
Chapter 6 Designing and Building Good Software

So far, we have been thinking of problem solving in terms of the concepts, ideas, and algorithms we may
need to use to get a particular task done. We should also spend some time considering the related issue of how to
organize the software we are writing in a way that makes our solution as useful to others as possible.

In this Chapter, we will discuss the general principles that guide the organization of larger pieces of software.
The goal is to understand how and why we need to think very carefully about the way we design the software we
are writing, and to learn about the principles that have been developed to help us better organize, maintain, and
expand on a given software solution.

The principles we will learn in this Chapter will be the foundation on which we will build a full understanding
of the software design process, a topic you can explore in depth by reading up on software design, software
engineering, and software architecture.

6.1 Software as a collection of modules

As we have worked our way through previous chapters, we have already been taking advantage of the significant
amount of work done by others on our behalf. All the functions in standard C libraries that we have used to implement
the different algorithms discussed in the book had to be designed, developed, and tested well before they shipped
with your compiler so you could easily have things like printf() or qsort() at your disposal.

Question: what would software look like if we didn’t have any libraries for commonly used functions? If we
think about it for a moment, we will realize that such software would look like the illustration in Fig. 6.1.

Figure 6.1: Software as a disorganized collection of stuff that does something. Courtesy of Randall Munroe,
http://www.xkcd.com.

Without some form of organization, our software would be a big pile of code, with all kinds of functionality
mixed in - there would be functions for carrying out the algorithms we need, but also all kinds of unrelated things

6.2 A wish list for building good software (C) F. Estrada 2024

like printing to the terminal, reading user input, managing files, implementing basic math, etc.
Anyone trying to understand our software, or worse, someone with the task of finding and fixing any existing

bugs in our software would have a very difficult time dealing with our code.
So instead of writing large piles of code that does every kind of thing, we should instead figure out how to

break down our application into a set of separate components each of which can be implemented as a module
with its own code, and which can be understood, tested, and debugged without having to sift through the rest of
the application’s components (or with only minimal need to do so). As an additional but very important benefit -
these modules can be easily reused, which means that they can be either directly combined with entirely different
applications we are developing, or re-used with only minimal changes.

In effect, what we want is to build a large library of modules that we can reuse with ease to build any software
we want. For example - we may want to write a module that provides support for creating, storing, managing, and
running standard algorithms on graphs. It could, for instance, provide path-finding using DFS, allow us to modify
the graph by adding or removing edges and nodes, and handle all the required data structures so that we don’t have
to re-write all of that code whenever we need to use a graph. We want to write this module in such a way that
anyone else writing a program that needs to do path finding can easily take our module for handling graphs and use
it without needing to read through our code in detail, and without needing to worry about our code being full of
bugs or being unnecessarily inefficient (in terms of complexity).

This is not a trivial problem - out software needs to be designed carefully and correctly, so that it can work
on a graph representing any data a developer may need to handle, so that it can easily be called from software
not written by us, and so that the resulting programs can be tested, debugged, and possibly expanded by other
developers who don’t know (and don’t need to know) the details of how we developed the graph module or even
how the algorithms contained in the module work.

Note

If you think back to Chapter 3, we already have discussed this idea. Back then we said that ADTs are useful
because they provide a developer with a concise idea of how the particular ADT organizes data and what
operations it supports in a way that is independent from implementation details. This allows a developer
to use any implementation of the ADT in their programs at the level of data and operations on data
without needing to know how these are actually implemented.
With well designed software modules we are pursuing a similar result: We want to design modules that
can be used in terms of data being stored and manipulated, and a set of operations and algorithms that
can be applied to the data managed by the module. We want a developer to be able to use the module
without needing to know or understand how the actual operations and algorithms are implemented, as this
will free them to focus on their actual task and allow them to build sophisticated software with advanced
functionality quickly, reliably, and without being experts on every possible aspect of computer science that
may be involved in solving a particular problem.

Let us look at some of the key principles that should be in our mind when we start exploring the world of
software design.

257

6.2 A wish list for building good software (C) F. Estrada 2024

6.2 A wish list for building good software

If we are going to put our time and effort into developing software for solving a problem, we want to make sure
the effort we put into it results in the best possible software. Below is a list of properties that we should carefully
consider when designing our software - not every single one will apply to every single problem, but we must always
consider them all before we sit down to design and develop our solution.

1) Modularity: Our software is composed of separate modules each of which has one specific task, and
each of which is self-contained, so it can be understood, tested, and maintained independently of the others. A
well designed modular program will help:

Reduce replication of code
Improve the chance that code we write will be reused
Make it easier to test the code and verify it is correct
Help a developer focus on the big picture of how a particular software is structured and how it works

2) Reusability: Writing good software requires a lot of thought and hard work, we want to ensure any modules
we write for a specific task can be re-used by any other application that requires the same functionality . For
instance, if we develop a module that implements shortest-path finding between two nodes in a graph (which, as
we saw, is a common problem in many application domains). We want our implementation to be such that anyone
needing to find the shortest path between graph nodes can simply take our code and use it to build their application.

3) Extendibility: We want our software to be easy to extend and improve. This allows us to build better,
more capable software over time by improving and expanding its functionality.

4) Maintainability: Our software must be well organized, easy to understand, well documented, and free
of unnecessary complexity. This improves our ability to test it, debug it, and upgrade it as needed. A competent
developer not familiar with our code should be able to quickly get to the point where they can work on/with it.

