalise our guess, we define a semantic profile as two probability

distributions, one over all the lexical properties that a word in a language

can have, and one over all the event-based properties that an argument can

take on in a scene. We give a formal definition of a semantic profile in

Section 4.2.

4. DETAILS OF THE ROLE LEARNING MODEL

Our model incrementally learns from the processing of each verb usage that

is input to it. The system represents each verb usage in the form of an

argument structure frame (or simply frame), which is a set of form and

meaning features. Figure 3 shows the extracted frame from the verb usage

shown in Figure 1. Each frame records the head verb, the number of

arguments, the semantic primitives of the verb, and the lexical and event-

based properties of each of the arguments. The frame also records the

syntactic pattern of the utterance; currently, this syntactic pattern encodes

Head verb eat
Number of arguments 2
Syntactic pattern arg1 verb arg2
Semantic primitives of verb {act, consume}
Lexical properties of argument 1 {woman, adult female, female, person, individual, ...}
Event-based properties of argument 1 {volitional, affecting, animate, independently exist, ...}
Lexical properties of argument 2 {meal, repast, nutriment, nourishment, sustenance, ...}
Event-based properties of argument 2 {non-independently exist, affected, change, ...}

Figure 3. The argument structure frame extracted from the verb usage Sara ate lunch in Figure 1.
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the relative positions of the verb, each of its arguments, and the function

words (e.g., prepositions) used in the utterance. The extracted frame is stored

in the lexical entry of the head verb.

Each frame is presented to an unsupervised Bayesian clustering process,
which groups it together with an existing group of frames that probabil-

istically has the most similar properties to the new frame. Our Bayesian

clustering approach is detailed in Section 4.1. The acquired constructions are

used to predict a semantic profile for each role; this prediction process is

described in Section 4.2.

4.1 Learning as Bayesian clustering

Each extracted frame is input to an incremental Bayesian clustering process

that groups the new frame together with an existing group of frames � a

construction � that probabilistically has the most similar properties to it. If

none of the existing constructions has sufficiently high probability for the
new frame, then a new construction is created, containing only that frame.

We use an extended version of Alishahi and Stevenson’s (2008) probabilistic

model, which is itself an adaptation of a Bayesian model of human

categorisation proposed by Anderson (1991).2 It is important to note that

the categories (i.e., constructions) are not predefined, but rather are created

according to the patterns of similarity over observed frames.

Grouping a frame F with other frames participating in construction k is

formulated as finding the k with the maximum probability given F:

BestConstruction(F)�argmax
k

P(k½F) (1)

where k ranges over the indices of all constructions, with index 0 representing

recognition of a new construction. Using Bayes rule, and dropping P(F)

which is constant for all k:

P(k½F)�
P(k)P(F ½k)

P(F)
8 P(k)P(F ½k) (2)

where P(k) is the prior probability of construction k, and P(Fjk) is the

posterior probability of frame F for a construction k.

The prior probability, P(k), indicates the degree of entrenchment of
construction k, and is given by the relative frequency of its frames over all

observed frames.

P(k)�
nk

n � 1
(3)

2 Anderson’s (1991) model is shown to be directly equivalent to the Dirichlet process mixture

model (Antoniak, 1974; Neal, 2000) if the parameters of the two models are set appropriately.
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where n is the total number of observed frames, and nk is the number of

frames participating in construction k. The normalising factor is set to n�1

rather than n, to accommodate the probability mass of a potential new

construction (k�0). The prior probability of the new construction is
calculated as

P(0)�
1

n � 1
(4)

Thus, the prior probability of an existing construction is proportional to its

size (Equation 3), following the intuition that it is more probable for a newly

observed frame to come from a more entrenched construction. Moreover, the

prior probability of a new construction is inversely proportional to the
number of observed frames overall (Equation 4), capturing the intuition that

the more exposure the child has to the language, the less likely it is that a

brand new construction will be observed. This approach is referred to as the

Chinese Restaurant process (Antoniak, 1974; Pitman, 2006), and has been

used in other Bayesian models of cognitive processes such as categorisation

(Anderson, 1991), and learning relational concepts in non-linguistic domains

(Kemp et al., 2006).

The conditional probability of a frame F given that it belongs to
construction k is expressed in terms of the individual likelihood probabilities

of its features, which we assume are independent, thus yielding a simple

product of feature probabilities:

P(F ½k)�
Y

i �FrameFeatures

Pi(j½k) (5)

where j is the value of the ith feature of F, and Pi(jjk) is the probability of

displaying value j on feature i within construction k. This probability is
estimated using a smoothed version of the following maximum likelihood

formulation, reflecting the emphasis on usage statistics in child language

acquisition:

Pi(j½k)�
countk

i (j)

nk

(6)

where nk is the number of frames participating in construction k, and countk
i (j)

is the number of those with value j for feature i. For features with a single value
such as the number of arguments and the syntactic pattern, countk

i (j) is

calculated by simply counting those members of construction k whose value

for feature i exactly matches j. However, we do not treat certain features such

as the lexical or event-based properties of the arguments as individual binary

features: because we calculate the likelihood of a frame as a product of the

likelihood probabilities of its features, and because the number of the semantic

properties of the arguments is potentially large, treating them as individual
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features will result in them dominating the single-valued features such as

the syntactic pattern or the number of the arguments. Instead, we represent

these features as a set, and use a simple set similarity score to compare them

with each other. We describe the details of the estimation of the likelihood
probabilities for each of the features in Appendix A.

4.2 Representation of semantic profiles

In Section 3.4, we defined a semantic profile as two probability distributions,

one over all the lexical properties that a word in a language can have, and one

over all the event-based properties that an argument can exhibit in a scene.

These probability distributions are useful in many language tasks, such as

sentence processing and word learning (we discuss using the profiles in these

tasks in Sections 6.2.1 and 6.2.2). The semantic profile for a grammatical

position is predicted based on some combination of the syntactic pattern of an

utterance and its number of arguments, and the semantic properties of the
predicate. For example, if the hearer observes an unknown noun in the Subject

position of a transitive sentence, she would want to guess the lexical and event-

based properties that the argument can take on. In addition, knowing the

properties of the event results in more accurate profiles. For example, the

Object of a directed motion verb might have different properties than that of a

causal action verb, even if both usages have the same syntactic pattern.

Unlike learning a frame, where we compared the semantic properties as sets

of values, in forming a semantic profile we want to know how likely it is for an
individual property to be assigned to a grammatical position in a construction.

Therefore, predicting a semantic profile requires looking at the probability of

all the individual properties, jp, for an unobserved feature i, based on the

observed features in a frame F and the learned constructions. In our previous

work (Alishahi & Stevenson, 2008), we showed how Bayesian prediction can

be used to simulate various types of language use. Here we use the same

mechanism to estimate the property probabilities in a semantic profile:

Pi(jp½F) �
X

k

Pi(jp½k)P(k½F)

8
X

k

Pi(jp½k)P(k)P(F ½k)
(7)

Here, k ranges over all constructions, and the probabilities P(k) and P(Fjk) are

determined as in our learning module.3 To estimate the likelihood Pi(jpjk), we
use a modified version of Equation (6) in which countk

i (jp) is the number of

frames in construction k that include property jp in the ith feature of the frame,

which is a set of properties:

3 Because our goal is to look at the general and not verb-specific profiles, we do not include

the head verb of a usage as a feature in F.
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pi(jp½k)�
countk

i (jp)

nk

(8)

A vector of the resulting probabilities Pi(jpjF) over all jp forms the semantic
profile of that argument. Note that the Bayesian formulation used above is not

the absolute probability of an argument having a property jp. Instead, P(jpjF)

reflects the relative probability of the property jp for a particular argument in

the frame F, compared with all the possible properties that an argument

can have. That is, ajp
P(jp½F) � 1: The absolute probabilities can be easily

calculated by multiplying the relative probabilities by the total number of

distinct values that a feature i can take. Using relative probabilities instead

of the absolute ones allows us to represent a semantic profile as a probability
distribution, and integrate it within our Bayesian model. That way, we can

easily compare two different candidate profiles for a particular argument

position, a method we use in Section 6.2 in order to resolve ambiguity in

sentence comprehension and language acquisition.