5) Correctness: Any software we develop and release must have been thoroughly tested and made as close to
bug-free as possible. Where appropriate, suitable tools should be used to determine correctness. Our code should
have been reviewed by experienced developers not related to its implementation, and a suitable process must be in
place for documenting, tracking, and resolving bugs found after the software is released.

6) Efficiency: We have spent a good amount of time thinking about complexity and how to study the efficiency
of our algorithms. We expect good code to be efficient both in terms of the algorithm chosen to solve a problem,
and also in terms of how that algorithm is implemented.

7) Openness: When possible (e.g. when we’re not developing software for a company that has a claim
of ownership over the code they pay us to write), we should consider contributing our work to the open source
software (OSS) community. There is a lot of good work already out there that is done for no other gain than to
provide something useful for others. And we can contribute to this effort. Open source software projects are a

258

6.3 How modules are organized and used in C (C) F. Estrada 2024

good way to make sure your work directly benefits others. We will get back to this at the end of the Chapter, in the
last section on how to build software that works.

8) Privacy and security: A significant portion, or even the majority of the software we write will be handling
potentially sensitive information. The data the program works with should be protected from unauthorized access,
use, or distribution. Consideration must be carefully given to the privacy of a user’s personal information,
and if the software is accessible over a network then we have to follow best known practices for securing access
to the software, protecting information from falling in the hands of hackers, and ensuring no unauthorized
copies of any information managed by the application can be made or distributed without proper authorization.
Very importantly the user must always grant informed consent before any personal information about them can
be requested and stored by our application. This means clearly and transparently indicating what information
will be requested and stored, how the information will be used, how long it will be stored, and how (if at all)
it will be shared with any third parties. No information should be gathered without informed consent.

The above is not a comprehensive list. Specific applications will require additional consideration to be given
to factors such as reliability, failure-tolerance, computational performance, data storage requirements, and
many other possible factors. However, the properties listed above are a solid starting point on which we can build
good software and apply to the vast majority of applications we may need to develop.

6.3 How modules are organized and used in C

So far, we have been working with applications that contain only a couple program files at the most, and we
have not needed to break up our application into multiple independent modules. This is only suitable for small
programs, and for applications with limited functionality. As we said above, we want to split complex applications
into modules that implement part of the application’s functionality. Each module will have its own program file(s),
and they all need to be brought together in the right way to generate the executable program for our application.

In C, this is done by splitting each module into:

A header file: These are files with extension .h, and contain only the function declarations, without any
of the code. Header files also provide definitions for common things such as for instance mathematical
constants. You have already been using header files for common C libraries such as stdio.h, and stdlib.h.
These provide the function definitions the compiler needs in order to know what to do when you call functions
such as printf() or malloc() that are provided by these libraries.
One of more program files: These have the extension .c and contain the actual code needed to implement
the functions declared in the header file. To create a working executable program we eventually need to
have access to the implementation of every function that is used by the application, regardless of whether it
is part of a library, or whether it is part of the code we have written ourselves.

Applications are built from multiple such modules by

Compiling each separate module into executable code with placeholders for functions from other modules.

259

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

Linking all the modules together: this means bringing together the executable code that implements the
functionality from each of the modules being used, and updating the place-holders with the actual function
calls to each implemented function’s code.

The entire process is illustrated in Fig. 6.2. An application consisting of four different modules is split into
multiple files - there are four header (.h) files, one for each module. There are also four implementation (.c)
files with the corresponding implementation. Note that each module may use functions from the others, and uses
#include statements to import the function declarations for those modules during compilation.

Figure 6.2: The process for combining multiple modules into a single executable program.

Each module is compiled into an object (.o) file that contains executable code for that particular module’s
functions. This file contains placeholders wherever functions from other modules are used. Once all the modules
have been compiled into object files, all the .o files are linked together. This process involves combining the
implementation of any functions used in the program into a single executable file and replacing the placeholders
with actual working function calls. The result is a single, working, executable program.

All the C programs you have implemented and compiled up to this point had to go through this process.
We did not have to think about it because since we have only used standard C libraries, the entire process was
done automatically and transparently. However, once we start developing our own modules and developing
applications consisting of multiple components, we will need to keep in mind how the different parts work together
to build our application.

260

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

6.4 Interacting with modules: The Application Programming Interface (API)

Back to the problem of how to build our software properly. The key problem that concern us is how will
other programs interact with our module? that means we have to think about the functionality that will be
provided by our module, which usually means the set of functions other programs can call, and the way in which
information will be passed to and from between other programs and our module’s functions.

Setting down the details of how modules communicate and interact with each other is the job of the Application
Programming Interface or API. The API contains all the specifications needed to make use of, and to interact
with different software modules, application libraries, local or remote computer systems, and even internet
based applications.

Note

Here are some examples of commonly used APIs you may need to work with in the future:

Google Maps: Allows us to make use of the Google maps framework for plotting locations and
for finding paths between points in maps - among many other things. You can check out the API at
https://developers.google.com/maps/documentation/javascript/tutorial
TensorFlow: Allows us to set up, train, test, evaluate, and operate machine learning algorithms,
including neural networks for solving a task that require learning from a very large dataset. Nowadays
such algorithms are behind some of the most useful applications in A.I. including Large Language
Models (LLMs). The API can be found at https://www.tensorflow.org/
Amazon AWS: Amazon’s cloud-based AWS runs a large portion of internet-hosted services, and
powers all kinds of applications from on-line trade to providing computing power for large simulations.
The API can be found at https://docs.aws.amazon.com/index.html#lang/en_us
Unity: Possibly the most popular API for creating, manipulating, and rendering 3D content; from
graphical user interfaces and simulations, to interactive programs and games. The API is at https:
//docs.unity3d.com/ScriptReference/

The above is just a tiny sample of the universe of APIs out there. Each of them is a world of complexity but
the key is - we don’t have to ever look at the code that implements any of the functionality they provide if we
don’t want to.

The usefulness of an API is that it allows us to use a module, library, or service, without having to know the
details of how it’s implemented. All we need to know is how to pass information to the functions in that module,
and how to get back results. This will be easier or harder, depending on whether the API is well designed or not. A
badly designed API will make software building cumbersome and reduce the usability of the module for which
the API was designed.

In C, the API consists of the function declarations (in the .h) file, along with any constants and other
important values defined there - it also includes all the documentation (at the top of each function) that describes
what each of the functions does and their parameters and return values. In addition to this (but not necessarily
required), there often exists some form of externally maintained documentation (e.g. manual pages, a wiki, or a
webpage) that describes and summarizes the API, and often also provides examples of how to use it.

261

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

Let’s now see what goes into designing a good API, and why it is a challenging but important process worth a
significant amount of thought and care.

6.4.1 Why thinking carefully about API design matters

Suppose we are writing a module for graph manipulation that supports finding a path between nodes in the
graph. The algorithm is implemented by this function:

intList *findPath(int Adj[][], int start, int goal)
{

/*
This function returns a linked-list of nodes that from a path
from:

start
to:

goal

If no path can be found, the function returns NULL.

Adj[][] is the adjacency matrix for a graph with size N

Assumes: Adj(i,j) is 1 if there is an edge from i to j, and 0
otherwise. i,j are node indexes in [0,N-1]

intList is a linked list of nodes, each of which has:
int nodeIndex;
intList *next;

}

We don’t need to know how the function works. All that matters is that the function declaration and the
comments tell the developer that this function will return the path between start and goal, that the path will be in
the form of a linked list of node indices, and that it describes the input parameters the function requires in order
to do its work.

Thereafter, if we need to use that function in our program all we need to do is:
Set up an adjacency matrix for my graph with size N ×N

Find the indexes of the start and goal nodes
Call the function

However, while considering this very straightforward use case, we will notice that our API is not designed
properly - it does not provide a way for us to specify N , the size of the graph. So we need to change our API a bit:

intList *findPath(int Adj[N][N], int N, int start, int goal);

With the above change, it seems our API is good to go and we can release this little function for other developers
to use. However, as soon as we release the API, another developer comes along who wants to use our function but
their use case is somewhat different. They need to find a path from a start node to one of a number of possible
goal nodes (for example, to find a path from a current location to any nearby gas station while driving). With the
current API, the developer is stuck doing something like this:

Set up an array of possible goal locations
for each location j in the goals array

path = findPath(A,N,s,goals[j])

262

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

if path is not NULL break

Which is not too bad, but this seems like a common-enough use case that we may want to provide the API with a
way to to this, so we now re-define our API as follows:

intList *findPath(int Adj[][], int N, int start, int goals[k], int k)
{

/*
This function returns a linked-list of nodes that from a path
from:

start
to:

the *first* goal node in goals[] that can be
reached during search.

If no path can be found, the function returns NULL.

Adj[][] is the adjacency matrix for a graph with size N

goals[] is an array of integers with the index of any
goal nodes that should be considered by the
function.

k is the number of entries in goals[]

Assumes: Adj(i,j) is 1 if there is an edge from i to j, and 0
otherwise. i,j are node indexes in [0,N-1]

intList is a linked list of nodes, each of which has:
int nodeIndex;
intList *next;

*/
}

Question: Is the above actually better? is the latest version of the API more useful? is it easier to use and
more general? As it happens, the answer may not be straightforward, and likely there won’t be an answer that
suits every developer who wants to use this module.

Example 6.1 After the module is released on GitHub, one of the developers who would like to use the module
reports that their graph is too big and the adjacency matrix doesn’t fit in memory. They would like to have a way
to use an adjacency list instead.

That sounds reasonable, but we can not update the function call that uses an adjacency matrix to also work
with an adjacency list. This is a problem we will return to again soon, we can solve it, but in C it would be pretty
ugly, so we should solve it with a more advanced language.

For now, we decide we can help developers who have an adjacency list by adding one more function to the
API:

intList *findPath_l(intList* A[], int N, int start, int goals[k], int k)
{

This function returns a linked-list of nodes that from a path
from:

start
to:

the *first* goal node in goals[] that can be

263

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

reached during search.

If no path can be found, the function returns NULL.

A[] is the adjacency list for a graph with size N

goals[] is an array of integers with the index of any
goal nodes that should be considered by the
function.

k is the number of entries in goals[]

intList is a linked list of nodes, each of which has:
int nodeIndex;
intList *next;

}

The example above illustrates a common problem when designing APIs. Often there are many small variations
on a problem that users of a module or library may need support for - depending on their specific task and the
rest of their program. However, adding functions that are small variations of each other is not a good solution:
it creates a lot of code duplication since the functions have the same task, but they work on slight variations of
the input which means a lot of the code in each function will be identical and yet not easily separable into smaller,
independent functions. It also makes the API cumbersome since developers now have to worry about figuring out
which among the many similar functions they should be using.