A semantic profile contains all the properties ever observed in an argument

position. As learning proceeds, a profile may include a large number of

properties with very low probability. In order to display the profiles we obtain

in our results section below, we create truncated profiles which list the
properties with the highest probabilities, in decreasing order of probability

value. To avoid an arbitrary threshold, we cut the ordered list of properties at

the widest gap between two consecutive probabilities across the entire list.

5. EXPERIMENTAL SET-UP

Through a number of computational experiments, we demonstrate that our

model can learn intuitive profiles for general semantic roles, and can use the

learned profiles in language processing tasks. The creation of the input

corpora for our simulations is described in Section 5.1. Section 5.2 describes

how noise is added to the input corpora.

5.1 The input corpora

As described in Section 3.1, we want our model to learn its general knowledge

of semantic roles from the usages of a small set of the most frequent verbs in
child-directed data. For this purpose, we used a portion of the CHILDES

database (MacWhinney, 1995). We extracted the 20 most frequent verbs in

mother’s speech to each of Adam, Eve, and Sarah, and selected 13 verbs from

those in common across these three lists. We constructed an input-generation

lexicon based on these 13 verbs, including their total frequency among the

three children. We also assigned each verb a set of possible argument structure

frames and associated frequencies, which were manually compiled by
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examination of 100 randomly sampled uses of a verb from all conversations of

the same three children. Finally, from the sample verb usages, we extracted a

list of head nouns and prepositions that appeared in each argument position

of each frame, and added these to the lexicon.

For each noun in the lexicon, we extracted a set of lexical properties from

WordNet (Miller, 1990), as follows. We hand-picked the intended sense of the

word, extracted all the hypernyms (ancestors) for that sense, and added all

the words in the hypernym synsets to the list of the semantic properties.

Figure 4 shows an example of the hypernyms for cake, and its resulting set of

semantic properties.4 These properties are later used to induce a semantic

profile for each argument position in a construction. Note that the behaviour

of our model does not depend on the actual properties extracted from

WordNet, and these properties can later be replaced by another resource

deemed more appropriate in the context of child language acquisition.

However, the WordNet-extracted properties have the desirable property that

some of them are more general than others, and are shared by a number of

nouns in our lexicon.

For each verb frame, we manually compiled a set of semantic primitives

for the event as well as a set of event-based properties for each of the

arguments. We chose these properties from what we assumed to be known to

the child at the stage of learning being modelled, drawing on linguistic

proposals concerning fundamental event properties (e.g., Jackendoff, 1990;

Dowty, 1991; Rappaport Hovav & Levin, 1998). The verb primitives and

event-based argument properties describe the coarse-level semantics of an

event, as well as the finer-grained (verb-based) meaning distinctions among

our experimental verbs (e.g., cause for a wide range of events, as opposed to

playfully for a ‘playing’ event). Examples of these properties can be seen in

the frames and profiles reported in the results section.

4 We do not remove alternate spellings of a term in WordNet; this will be seen in the profiles

in the results section.

cake

→ bakedgoods

→ food

→ solid

→ substance,matter

→ entity

cake: {bakedgoods,food,solid,substance,matter,entity}

Figure 4. Semantic properties for cake from WordNet.
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It is important to note that the input-generation lexicon is not used by the

model in language learning and use, but only in producing the experimental

corpora. For each simulation in our set of experiments, an input corpus of

verb usages is automatically randomly generated using the frequencies

in the input-generation lexicon to determine the probability of selecting a

particular verb and argument structure. Arguments of verbs are also

probabilistically generated based on the word usage information for the

selected frame of the verb. The resulting corpora are further processed to

simulate noise and incomplete data, as described next.

5.2 Adding noise

We assume that, at the point of learning modelled by our system, the child is

able to recognise the syntactic pattern of the utterance and the semantic

properties of the event. However, in reality, the input to children is often

noisy or incomplete. For example, the child might mishear the utterance, or

might not be able to extract the correct syntactic pattern from it. Similarly

for the semantic information, the child might not be able to recognise

the semantic properties that the participants have in a particular event, or the

semantic properties of the event itself. More problematic for the process

of learning, children might sometimes misinterpret the perceived scene or

utterance by filling the gaps based on their own (imperfect) linguistic

knowledge, which also leads to noisy data. We simulate two types of noise in

our input corpora: incomplete data (where some pieces of information are

missing) and misinterpreted data (where the child replaces the missing data

with her own inference). Other types of noise, such as ungrammatical or

incomplete sentences, are not currently modelled in the input.

During the input-generation process, two generated input items out of

every five have one of their features randomly removed. One of these

modified input items is used to simulate incomplete data. This modified

input pair is left as is � i.e., with one feature missing � in the generated

corpus. The other modified input pair is used to simulate noise. During a

simulation, the missing feature of this input pair is replaced with the most

probable value predicted for it at that point in learning; the completed input

pair is then used in the learning process. This corresponds to a child using

her own inferred knowledge to fill in information missing from an observed

scene/utterance pair. The resulting input pair is noisy, especially in the initial

stages of learning.5

5 In predicting a syntactic pattern for an incomplete frame, it is possible that the pattern will

have place-holders for more arguments than are present in the scene representation. In cases

such as these, when creating the corresponding utterance, the excess argument slots in the

predicted pattern are simply left blank.
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6. EXPERIMENTAL RESULTS

In this section, we report experimental results from a number of simulations of

our model. The experiments are divided into two groups: In Section 6.1, we

examine the process of learning semantic profiles for general roles from usage

data. In Section 6.1.1, we look at some of the semantic profiles that our model

acquires for argument positions in various constructions, which are tradition-

ally associated with general thematic roles such as Agent, Theme, and

Destination. We show that the generated profiles match the intuitive

expectations for these roles. In Section 6.1.2 we show that our model can

learn multiple semantic roles for a single grammatical position such as Subject

or Object, depending on the semantic primitives of the verb that participates in

the syntactic pattern. In Section 6.1.3, we demonstrate the process of role

generalisation, where the model starts from learning verb-specific profiles for a

particular argument position in a construction, and later moves to a more

general profile for the same position as a result of exposure to more input.

The second group of experiments, reported in Section 6.2, focuses on how

the acquired profiles can be used in various language tasks. In Section 6.2.1,

we examine how the semantic profiles can be used in sentence comprehen-

sion and ambiguity resolution. In Section 6.2.2, we look at how these profiles

are used in verb learning, especially in cases where the context is ambiguous

and the meaning of a novel verb cannot be inferred only from observation.
In the following sections, we represent each semantic profile as an ordered

list of properties and their probability values in that profile, as calculated by

Equation (8). In most experiments, we test our model on 200 input items,

since receiving additional input after 200 items ceases to make any

substantial difference in the output. We discuss this issue in more detail in

Section 6.1.3.