Consider what happens if a bug is found in findPath() - because there are two versions of it, we will have to
fix a problem in two places. The more variants of findPath() that we provide for the convenience of developers
using our module, the more places we will likely need to check and possibly update when problems are found.
This makes our module more difficult to maintain and increases the likelihood we will miss something that needs
updating. So it is far from an ideal situation.

This brings us to what happens whenever the API is updated. For instance, because bugs were fixed. Since
this doesn’t change any of the function declarations for the module, the change doesn’t affect how programs using
our module are written or how they interact with our module. However, in order for the update to take place on
programs that use our module, every program using it must be recompiled. This is illustrated in Fig. 6.3.

Figure 6.3: Updates to the module that do not change the function declarations in the API still require that all
programs using the module be recompiled.

264

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

This is not uncommon, and should highlight the importance of having a solid development and testing
process for any module that is going to be made available for use by others - the more users out there for a particular
API, the larger the impact of any bugs or security vulnerabilities. This will place a burden on the developers of a
successful API as they will be expected to stay on top of any bug reports or reported security issues.

A final issue of note is that once the API has been released and it’s been picked up by a population of developers,
it becomes very difficult to make changes to it even if we realize that it was not designed properly in the first
place. To see why this is the case, consider the following situation:

Example 6.2 A developer who wants to use the path finding module requests that the path finding functions support
graphs with weighted edges. These are very common in all kinds of applications, so it is expected that a potentially
large number of people who need a module that does path finding would find this useful.

Unfortunately, this is not something we can easily change without significantly impacting any current users of
the API. The original functions that perform path finding specify that the edge information is integer and only the
presence or absence of an edge is indicated.

Weighted edges could have any real value, so the integer data type will not work in general. To provide the
desired functionality, we would have to change the declaration for findPath() so that it receives an adjacency
matrix that stores float or double values (we would also need to change findPath_l() to use an adjacency list that
stores the edge weights).

In terms of updating our module and API this may not seem too big a change - but it has major implications
to any existing users of the API all of whom have programs that interact with our original API. Because we can
not simply typecast an integer array into a floating point array, each of the existing users of our API will need
to change their program so that their graphs (currently not weighted) are stored in a suitable floating point array
or adjacency list. This is shown in Fig. 6.4.

Figure 6.4: Updates to the module that change the function declarations in the API will require all existing users
to modify their own programs so that they work with the updated API. This may involve significant effort, and
even if it does not, it is still unwelcome and annoying to developers.

The situation is far from ideal. We have to choose between making the API more useful to a wider range of
developers, or avoiding annoyance for existing users. Note that if we had thought more carefully about how to
handle graphs before writing and releasing our API this problem could have been avoided.

265

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

We could try to solve the problem by adding yet another variant to the findPath() function, maybe something
called findPath_d() which takes a double precision floating point adjacency matrix. We may as well go ahead
and add findPath_dl() which is the equivalent for adjacency lists. But now we have four variants of the findPath()
function, with the inherent problem of code duplication and the corresponding increase to the work needed to fix
bugs and keep the module up to date.

One last attempt at making everyone happy may involve simply telling developers how to modify the API
themselves - for instance, by providing them with instructions on how to patch their own copy of the module so
that it supports weighted graphs. However, this has two major drawbacks:

Developers using a modified version of the API and module would be unable to get updates unless they are
willing to re-do the work of patching each update themselves (and this may not even be feasible depending
on what was updated).
If a module using a modified version of the API is part of a larger software project that uses other modules that
incorporate the original API, the larger project may no longer compile because of incompatibilities between
the versions of the module (this is illustrated in Fig. 6.5). There are ways to get around this problem, but they
are band-aid solutions to a problem that should not exist in the first place, and may not work depending on
how different the versions of the module become.

Figure 6.5: Allowing developers to modify the API themselves could easily cause larger software projects to break,
as incompatibilities between versions of the API used by different modules would show up during compilation
and/or linking.

All of the above is to motivate the idea that we have to be very careful when we set out to design an API, and
we have to think very hard about what use cases the module we are developing may be applied to, and about how
to write the API in such a way that it will be reasonably easy to maintain and expand without a significant impact
to applications that use it.

266

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

Note

The discussion above introduces a couple very important concepts:

Use case: This is simply a specific situation or problem that a module or software component may
be required to handle, or provide support for.
Dependency: It is a relation between software modules where a particular piece of software uses
functionality from, and therefore requires that a library or module be available and have the correct
version in order work.

In C, anything we add to our code via #include statements introduces a dependency. For instance, our
programs almost always depend on the system libraries stdio, and stdlib at the very least. If these are not
present, we can’t compile the program. If they have the wrong version, the executable may not run and may
have to be re-compiled with the correct version.

6.4.2 Designing a good API

Advice on how to design a good API is best received from those who have the most experience designing
some of the most widely used APIs currently available. The suggestions and advice below are a summary of the
advice provided by Google in their article How to Design a Good API and Why it Matters which can be found
here: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32
713.pdf.