6.1 The acquisition of profiles from input

6.1.1 Formation of semantic profiles for roles

Psycholinguistic experiments have shown that humans have a conception

of general semantic roles. Specifically, Kako (2006) shows that human

subjects who hear a transitive sentence assign more proto-agent properties

(such as cause and motion) to the Subject of the sentence, and more

protopatient properties (such as changed and created) to the Object of the

sentence. Even in the absence of a known verb and known arguments

(e.g., The grack mecked the zarg), the results are the same. Our model shows

the same behaviour; that is, it associates a relatively high probability to the

relevant properties in the semantic profile it creates for each grammatical

position in a familiar construction.
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We train our model on 200 randomly generated input items, and then

present it with a test input item containing a novel verb gorp appearing in a

familiar construction, with unknown nouns appearing as its arguments. The

test input can be represented as a partial frame, where the properties of the

verb and arguments are left out. As an example, a test pair for a novel verb

appearing in a transitive construction looks as follows:

We then produce a semantic profile for each of the unknown arguments to

reveal what the model has learned about the likely semantic properties for

that position in the corresponding construction. We average the obtained

probabilities over five simulations on different random input corpora. In

each of the reported profiles below, a semantic property with a high relative

probability (compared with other properties in the list) is more likely to be

associated with the argument.

Our model learns semantic profiles for argument positions in various

constructions. Figure 5 shows the top portion of the predicted semantic

profiles for the arguments in the Subject and Object positions of a transitive

construction (corresponding to x and y in the gorp test input above). The

emerging semantic profile for each argument position demonstrates the

intuitive properties that the argument receiving that role should possess. For

example, the lexical portion of the semantic profile for an argument that

appears in the Subject position in a transitive construction (the left box of

Figure 5) demonstrates the properties of an animate entity, most likely a

human. In contrast, the lexical portion of the semantic profile for an

argument in the Object position (the right box of Figure 5) most likely

corresponds to a physical entity. Moreover, the event-based portion of the

profile for the Subject position shows a tendency towards more Agent-like

properties such as ‘independently existing’, ‘sentience’, ‘volition’, etc., as

opposed to more Theme-like properties associated with the Object position,

such as ‘undergoing change’. In both profiles, the general properties receive a

higher probability than the verb-specific properties such as ‘making’ and

‘eating’ for Agent and ‘falling’ and ‘being made’ for Theme.

Similarly, Figure 6 demonstrates the predicted semantic profiles for the

argument positions in a directed motion construction, traditionally con-

sidered as Agent and Destination (as in JoeAgent went to schoolDestination).

Again, the profiles show intuitively plausible properties for each role.

Interestingly, the lexical portion of the Agent profile shown in Figure 6 is
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very similar to the lexical portion of the Agent profile shown in Figure 5,

since the agents of both constructions are usually either humans or animals.

However, the event-based portion of the two Agent profiles are different

after the first few properties. For the Object position, the predicted profiles

PARTIAL FRAME: TRANSITIVE

Number of arguments 2
Syntactic pattern arg1 verb arg2

ARGUMENT 1 (AGENT)

Probability Event-based property
0.048 independently exist
0.048 sentient
0.035 animate
0.035 change
0.035 affected
0.035 change emotional
0.035 becoming
0.013 volitional
0.013 possessing
0.013 getting

Probability Lexical property
0.054 entity
0.040 object
0.040 physical object
0.026 being
0.026 organism
0.026 living thing
0.026 animate thing
0.015 person
0.015 individual
0.015 someone
0.015 somebody
0.015 mortal
0.015 human
0.015 soul
0.015 causal agent
0.015 cause
0.015 causal agency
0.014 unit
0.014 artifact
...

...

ARGUMENT 2 (THEME)

Probability Event-based property
0.086 state
0.031 independently exist
0.031 change
0.031 change possession

Probability Lexical property
0.056 entity
0.037 object
0.037 physical object
0.023 unit
0.023 artifact
0.023 artefact
0.023 whole
0.023 whole thing
0.018 abstraction
0.014 being
0.014 organism
0.014 living thing
0.014 animate thing
0.014 person
0.014 individual
0.014 someone
0.014 somebody
0.014 mortal
0.014 human
...

...

Figure 5. Semantic profiles of argument positions Agent and Theme in a transitive

construction.
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PARTIAL FRAME: DIRECTED MOTION

Number of arguments 2
Syntactic pattern arg1 verb to arg2

ARGUMENT 1 (AGENT)

Probability Event-based property
0.127 independently exist
0.124 sentient
0.124 volitional
0.122 animate
0.121 change location
0.119 motion
0.119 direction
0.093 going
0.026 coming

Probability Lexical property
0.056 entity
0.056 object
0.056 physical object
0.055 being
0.055 organism
0.055 living thing
0.055 animate thing
0.055 person
0.055 individual
0.055 someone
0.055 somebody
0.055 mortal
0.055 human
0.055 soul
0.055 causal agent
0.055 cause
0.055 causal agency
0.014 female
0.014 female person

ARGUMENT 2 (DESTINATION)

Probability Event-based property
0.340 location
0.324 destination
0.321 path
0.015 source

Probability Lexical property
0.200 location
0.127 entity
0.087 relation
0.087 spacial relationship
0.087 preposition
0.038 part
0.037 region
0.021 abstraction
0.015 abode
0.015 residence
0.015 address
0.015 geographic point
0.015 geographical point
0.015 point
0.012 attribute
0.012 opening
0.012 gap
0.012 space
0.012 amorphous shape
0.012 shape
...

...

Figure 6. Semantic profiles of argument positions Agent and Destination in a directed motion

construction.
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for these two events are completely different: whereas the Theme profile in

Figure 5 demonstrates the properties of a physical object, the profile in

Figure 6 demonstrates the properties of a location.

6.1.2 Multiple possible roles for a position

One grammatical position in a syntactic pattern can be assigned to

different semantic roles in different usages. For example, two usages he saw

her and he got worse both have the same syntactic pattern (‘arg1 verb arg2’),

but the Subject and Object of the first usage are usually considered as

Experiencer and Stimulus, whereas the Subject and Object of the second

usage are considered as Theme and State. It is vital for a model of semantic

role learning to be able to distinguish the arguments of different types of

verbs when those arguments occur in the same syntactic position.

To test this, we examine the semantic profiles for the Subject and Object

positions in two transitive usages of novel verbs, where the only difference
between the two usages is the semantic primitives of the event. We use the

primitives associated with the verbs see and get in the above examples. Figure 7

shows the partial frames for these usages, and the predicted semantic profiles

for the Subject and Object positions of each usage.

This experiment is crucial in showing that the model does not simply

associate a single semantic profile with a particular argument position. The

model forms a complex association among a syntactic pattern, an argument

position, and the semantic primitives of the verb, allowing it to make a
distinction between different roles assigned to the same position in the same

syntactic pattern.

6.1.3 Verb-based vs. general semantic profiles

We have shown that our model can learn general conceptions of semantic

roles. However, because the model learns these general profiles from instances

of verb usage, we expect these profiles to go through a gradual generalisation

process, where they initially reflect the properties of specific verb arguments,

and become more general over time. We tracked this generalisation process for

the acquired semantic profiles. For example, Figure 8 shows the semantic

profile for the argument in the Object position in a transitive usage. The left

box shows the semantic profile right after the first transitive usage. In this
particular simulation, the first transitive verb in the corpus is eat, and its

second argument in that usage is sandwich. The semantic profile thus reflects

the properties of a sandwich, and not the general properties of that argument

position. The profile becomes more general after processing 50 input items,

shown in the right box of Figure 8. Since we do not include any semantic

primitives for the main event in the partial frame, the profile also reflects

properties from usages such as she went home or it came out, which have the
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PARTIAL FRAME: PERCEPTION PARTIAL FRAME: CHANGE OF STATE

Number of arguments        2Number of arguments        2
Syn. pattern arg1 verb arg2
Verb primitives {perceive}

ARGUMENT 1 (EXPERIENCER)

Probability Event-based property
0.201 independently exist
0.188 sentient
0.188 animate
0.181 visual
0.174 seeing

Probability Lexical property
0.059 entity
0.059 object
0.059 physical object
0.055 being
0.055 organism
0.055 living thing
0.055 animate thing
0.055 person
0.055 individual

Probability Event-based property
0.445 independently exist
0.444 perceivable

Probability Lexical property
0.058 entity
0.054 object
0.054 physical object
0.028 being
0.028 organism
0.028 living thing
0.028 animate thing
0.028 unit
0.028 artifact

Syn. pattern arg1 verb arg2
Verb primitives {change state}

ARGUMENT 1 (THEME)

ARGUMENT 2 (STIMULUS) ARGUMENT 2 (STATE)

Probability Event-based property
0.162 independently exist
0.140 sentient
0.113 animate
0.083 change
0.083 affected
0.083 change emotionally

Probability Lexical property
0.065 entity
0.065 object
0.065 physical object
0.050 being
0.050 organism
0.050 living thing
0.050 animate thing
0.049 person
0.049 individual

Probability Event-based property
0.383 state

Probability Lexical property
0.131 abstraction
0.113 attribute
0.102 bad
0.087 quality
0.074 badness
0.037 entity
0.035 property
0.028 negative
0.024 relation

Figure 7. Semantic profiles of syntactic positions Subject and Object in two different transitive

usages: Experiencer and Stimulus in a perception event are presented on the left side, and Theme

and State in a change of state event are presented on the right side.
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PARTIAL FRAME: TRANSITIVE

Number of arguments 2
Syntactic pattern arg1 verb arg2

Probability Event-based property
0.124 independently exist
0.124 change
0.124 affected
0.124 stationary
0.124 change matter
0.124 eaten
0.124 vanished

Probability Lexical property
0.062 entity
0.057 substance
0.057 matter
0.056 food
0.056 nutrient
0.056 nutriment
0.056 nourishment
0.056 nutrition
0.056 sustenance
0.056 aliment
0.056 alimentation
0.056 victuals
0.055 group
0.055 grouping
0.055 dish
0.055 snack food

ARGUMENT 2 AFTER 50 ITEMSARGUMENT 2 AFTER 5 ITEMS

Probability Event-based property
0.164 location
0.164 destination
0.137 path
0.106 change
0.093 independently exist
0.066 change possession
0.040 affected
0.040 stationary
0.040 change matter
...

...

Probability Lexical property
0.122 entity
0.084 location
0.044 object
0.044 physical object
0.044 unit
0.044 artifact
0.044 artefact
0.044 whole
0.044 whole thing
0.035 relation
0.028 part
0.028 spacial relationship
0.028 preposition
0.028 region
0.022 instrumentality
0.022 instrumentation
0.022 substance
0.022 matter
0.022 implement
0.015 food
0.015 nutrient
...

...

Figure 8. The evolution of the Transitive Object role.
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same syntactic pattern and number of arguments. (As shown in Section 6.1.2,

adding the appropriate semantic primitives that indicate the semantic type of

the main verb results in more specific semantic profiles for a particular

grammatical position.) Nevertheless, the general transitive profiles in Figure 8

illustrate the process of evolving from a verb-specific profile (e.g., ‘eaten’ and

‘vanished’ in the earlier profile) to a more general one, as a result of processing

more input.

To observe the trend of moving from a more specific to a more general

semantic profile for each argument position, we need to compare the

semantic profile for an argument position at a given point in learning, and

the profile for that position that the model eventually converges to at the end

of each simulation. More technically, we need to measure the divergence

between the two probability distributions represented by these semantic

profiles. We use a standard divergence measure, Relative Entropy, for this

purpose.6 This measure shows how different the two semantic profiles are,

with a value of zero indicating two identical profiles. Figure 9 shows the

profile divergence for Subject and Object positions of a transitive construc-

tion after every 5 input items over a total of 200 items, averaged over 5

simulations. The divergence between the lexical portion of the profiles is

shown by solid lines, and the divergence between the event-based portion of

the profiles is shown by dashed lines. Figure 9 shows that the profile for

the Subject position (i.e., the Agent) is learned faster than the profile for the

Object position (i.e., the Theme), which is a much less constrained role. The

Figure 9. Learning curves for semantic profiles. The x-axis is time (number of inputs), and the

y-axis is divergence from the profile that the model eventually converges to. Solid and dashed

lines show the divergence between the lexical and event-based portions of the profiles,

respectively.

6 RelativeEntropy (PIQ) � aiP(i)log
P(i)

Q(i)
; where P and Q are probability distributions.
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curves show that the model stabilises on the final profiles between 150 and

200 input items, when receiving more inputs ceases to make any substantial

difference in the profiles.

6.2 Using the acquired profiles in language tasks

6.2.1 Who’s blicking? Using semantic profiles in comprehension

Semantic roles are helpful in on-line ambiguity resolution, by guiding

adults to the interpretation that best matches the role expectations of a given

verb for a particular position (e.g., Carlson & Tanenhaus, 1988; Trueswell

et al., 1994). For example, hearing an animate noun as the direct object of a

verb such as give prompts the hearer to interpret it as the Recipient of the
event, whereas an inanimate noun heard as the direct object of the same verb

leads the hearer to interpret it as the Theme of the event. Nation et al. (2003)

have shown that young children also draw on the expectations of the

arguments imposed by the main verb in on-line argument interpretations.

Children’s use of the associations between argument properties and

syntactic positions is most evident in the work of Fisher and colleagues

(e.g., Fisher, 1996). For example, in Fisher’s (1996) Experiment 1, 3- and 5-

year-olds were taught novel transitive and intransitive verbs for unfamiliar
Agent�Patient events. For example, one girl rolls another on a wheeled dolly

by pulling with a crow bar, and the experimenter says Look, she’s blicking her

over there! or Look, she’s blicking over there! The identities of the Subject and

Object were obscured by using ambiguous pronouns, yielding sentences

which differed only in their syntactic pattern. Children’s interpretation of a

novel verb in its sentence context was assessed by asking them to choose the

participant in each event that appears in the Subject position (Which one is

blicking her over there? vs. Which one is blicking over there?). The children
interpreted the verbs differently depending on the sentence structure, though

neither sentence explicitly identified one participant in the event as the

Subject. Both 3- and 5-year-old children picked the causal agent (as opposed

to the other participant in the event) as the Subject of a transitive sentence

almost all the time, while they picked the causal agent as the Subject of an

intransitive sentence only about half the time (i.e., at chance levels).