According to Google’s experts, a good API should be:

Easy to learn and use
Difficult to use incorrectly
Easy to maintain (the code in it is readable and well written)
Easy to extend and improve
Suitable for those who will be using it

The principles they propose for us to consider are:

The API should do one thing, and do it well - the functionality should be easy to explain and make sense
of. If it can’t be explained in simple terms, it’s probably not well done.
The API should be as small as possible, but not smaller. It should satisfy the need it’s serving, but should
not try to add every single possible thing we can think of. The key idea here is that we can add to it later, but
once it’s there, it’s hard to remove functionality.
The API should be implementation independent. This is a particularly important point. It should be
possible for us to completely change the way a function is implemented, without needing to change the API.
This also makes it possible to provide API implementations for different systems and platforms - they should
be identical as far as the user is concerned.

267

6.5 Limitations of our programming language (C) F. Estrada 2024

Maximize information hiding - The API should only make available to the user the functionality and data
that the user needs. This is harder to do with C. We will see shortly how to do a much better job of controlling
what data and functions a user of an API has access to.
Names should be self-explanatory. Use naming consistently, the same goes for the use of underscores and
capitalization.
Good documentation must be provided. Every component of the API must be documented properly.
Think about performance, and avoid decisions in the API that will have a negative impact on performance.
The user of the API should not be surprised by the behaviour of the API.
The API should report errors as soon as possible after they occur. It should be clear what the error is, and
where it happened.
If the API makes information available in strings, provide functions to parse the string into any components
the user may need to handle separately. This prevents annoyance and keeps the user from having to write
parsers for the API’s output.

There are also a couple of suggestions about good programming practice that are not specific to the design of
good APIs.

Use the most appropriate return value for each function.
Where functions have similar lists of parameters, be consistent with the ordering of the parameters (reduces
the chance of the user making a mistake because they got used to the parameter ordering in a different
function).
Avoid long parameter lists.

The Google document has several more recommendations specific to Java and object oriented code, so make
sure to revisit the advice there as you become familiar with object oriented programming. For now, keep in mind
the above, and note that even Google developers admit that designing and implementing a good API is a hard task,
and that we can never achieve perfection.

6.5 Limitations of our programming language

Once we start working with APIs, and thinking in terms of modules that are self-contained and provide
functionality to the users without them needing to know the internal details of how this functionality is implemented,
we will realize that there are limitations to what we can do with C as our programming language.

To illustrate the key issue that should concern us here, suppose we are providing a module for creating and
managing linked lists of strings (this could be used by an app, for instance, to keep the names of all the eBooks a
user has in their cellphone). We have determined the appropriate API, and written both our (very well documented)
header file, and the corresponding implementation file. Any user needing a linked list can include our module in
their code and have all the functionality of linked lists at their disposal. However, there is a catch - any programs
that use a linked list provided by our module must have access to the head of the list, so the pointer to the head of
the list has to be declared and is owned by code outside of the module. The situation is illustrated in Fig.6.6.

268

6.6 Object Oriented Programming (OOP) (C) F. Estrada 2024

Figure 6.6: A module that provides functions to handle linked lists of strings. Unfortunately, the head pointer
has to be declared and is owned by code that is outside the module.

This is not great - the user of our module has access to all the CDT definitions from the module (which it
needs in order to be able to declare and use the head pointer), and could easily create its own nodes, pointers, and
even lists without using the API functionality. Worse than that, the code outside the module has access to all the
information stored in the linked list, and could easily access, modify, or even delete any of the data stored there
without going through API. This is a problem because it allows users whether by mistake, or intentionally, to do
things with information that the module should be handling that were not intended and are not provided by the API.

The situation above breaks the concept of a module being a self-contained entity that can be used without
knowledge of the details of how the module is implemented. It introduces the potential for bugs created by users
unintentionally modifying data needed by the module, and it introduces security and privacy concerns because
there is no way to hide or protect information that should not be available outside of the module.

The root cause of this problem is that C provides no mechanism for protecting sensitive data from being
misused or accessed in a way that was not intended by us when we developed the module. We can’t solve this in
C without severely impacting the usefulness of our module. So at this point we have to look beyond the language
we’ve been using and find a different way to organize our code and data so that we can implement software modules
that are truly self-contained. We have to be able to control access to the data managed by the module in a way that
prevents users from unintentionally, or intentionally, accessing anything we did not intend for them to have access
to. This is called information hiding, and is one of the fundamental principles of good software design.

6.6 Object Oriented Programming (OOP)

Object Oriented Programming is built around two principles: Encapsulation, and information hiding.

Definition 6.1 (Encapsulation)
Encapsulation means wrapping together all the components required to implement the functionality of
particular software module. This includes all the data as well as the functions that manipulate it.
Object oriented programming languages must provide support for encapsulation as a central feature of

269

6.6 Object Oriented Programming (OOP) (C) F. Estrada 2024

♣

the language (as opposed to something that can be achieved by being creative with language features not
designed to provide encapsulation).

Definition 6.2 (Information hiding)

♣

This refers to the ability of the designer of a software module to decide which functionality and data should
be visible to a user of the module, and to hide everything else. This includes implementation details, data
that is essential for the correct working of the module, and functionality that is part of how the module
gets its work done but should not be directly accessed by a user. Object oriented programming languages
provide support for information hiding by allowing a designer to control access to the data and functions
that are part of a module.