Here we show that our model, in using its acquired semantic profiles

to predict the best interpretation of an ambiguous input, exhibits probabil-
istic preferences that are compatible with children’s behaviour in Fisher’s

experiment. We set up the computational experiment as one where we

compare the probability of the two interpretations of the same scene, based

on the properties associated with the Subject position. For example, in the

case of a transitive usage, as a response to Which one is blicking her over

there?, the child might point to the Agent of the event. This behaviour shows

that the child has associated the first argument (i.e., Subject) with Agent-like
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properties. Alternatively, by pointing to the Theme of the event, the child

shows that she has associated the Subject of the transitive sentence with

Theme-like properties. Each of these interpretations can be represented as

one frame. The two interpretations for the transitive context are shown in
Figure 10.

We give each frame F to the model, and have it calculate:

match_score(F) � max
k

log(P(k)P(F ½k)) (9)

where P(k) and P(Fjk) are from the learning model (Equations (3) and

Equation (5), respectively). The measure match_score corresponds to how

well the given input matches the model’s acquired knowledge of language:

for a ‘preferred’ usage, there is a high chance that the model has learned a

well-entrenched construction (i.e., with high prior probability P(k)) that has
a high compatibility with the current frame F (i.e., the posterior probability

P(Fjk)). Therefore, having a high match_score for a frame shows that the

model considers that frame as compatible with its previously acquired

knowledge. When comparing two alternative interpretations, a higher

match_score for the frame corresponding to one of the interpretations

indicates that the model has a preference for that interpretation. We show

this preference as

pref(A; B) � match_score (FA) � match_score (FB) (10)

where A and B are two alternative interpretations, and FA and FB are the

frames representing those interpretations. A positive value for pref(A,B)
shows a preference for interpretation A. In the context of the blicking

SUBJECT AS AGENT
Number of arguments

Number of arguments

2
Syntactic pattern arg1verb arg2
Verb primitives {cause, move}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {volitional, affecting, animate, ind. exist, cause, cause movement}
arg2 lexical properties {woman, adult female, female, person, individual, ...}
arg2 event-based properties {ind. exist, change location, affected, motion, manner}

SUBJECT AS THEME
2

Syntactic pattern arg1 verb arg2
Verb primitives {cause, move}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {ind. exist, change location, affected, motion, manner}
arg2 lexical properties {woman, adult female, female, person, individual, ...}
arg2 event-based properties {volitional, affecting, animate, ind. exist, cause, cause movement}

Figure 10. Transitive condition: She blick her.
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experiment explained above, having a positive value for pref(Agent, Theme)

means that the model has recognised the first argument she as the Agent,

while a negative value means that the model has interpreted she as the

Theme. We also compared analogous frames using an intransitive utterance

instead of a transitive one to describe the scene. These frames are shown in

Figure 11.
Figure 12 shows the results after processing 10 and 100 input usages,

averaged over 10 simulations. As noted above, Fisher (1996) finds that both

younger and older children have a very strong tendency to interpret the

Figure 12. The preference of the model towards interpreting the Subject as Agent (as opposed

to Theme) for the Transitive/Intransitive conditions.

SUBJECT AS AGENT

Number of arguments

Number of arguments

1
Syntactic pattern

Syntactic pattern

arg1 verb
Verb primitives {cause, move}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {volitional, affecting, animate, ind. exist, cause, cause movement}

SUBJECT AS THEME

1
arg1 verb

Verb primitives {cause, move}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {ind. exist, change location, affected, motion, manner}

Figure 11. Intransitive condition: She blick.

78 ALISHAHI AND STEVENSON

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
u
r
w
i
s
s
e
n
s
c
h
a
f
t
l
i
c
h
 
T
e
c
h
n
i
s
c
h
e
]
 
A
t
:
 
1
0
:
1
4
 
1
0
 
D
e
c
e
m
b
e
r
 
2
0
0
9



Subject of a transitive utterance as the Agent, but show no significant

preference towards choosing the Agent or the Theme of the event as the

Subject of an intransitive sentence. Our results mimic this trend. For the

Transitive condition, there is a very strong (and similar) preference to
interpret the Subject as the Agent after both 10 and 100 inputs. For the

Intransitive condition, there is a much smaller and highly inconsistent

preference to interpret the Subject as Agent very early, but no preference

towards one interpretation over another by 100 inputs. As Fisher notes,

children’s behaviour in the face of intransitives is not incorrect since there

are various intransitive uses; indeed, for our model, some of the verbs in our

lexicon can have an intransitive usage where the Subject is the Agent

(e.g., she came or he ate), whereas others map the Subject to the Theme of
the event (e.g., window broke).

The same experiment in Fisher (1996) also includes a condition with

sentence contexts which differ in their use of the preposition to or from. For

example, a novel manner of delivery and of receipt is represented, and

described as She is pilking the ball over to her or She is pilking the ball away

from her. Again, the child is asked to select who is pilking the ball. If the

child points to the Agent of the event, it means that she has associated the

Subject of the utterance with Agent-like properties. Otherwise, she has
associated the Subject with Recipient-like properties. Fisher finds a tendency

for children, especially the 5-year-olds, to choose an Agent interpretation

more often when the preposition is to than when it is from (with the latter

showing essentially random choice).

Similarly to the previous simulations, we set up the experiment as one

where we compare the probability of the two interpretations of the scene, one

which associates the Subject of the sentence with the properties of an Agent,

and one which associates it with the properties of the Recipient. The two
frames that represent these interpretations for the sentence with to are shown

in Figure 13. Analogous frames, using the preposition from are shown in

Figure 14. (Note that the features for these frames are identical to those of

the frames in Figure 13, except for the syntactic pattern feature.) We

calculate pref(Agent, Recipient) for each condition separately. Again, having

a positive value means that the model has recognised the first argument

she as the Agent, while a negative value means that the model has recognised

she as the Recipient.
Figure 15 shows the results after processing 10 and 100 input usages,

averaged over 10 simulations. Similar to Fisher’s results, our model does not

show a strong, consistent preference nor a large difference between responses

with to and from early on (at 10 inputs). However, as with children, with

additional input, we do find a much stronger preference for interpreting the

Subject as Agent when the preposition is to. Also compatible with Fisher’s

results, the preference for interpreting the Subject as Agent is much stronger
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SUBJECT AS AGENT

SUBJECT AS RECIPIENT

Number of arguments 3
Syntactic pattern arg1 verb arg2 from arg3
Verb primitives {cause, possess}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {volitional, sentient, animate, ind. exist, affecting, cause, giving, ...}
arg2 lexical properties {toy, artifact, artefact, object, physical object, entity, whole, ...}
arg2 event-based properties {affected, change, change possession, ind. exist }
arg3 lexical properties {woman, adult female, female, person, individual, ...}
arg3 event-based properties {animate, ind. exist, affected, possessing, given, beneficiary}

3
Syntactic pattern arg1 verb arg2 from arg3
Verb primitives {cause, possess}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {animate, ind. exist, affected, possessing, given, beneficiary}
arg2 lexical properties {toy, artifact, artefact, object, physical object, entity, whole, ...}
arg2 event-based properties {affected, change, change possession, ind. exist }
arg3 lexical properties {woman, adult female, female, person, individual, ...}
arg3 event-based properties {volitional, sentient, animate, ind. exist, affecting, cause, giving, ...}

Number of arguments

Figure 14. From condition: She pilk doll from her.

SUBJECT AS AGENT

SUBJECT AS RECIPIENT

Number of arguments 3
Syntactic pattern arg1 verb arg2 to arg3
Verb primitives {cause,  possess}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {volitional, sentient, animate, ind. exist, affecting, cause, giving, ...}
arg2 lexical properties {toy, artifact, artefact, object, physical object, entity, whole, ...}
arg2 event-based properties {affected, change, change possession, ind. exist}
arg3 lexical properties {woman, adult female, female, person, individual, ...}
arg3 event-based properties {animate, ind. exist, affected, possessing, given, beneficiary}

3
Syntactic pattern arg1 verb arg2 to arg3
Verb primitives {cause, possess}
arg1 lexical properties {woman, adult female, female, person, individual, ...}
arg1 event-based properties {animate, ind. exist, affected, possessing, given, beneficiary}
arg2 lexical properties {toy, artifact, artefact, object, physical object, entity, whole, ...}
arg2 event-based properties {affected, change, change possession, ind. exist}
arg3 lexical properties {woman, adult female, female, person, individual, ...}
arg3 event-based properties {volitional, sentient, animate, ind. exist, affecting, cause, giving, ...}

Number of arguments

Figure 13. To condition: She pilk doll to her.
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for to than from sentences at the later inputs. However, with from, we do find

a small preference for the Agent interpretation (where Fisher’s results

indicate roughly chance behaviour); because of the low frequency of from in

our input data, our model’s behaviour is more influenced by other syntactic

patterns than children’s responses indicate. Note that, also in accord with

Fisher’s results, the preferences of the model for the Subject�Agent

association in utterances with both to and from are lower than for the

same association in a transitive utterance (see Figure 12); in our model, this

is a direct consequence of the high frequency of the transitive construction

in the data.

The results reported in this section confirm that the model is able to use its

learned associations between semantic properties and argument positions to

appropriately guide interpretation of an ambiguity. These results predict that

very early on, children (like our model) would experience some difficulty in

this type of task, when drawing on the knowledge of a less commonly

observed construction.

6.2.2 Syntactic bootstrapping: using semantic profiles in verb
learning

As mentioned earlier, we assume that our model already knows the

meaning of a small set of verbs at the point it starts to learn about general

semantic roles. Learning the correct meaning for both verbs and nouns has

been suggested to be based on cross-situational observation (Pinker, 1989;

Figure 15. The preference of the model towards interpreting the Subject as Agent (as opposed

to Recipient) for the To/From conditions.
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Fisher et al., 1994). However, it has been argued that for certain verbs or

situations, using cross-situational learning is not enough. For example,

Gleitman (1990) argues that paired verbs such as chase and flee can always

be used to describe the same event. Therefore, just by watching a chasing

scene, it is impossible for the child to decide whether the verb describing the

scene means ‘chase’ or ‘flee’. It is suggested that in such situations, children

rely on the syntactic structure of the sentence that describes the event to

induce the correct meaning of the verb, a hypothesis known as syntactic

bootstrapping (Gleitman, 1990; Landau & Gleitman, 1985). For example,

consider the case of chase/flee, where the child hears Look! The fox is gorping

the rabbit. Based only on watching the event, and without using the word

order information of the accompanying sentence, the child cannot decide

whether gorp means chase or flee. However, because of her previous

experience with other transitive verbs, the child knows that the argument

that appears in the Subject position is more likely to be the one that causes

the described event. In this example, that argument is fox, and therefore the

event referred to by gorp is more likely to be initiated by the fox, hence gorp

must mean chase.

Here we show that our model can use its acquired knowledge of language

in guiding verb meaning in such ambiguous situations. We simulate the

CHASE INTERPRETATION

FLEE INTERPRETATION

Number of arguments 2
Syntactic pattern arg1 verb arg2
Verb primitives {cause, move}
arg1 lexical properties {entity, physical object, object, animate thing, living thing, . . .} 
arg1 event-based properties {volitional, sentient, animate, ind. exist, cause, affecting, 

change location, motion, cause motion}
arg2 lexical properties {entity, physical object, object, animate thing, living thing, . . .} 
arg2 event-based properties {volitional, sentient, animate, ind. exist, affected, 

change location, motion}

Number of arguments 2
Syntactic pattern arg1 verb arg2
Verb primitives {cause, move}
arg1 lexical properties {entity, physical object, object, animate thing, living thing, . . .} 
arg1 event-based properties {volitional, sentient, animate, ind. exist, affected, 

change location, motion}
arg2 lexical properties {entity, physical object, object, animate thing, living thing, . . .} 
arg2 event-based properties {volitional, sentient, animate, ind. exist, cause, affecting, 

change location, motion, cause motion}

Figure 16. Different interpretations of gorp in fax gorp rabbit, where gorp can mean either

chase or flee.
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chase/flee example as the problem of choosing the correct interpretation

from the two possible ones upon hearing the sentence fox gorp rabbit, as

shown in Figure 16. The frames that represent the two possible interpreta-

tions are identical in all features except for the event-based properties of

the arguments. In the ‘chase’ interpretation of gorp in fox gorp rabbit, the

properties ‘cause, affecting, cause motion’ are associated with the first

argument, i.e., the fox, and the property ‘affected’ is associated with the

second argument, the rabbit. These associations are reversed in the ‘flee’

interpretation of gorp in fox gorp rabbit, where the rabbit is the cause of

the event.

As in the previous section, we compare two interpretations using the

measure pref(Chase, Flee). The results are shown in Figure 17. As can be

seen, the model shows a preference towards interpreting gorp as chase from

early on (i.e., after processing 10 input items), and this preference becomes

more pronounced after processing more input (i.e., after processing 100 input

items). Note that the compared frames in this experiment (shown in Figure

16) have much more in common than the frames being compared with each

other in the experiments of the previous section. Not only do the participants

have similar lexical properties, they have similar event-based properties as

well (e.g., both the fox and the rabbit are volitional, animate, in motion,

changing location, etc.). What distinguishes the two interpretations from

each other here is a very small set of event-based properties (i.e., ‘cause,

affecting, cause motion’ for one argument, and ‘affected’ for the other).

Therefore, we do not see as strong a preference in this case as we saw in the

Figure 17. The preference of the model towards interpreting the main verb gorp as chase

(as opposed to flee), in fox gorp rabbit.
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simulations reported in the previous section. However, the model does

exhibit preferences even based on such small differences in the properties

that the arguments in each interpretation can have.

7. GENERAL DISCUSSION

The traditional view of semantic roles as innately specified and universal has

been questioned by recent experimental studies. For example, McRae et al.

(1997) suggest that semantic roles are verb-specific concepts; specifically,

they view semantic roles as a property-based and event-specific representa-

tion of verb selectional restrictions. We present a similar account in Alishahi

& Stevenson (2007a), an extension of the current model in which the

semantic profiles yield verb-specific conceptualisations of the arguments

associated with a syntactic position, and verb-based profiles are used in

simulating human plausibility judgements on selectional preferences. How-

ever, the purely verb-based view of semantic roles cannot explain the

experimental findings that demonstrate children’s and adults’ access to a

general conception of semantic roles even in the absence of familiar verbs

(Fisher, 1994, 1996, 2002; Kako, 2006). The goal of the current paper is to

show that general semantic roles can be acquired from verb-specific ones

through a process of categorisation and generalisation. Our Bayesian model

of role learning is an elaboration of the usage-based view of role learning

proposed by Lieven et al. (1997) and Tomasello (2000), and provides a

detailed account of how verb-specific roles transform into general semantic

profiles for arguments in various linguistic constructions.
Our model establishes a link between the syntactic pattern of an utterance

and the semantic properties of the scene. Over time, common properties of

the arguments that appear in the same syntactic position in a construction

are generalised to form a profile that represents the role associated with that

position. In our experimental results, we show that our model can form

intuitive profiles for general roles such as Agent, Theme and Destination in

various constructions, even when the verb appearing in the construction is

not known to the model. The profiles predicted for the arguments of a novel

verb are a result of generalising the actual arguments that appear in similar

usages. We further show that the acquired profiles can guide the model in

language comprehension when faced with ambiguous input, an effect that

has been studied in human language processing (e.g., Carlson & Tanenhaus,

1988; Fisher, 1996; Trueswell et al., 1994).