To support encapsulation and information hiding, Object Oriented Programming introduces the concept of
an object as the fundamental unit of functionality, which includes data storage, as well as information processing.
We will now spend a bit of time understanding how objects are built, what features they have, and what we can do
with them as software designers. But in order to actually understand what an object is, we first need to learn how
to design and implement the principles of OOP that we discussed above.

6.6.1 Classes

In Object Oriented Programming, we expand on the idea of compound data types that we discussed in
Chapter 3 so that we are not limited to storing data. With OOP, we want to bundle together all the data and all the
functionality required to manipulate it. The resulting entity is called a class. This is illustrated in the figure 6.7.

Figure 6.7: A comparison between non-object oriented model (a CDT plus separate implementation) versus an
object oriented model. In the OOP model, everything is bundled into a single class.

The idea of bundling together the code and data that comprise a single module, data type, or data structure,
is important; but you have already worked with CDTs, so you know there really is nothing fundamentally new in

270

6.6 Object Oriented Programming (OOP) (C) F. Estrada 2024

the concept of a class. The importance of the class idea lies in how the programming language uses classes to
provide you with information hiding as well as a number of other powerful features that are very difficult (or even
impossible) to implement without the support of object oriented languages, and that allow us to build software that
is conceptually easier to understand, maintain, expand, test, and debug.

In OOP, the data components of the class are called member variables, and the functions that provide the
functionality for the class are called class methods.

6.6.2 Information hiding in classes

Recall that in C all our variables and functions have an associated data type that is fixed and used by the
compiler to determine what code needs to be generated to implement the functionality specified in your program.

In Object Oriented Programming, in addition to their data type, both the member variables and the class
methods have an associated access control modifier. These specify the visibility of each of these components
much the same way that scope determines the visibility of variables within the code.

The smallest subset of access control modifiers that has to be implemented by an object-oriented language
is:

public - This modifier states that a member variable or class method can be accessed by (is visible to) any
code whether that code is part of the class or whether it belongs to an external program using the class to
do some work. It is appropriate for all the components of the class that the user will need to call in order to
use the class for its intended purpose.
private - This modifier states that a member variable or class method can be accessed by (is visible to)
exclusively the code that is part of the class methods. No external program can see, access, or use any of the
private data or methods.

There are further modifiers that may or may not be available depending on the language we are using, but
the two above constitute the minimum subset that will allow us to implement information hiding. The diagram
in Fig. 6.8 shows how a class implementing our string list API could be structured - it shows both the member
variables, and the class methods. Access modifiers indicate which components of the class are visible to (can be
accessed/used by) the user’s program. Any private methods are only accessible from within the class.

In the example from Fig. 6.8, the head pointer is not visible to the user, it can not be changed from outside
the class. However, functions such as insert() which are class methods can access and change the value of the
head pointer. In this way, we expose to the user only the functionality of the class that we want to provide, and
can do so in a way that prevents misuse of the class and its member variables and methods.

There are two methods we haven’t seen before in the class example from Fig. 6.8: the constructor and the
destructor. These two functions have an important role for the class:

The constructor - Is a method that is automatically called by the when we create a new instance of the
class in a program. The constructor has the job of initializing the member variables and any data that the
class will need to suitable values. In the example on Fig. 6.8, we could expect it to set the head pointer to
NULL, and the list_length to zero. For more complex classes, the constructor may do a lot more work.

271

6.7 Implementing a class in C++ (C) F. Estrada 2024

Figure 6.8: Example of class structure showing components with different visibility. Any part of the class declared
as private will only be accessible from within the class itself. Any public variables and methods are accessible
from any code where the class is being used.

The destructor - Is a method that is automatically called when an instance of the class goes out of scope
or when we want to delete an instance of the class. It has the job of cleaning up after the class. For instance,
in the example from Fig. 6.8, the destructor would be in charge or freeing all memory allocated to the nodes
of the linked list. For more complex classes, the destructor may do a lot more work.

The important thing to keep in mind is that these methods are provided in order to automate work so the user
of the class doesn’t have to do it themselves.

Note

Just what is an object? In non-object oriented programming, we create variables out of any CDT. We
simply call them variables and think of them as units of data. The equivalent in OOP is a class instance
or for short an object. This is where the object part of object oriented programming comes from.

The class is the template for building objects, just like the declaration of a CDT is a template for declaring
variables of that particular compound data type.
Each object should be thought of as a big box in memory that has all the member variables and class
methods specified by the class declaration. Objects are the essential functional unit in OOP. The
difference between a class and an object is illustrated in Fig. 6.9.

6.7 Implementing a class in C++

In order to explore some of the features of OOP that help us design and implement good software, we need to
see how these features work in the context of an actual Object Oriented programming language. For this chapter

272

6.7 Implementing a class in C++ (C) F. Estrada 2024

Figure 6.9: The class is a blueprint for building objects, the class specifies all the parts, components, and
functionality each object must have. From the class, we create objects which are specific instances of a class.
Images: Left-side, Wikimedia Commons, by Eryn Blaireova, CC-SA2.5. Right-side, U.S. National Archives, Public
Domain.

we will use C++. This will allow us to apply all the work we have done thus far in learning C as we work on
developing an understanding of how object oriented programming allows us to build software in ways that were
not possible with regular C.