The proposed model also makes a number of predictions about the

process of learning general semantic roles and associating them with

grammatical positions. First, the model learns a profile for a number of

semantic roles such as Agent, Theme or Instrument, but it demonstrates a
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different time-course for learning a stabilised profile for these roles. For

example, as discussed in Section 6.1.3, the semantic profile that the model

maintains for the Transitive Subject (or Agent) converges much faster

than the one learned for the Transitive Object (or Theme). Also, at the
beginning, the event-based profiles for both roles undergo much more

change, whereas the lexical profiles change more smoothly. The model makes

another interesting prediction with respect to using semantic profiles in word

learning. In Section 6.2.2, we showed that the model can choose the correct

interpretation of a novel verb using the semantic profiles that it has

associated to the arguments of the construction. Figure 17 shows that, at

the early stages of learning, this ability improves as the model receives more

input, but at the later stages of learning the performance of the model does
not change considerably upon receiving more input. Further empirical

research is needed to investigate these predictions.

In the context of modelling child language acquisition, one of the

strengths of the proposed model is its incremental nature. The model

processes one input item at a time, and the constructions emerge and grow

as a response to the input. However, this strategy results in a formation of

constructions that is very sensitive to the order of the input items: the

similarity between the early verb usages determines the number of the new
constructions that are created. It also means that, at some point in learning,

the acquired constructions may not be perfect. In other words, the model

may not reach the globally optimum solution. It often happens that one

(intuitive) construction is divided between two clusters, or one single cluster

contains usages that we would recognise as two different constructions.

The Bayesian formulation of the induction of semantic profiles allows for

contribution from all of the constructions, and therefore reduces the

unwanted effect of an imperfect construction structure on the behaviour of
the model. Nevertheless, the structure of the constructions does affect the

output, and in a few simulations it is not possible for the model to overcome

the early mistakes it has made even when provided with more input

(see Alishahi & Stevenson, 2008 for a detailed discussion). Although it is

not cognitively plausible to revise all of the previously formed constructions

after processing each new usage, it can be assumed that some constructions

are revised and reorganised at certain intervals (see Parisien, 2008 for a

variation of this idea). In fact, it has been suggested that children consolidate
and reorganise what they learn during their sleep (Dumay et al., 2004; Orban

et al., 2006; Walker, 2005). Sensitivity to the order of input can also be

reduced by considering more than one partitioning of the observed frames

into clusters at each point of time, and using repeated sampling (or Monte

Carlo method) to approximate the complete Bayesian formulation (for

example, see Sanborn, Griffiths, & Navarro, 2006 for a cognitively plausible

sampling proposal).

A MODEL OF LEARNING SEMANTIC ROLES 85

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
u
r
w
i
s
s
e
n
s
c
h
a
f
t
l
i
c
h
 
T
e
c
h
n
i
s
c
h
e
]
 
A
t
:
 
1
0
:
1
4
 
1
0
 
D
e
c
e
m
b
e
r
 
2
0
0
9



As for the nature of semantic roles, our model follows Dowty’s (1991)

Proto-Role hypothesis and Kako’s (2006) experimental findings that

semantic roles are not single-valued and fixed labels, but a collection

of semantic properties, in our case associated with various probabilities. Our

semantic profiles (i.e., probability distributions over the argument properties)

that represent each role emerge from a generalisation process over the

semantic properties of the arguments that have been observed in the input.

This hypothesis is based on the assumption that children are sensitive to

certain lexical and event-based properties of the event and its arguments

(Braine et al., 1990; Cohen & Oakes, 1993; Fisher, 1996; Gentner, 1978;

Naigles & Kako, 1993). Note, however, that we do not make any claims

regarding the actual properties that take part in a semantic profile. In fact,

a number of cross-linguistic studies have suggested that the speakers of

different languages show sensitivity to different properties of the events and

their arguments (Allen, Özyürek, Kita, Brown, Furman, Ishizuka, & Fujii

2007; Choi & Bowerman, 1991). The flexibility of our usage-based account

of role learning allows for language-specific profiles to be acquired as a

response to the properties of the input. However, a shortcoming of the

current model is that it assumes that children have access to the full set of

properties of an argument from the very beginning. Much research has

explored how children acquire a conceptual hierarchy and learn conceptual

relations (e.g., Doumas et al., 2008; Xu & Tenenbaum, 2007). In the future,

we plan to look at a more realistic setting for our experiments where the

conceptual distinctions and relations are developed over time. Expanding

on the vision expounded in Gentner and Namy (2006), it will be important

to show that concept- and relation-learning can occur in an integrated

fashion with the acquisition of verb argument structure in order to

adequately model the full picture of child cognitive development.
A similar issue arises with respect to our assumptions about the

knowledge of relevant properties of verbs. The acquisition of general

semantic roles in our model is based on detecting and generalising the

properties of a verb and its arguments in the input usage data. In other

words, knowing (at least part of) the meaning of the verbs in the input usages

is a prerequisite for the generalisation process and the formation of the

semantic profiles. However, researchers have debated whether the meaning of

verbs can be learned without using any knowledge of the syntactic structure

of the language, and the mapping of the semantic roles to the syntactic

positions in a sentence (Fisher, 2000; Landau & Gleitman, 1985; Gleitman,

1990). Specifically, ‘paired’ verbs that can describe various perspectives on

the same event (e.g., chase/flee, buy/sell, eat/feed) pose a challenge for the

cross-situational and observation-based account of verb learning. Drawing
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on work in structural analogy for concept and relation learning, Fisher

(2000) proposes that structural alignment can account for verb learning in a

manner that requires little language-specific syntactic knowledge to give the

child an initial sentence-structural guide for interpreting verbs. According to

this hypothesis, using only partial or pre-syntactic descriptions of sentences,

children obtain information about verb meaning essentially by structural

analogy, aligning a sentence representation with a conceptual representation

that shares its skeletal structural properties.

Our view on the acquisition of verb meaning and semantic roles is

compatible with this account. The frame features that we extract from a

verb usage are similar to the cues used for Fisher’s structural alignment

(the number of arguments, the word order in a sentence, and the semantic

properties of the arguments and the event). In our view, verb learning is an

iterative process: the model can learn a sketch of the general roles based only

on a very small set of basic frequent verbs, whose meanings can be inferred

from successive usage and observation of the corresponding event/activity.

Moreover, we assume that knowing some of the general and specific

properties of these verbs and their arguments is enough to boost the process

of acquiring initial semantic profiles. These profiles can be used in the

acquisition of the more ambiguous verbs, which in turn (after being learned)

can contribute to the richness of the previously acquired profiles, or to the

formation of new profiles. In this paper, we have investigated the first steps of

using pre-syntactic knowledge of word meaning in forming a general

conception of the semantic roles, and of applying these conceptions in

guiding verb learning in ambiguous situations. Given the compatibility of the

approach with structural alignment as assumed by Fisher (2000), future

work will need to explore whether our framework can be combined, as

suggested above, with elements of an analogical approach to concept and

relation learning, to achieve the integration of language and concept learning

as proposed in Gentner and Namy (2006). Our Bayesian model has the

potential for drawing these pieces together in an iterative and integrated

account of learning verb meaning and semantic roles.