C++ was developed in the 80’s as a significant improvement over standard C. It was provided with the syntax
and features required to support object oriented programming, and has been continuously expanded and improved
over the years. C++ is one of the more important languages in software development. Areas such as operating
systems, security, networking, embedded systems, media-related software (e.g. encoding/decoding video and
audio), and compilers; among others make extensive use of software written in C++. Because it is developed from
C, the basic building blocks of C++ programs are already well known to us. Function declarations, variables and
standard data types, loops and program control structures are all the same as in C. All the regular C programs we
have written thus far are also valid C++ programs. But the range and flexibility of features provided by modern
C++ compilers far exceeds anything regular C can do.

With that in mind, let’s see how a class is declared in C++, and consider the similarities a class declaration has
with regard to compound data types in C. The following listing could be stored in a header file called StringList.h

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

// Notice the #include statements above. We are using standard
// C libraries (which is allowed since C++ compiles any standard
// C code} for familiarity.
// However, if you want to write pure C++, you should use the
// object oriented libraries that provide much more advanced
// (and object-based) functionality! We will not do that here
// because this is not meant to be a book on C++ programming.
// Here is a good-ol’ CDT to store nodes in a
// linked list - for comparison with the class
// just below. There is nothing fancy in the CDT,
// just a bento box with data in it.

typedef struct ListNodeStruct
{

273

6.7 Implementing a class in C++ (C) F. Estrada 2024

char string[1024];
struct ListNodeStruct *next;

} ListNode;

// Here is something new. A StringList class,
// which bundles together all the variables
// and data needed for the list, as well as
// the functions that implement the functionality
// required of the list of strings.
class StringList
{

// Member variables
private:

ListNode *head;
int list_length;

// Class methods
public:

StringList()
{

head=NULL;
list_length=0;

}
~StringList()
{

clear_list();
}

void insert_string(char string[1024]);
void delete_string(char string[1024]);
void print_strings(void);
ListNode search(char string[1024]);
void clear_list();
int get_length();

private:
void remove_head(void);

};

A few things to note in the example above:

The typedef for the ListNode is not part of the class, but we need it to define the nodes of the string linked
list we are building.
The class declaration is just like any other CDT declaration we have done before in C, except we use the
keyword class so the C++ compiler knows we are bundling data and functions into one nice package.
All the member variables in our class are private. No functions or code outside of the class can access or
change these variables. They are hidden from user code.
The function StringList() is the class constructor. It has no return value or type. It gets called automatically
when we create objects of this class, and will initialize the class’ member variables as needed.
The function ~StringList() is the class destructor. Like the constructor, it has no return value or type,
and gets called automatically when an object of the class goes out of scope or gets deleted. Its job is to clean
up after the class - so in effect, free any memory that was dynamically allocated by class methods, close
any open files, etc.

274

6.7 Implementing a class in C++ (C) F. Estrada 2024

The remaining public methods are analogous to the functions you would normally find in any regular linked
list. We have insert_string(), delete_string(), and search().
There is one private class method: update_length(). This method can only be called by other methods
within the class. It can not be directly called by the user.

In order for the class to be useful, we need to provide an implementation for the class methods. The
implementation typically goes into a separate program file with the extension .cpp. Here is what the implementation
looks like for the short class we declared above:
#include "StringList.h"

// Notice the ’StringList::’ prefix for function declarations.
// This is a class name qualifier and tells the compiler we are
// providing an implementation for a function of the ’StringList’
// class. Without it, the compiler would assume we are
// implementing a regular (non-class member) function that
// happens to be called ’insert_string()’.
// All functions that are part of the class must have the
// corresponding qualifier.

void StringList::insert_string(char string[1024])
{

// Insert a new string into the linked list
// at the head of the list (for simplicity)

ListNode *p=new ListNode; // This is how we dynamically
// allocate data on-demand in C++
// (no need for calloc)

if (p==NULL)
{

printf("There is no memory for more strings!\n");
return;

}

strcpy(&p->string[0],string);

if (this->head==NULL) // ’this’ is a pointer to
{ // the specific object for

this->head=p; // which the function was called
this->list_length++;
return;

}
else
{

p->next=this->head;
this->head=p;
this->list_length++;
return;

}
}

void StringList::delete_string(char string[1024])
{

// Deletes a string from the linked list if it
// is found there

275

6.7 Implementing a class in C++ (C) F. Estrada 2024

ListNode *p, *q;

p=this->head;
// If requested string is at the head of the list
if (strcmp(p->string,string)==0)
{

this->head=this->head->next;
this->list_length--;
delete p;
return;

}

// Otherwise
while(p->next!=NULL)
{

q=p->next;
if (strcmp(q->string,string)==0)
{

p->next=q->next;
delete q;
this->list_length--;

}
p=q;

}
}

void StringList::print_strings(void)
{

// Print out all the strings currently in the list

ListNode *p;

printf("*** The strings currently in our list are:\n");
p=this->head;
while(p!=NULL)
{

printf("%s\n",p->string);
p=p->next;

}
}

ListNode StringList::search(char string[1024])
{

// Find a node in the list that contains the requested
// string. Return a *COPY* of the node that has no
// pointers to list data. If no matching string is found,
// it returns an <empty> ListNode.