In conclusion, we have shown that our Bayesian model of early verb

learning, extended to include sets of semantic properties for arguments, can

acquire associations between those properties and the syntactic positions of

the arguments. These probabilistic associations enable the model to learn

general conceptions of roles, based only on exposure to individual verb

usages, and without requiring explicit labelling of the roles in the input.

Because of the model’s Bayesian formulation, the roles naturally metamor-

phose from verb-specific to highly general properties. The acquired role

properties are a good intuitive match to the expected properties of various
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roles, and are useful in guiding comprehension in the model to the

most likely interpretation in the face of ambiguity. The learned roles can

also be used to select the correct meaning of a novel verb in an ambiguous

situation.
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APPENDIX A: LIKELIHOOD PROBABILITIES
OF FRAME FEATURES

As described in Section 4.1, the calculation of the prior probabilities of the constructions in our

model follows the intuition of the Chinese Restaurant process (Antoniak, 1974; Pitman, 2006),

which implies that as the model processes more inputs, it becomes less likely that a new

construction is created. However, ideally we want our model to detect an ‘unusual’ frame which

does not conform to any of the existing constructions, and place it in a new construction, even

after processing a large number of input items. That is, if a feature value j in a new frame is

unseen for a construction k, we want the likelihood Pi(jjk) to be low enough to lead to the

creation of a new construction. Therefore, we use Laplace’s law (Manning & Schütze, 2001) to

estimate the maximum likelihood of a feature value:

Pi(j½k)�
countk

i (j) � l
nk � lai

(11)

where nk is the number of frames participating in construction k, countk
i (j) is the number of those

with value j for feature i, and l and ai are smoothing factors. The parameter l implicitly determines

the importance of a distinct feature value in creating a new construction: it is set to a small constant

so that the constructions which have no members with value j for feature i have a low (but non-zero)

probability. The parameter ai is set to (an estimate of) the number of possible values that feature i

can take on. Note that, for a new construction, because count0
i (j) and n0 both have the value 0, the

estimated conditional probability is 1/ai � that is, for a new construction, all feature values are

equally likely. We present a theoretical method for estimating the smoothing factors in Appendix B.

However, note that the smoothing factors contribute more to the likelihood of a small

construction, but as more frames are added to each construction, the effect of smoothing becomes

weaker, reflecting the higher confidence of the model in its captured knowledge.

As mentioned in Section 4.1, for features with a single value such as the syntactic pattern,

countk
i (j) is calculated by simply counting those members of construction k whose value for

feature i exactly matches j. However, for those features whose value is represented as a set, such

as the semantic properties of the arguments, counting only the number of exact matches between

the sets is too strict, since even highly similar words very rarely have the exact same set of

properties. We instead compare the set value of a particular feature in the observed frame, S1,

and the set value of the corresponding feature in a member frame of a construction, S2, using the

Jaccard similarity score:7

sem_score(S1; S2)�
jS1SS2j
jS1@S2j

(12)

This measure captures the overlap between two sets of properties. Due to the hierarchical nature of

the semantic property features, more similar arguments have more overlap in their corresponding

feature sets. For example, assume that the new frame represents the verb usage John ate cake, and

one of the members of the construction that we are considering represents Mom got water. We must

compare the lexical properties of the corresponding arguments cake and water:

cake: {baked goods, food, solid, substance, matter, entity}

water: {liquid, fluid, food, nutrient, substance, matter, entity} The intersection of the two sets

is {food, substance, matter, entity}, and the union is {baked goods, liquid, fluid, food, solid,

nutrient, substance, matter, entity}, therefore the sem_score for these sets is
4

9:

7 The selected semantic properties and the corresponding similarity score are not

fundamental to the model, and could in the future be replaced with an approach that is

deemed more appropriate to child language acquisition.
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In general, to calculate the likelihood probability for the set of properties, we set countk
i (j) in

Equation (11) to the sum of the sem_score’s for the new frame and every member of construction

k, and normalise the resulting probability over all possible sets of properties in our lexicon:

Pproperties(sj½k)�

P
f �k sem_score(Sj; Sf ) � ljSjjP

l �Lexicon

P
f �k sem_score(Sl; Sf ) � laprop

(13)

where Sj is a feature value (i.e., a set of properties) in the current frame, Sf represents the properties

of the corresponding feature in a frame f that belongs to construction k, Sl represents the properties

of a lexeme l, and l and jSjj=aprop are the smoothing factors (where jSj j is the size of the set Sj). For

a new construction, the default probability of a set Sj will be equal to jSjj=aprop; giving a higher

default probability to a larger set. Intuitively, the sum in the numerator represents how much the

meaning of the new set Sj resembles that of frames grouped in construction k. The double sum in

the denominator, on the other hand, represents how distinct the semantic properties of the frames

in construction k are from all the existing properties in the language. For example, if we are looking

at the lexical properties of an argument, each word in the lexicon is compared against all the words

in the construction. The latter factor is computationally expensive, and we use a pre-calculated

similarity matrix to estimate it. However, we can assume that humans have an idea of how general

or unique the meanings associated with a lexeme or a construction are, and do not have to perform

such extensive calculations every time they process a new input.

APPENDIX B: SETTING THE PARAMETERS OF THE MODEL

For the purpose of implementing the model and running simulations, we need to assign

values to parameter ai for each feature i in Equation (11). This parameter determines the default

likelihood probability 1/ai for feature i in a new construction. That is, for a new construction for

which nk and countk
i (j) are zero, the probability of having any value j for feature i is 1/ai.

Assuming that all feature values are equally likely, ai is an estimate of the number of possible

values that feature i can take on.

In our model, each frame has six different features: the head verb, the number of arguments,

the syntactic pattern, the semantic primitives of the head verb, the lexical properties of the

arguments, and the event-specific properties of the arguments. We assign ahead�15 and apatt�15

as an upper bound on the number of the predicates and the distinct syntactic patterns that can be

observed in the input. We assume that each verb usage can have 0 to 5 arguments, therefore

aargnum�6. The estimated ai value for other features is determined by the number of semantic

primitives, lexical properties, and event-based properties, as defined in Section 5.1: aprim�12,

alexical�493, and aevent_specific�50.

We also need to set the parameter l in Equation (11). This parameter determines the default

probability of a value j for a feature i in an existing construction k, where none of the frames in

k have value j for their feature i. For all features i in frame F, we need this probability (i.e., l) to

be small enough that the resulting Pi(jjk), where j differs from the value in k, penalises

construction k in the competition in equation (1). If we wanted each construction k to contain

only frames that have the same values on all of the features, we would want the posterior

probability of k to be less than that of a new construction, or P(kjF)BP(0jF). The extreme case

would be when only one construction exists which contains all n observed frames, every one of

which has the same values as F for all features, except for feature i. By simplifying the inequality

P(kjF)BP(0jF) for this case, we obtain an upper bound of lB
Q

i

1

ai

: This gives us an upper-

bound of 10�7 for the value of l. We set l to a moderate value, 10�5, to allow for constructions

which have frames with similar but not identical values for some features.
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