ListNode *p, copy;

strcpy(©.string[0],"");
copy.next=NULL;

p=head;
while (p!=NULL)
{

if (strcmp(string,p->string)==0)
{

copy=*(p);
copy.next=NULL;

276

6.7 Implementing a class in C++ (C) F. Estrada 2024

return copy;
}
p=p->next;

}

return copy;
}

void StringList::clear_list(void)
{

// Free all memory allocated to the linked list, reset
// length to zero, and set head pointer to NULL
while (this->head!=NULL)

remove_head();
}

int StringList::get_length(void)
{

// This is what in object-oriented programming is called
// a ’getter’. A function that returns the *value* of
// a private variable so the user can find out what it is
// without actually getting direct access to read or change
// the variable.

return this->list_length;
}

void StringList::remove_head(void)
{

// Removes the node at the head of the linked list
// and releases the memory allocated to the list
// node. It reduces the length of the list by 1
//
// This function is used by the function that
// clears the linked list. We do not give the users
// of the class access to it because they could
// use it to remove list data without
// regard for the contents. Hence, we make this
// function private.

ListNode *p;

if (this->head==NULL) return;

p=this->head;
this->head=this->head->next;
delete p;
this->list_length--;

}

A few syntax notes are worth a quick look:

The declarations for the class methods have to be preceded by the name of the class and a ’::’. This is used
by the compiler to figure out which class each function is a part of (there may be many different classes with
functions that have the same name, or there can be functions that are not part of any class that have the same
name as a class member.
We no longer have to use malloc() or calloc() to dynamically allocate memory. C++ provides a keyword

277

6.7 Implementing a class in C++ (C) F. Estrada 2024

new that allocates and initializes new memory on request, as well as a corresponding delete keyword that
releases space once we are done using it. These two keywords exist because with objects some extra work has
to be done. Whenever we create a new dynamic object, the constructor has to be called. The new operator
does this. Similarly when we are done using an object and want to release its memory, the destructor has to
be called. The delete operator takes care of that.
To access any of the variables or class methods from within the class member functions, we use the ’this’
pointer. It works just like any other pointer in C and C++ and we can get to any component of the class by
using the -> (arrow) operator. What’s up with ’this’? If we think about it, to access a field in a CDT we
use variable_name.field_name (or pointer_name->field_name). However, we do not know the name the
object will have in advance. The user will call their objects whatever they want, and there will most likely
be many objects with different names from the same class - so we can’t use the object’s name while writing
the implementation of the class member functions. The ’this’ pointer is a convenient way for the compiler
to know that whatever name the user gives an object, a member function needs access to a specific field
within that particular object.

At this point, it’s worth spending a moment or two thinking about how the StringList class we just created
compares to the non-object oriented linked lists we developed in Chapter 3. The fact that both the data and
functionality are bundled together as part of the StringList class makes the design of the software cleaner, more
intuitive, and easier to understand. Much like CDTs allowed us to represent complex data items as individual
units of information, classes allow us to represent software components as individual units of functionality.

Not only that, with our original linked lists written in C there was no protection against a user of the code
accidentally (or maliciously) accessing sensitive information (such as, for instance, the pointers that keep the list
organized and properly linked). The StringList class uses information hiding to ensure that users have no access
to such sensitive variables and/or class methods. To understand how this works, let’s look at a very simple program
that creates one object of the StringList class, and then tries to access private variables or private class methods.
#include "StringList.h"

int main(void)
{

// This is a very short example of using the StringList library to
// create a linked-list of strings.

StringList my_list; // Here is an actual object of the
// StringList class.

// Let’s see what happens if we try to access private variables or
// methods:

printf("The length of the list is: %d\n",my_list.list_length);

// Try and call a private class method
my_list.remove_head();

return 0;
}

If we try to compile the program above, we will see the following:

278

6.7 Implementing a class in C++ (C) F. Estrada 2024

> g++ -c stringExample.cpp
stringExample.cpp: In function ’int main()’:
stringExample.cpp:14:54: error: ’int StringList::list_length’ is private within this context

printf("The length of the list is: %d\n",my_list.list_length);
^~~~~~~~~~~

In file included from stringExample.cpp:1:0:
StringList.h:33:21: note: declared private here

int list_length;
^~~~~~~~~~~

stringExample.cpp:17:25: error: ’void StringList::remove_head()’ is private within this context
my_list.remove_head();

^
In file included from stringExample.cpp:1:0:
StringList.h:55:23: note: declared private here

void remove_head(void);
^~~~~~~~~~~

The compiler will throw an error any time that user programs attempt to access private data or methods contained
in an object. There is no way to build a working executable program unless these errors are resolved by removing
any attempts to access private components of the class. In this way, the compiler enforces our decision to hide
certain parts of our class from users of the module.

Let’s now see a short example of a program using our StringList class as intended, to store and manipulate
strings:
#include "StringList.h"

int main(void)
{

// This is a very short example of using the StringList library to
// create a linked-list of strings.

StringList my_list; // This is is an actual object (and instance)
// of the StringList class.

printf("Adding a couple of strings to the list...\n");
my_list.insert_string("First String");
my_list.insert_string("Second String");
printf("The length of the list is %d\n",my_list.get_length());
my_list.print_strings();

printf("Add one string and delete another...\n");
my_list.insert_string("Third String");
my_list.delete_string("First String");
printf("The length of the list is %d\n",my_list.get_length());
my_list.print_strings();

printf("Clear the list of strings...\n");
my_list.clear_list();
printf("The length of the list is %d\n",my_list.get_length());
my_list.print_strings();

return 0;
}

The listing above should not be too surprising. But it illustrates just how clean, intuitive, and easy to follow a

279

6.7 Implementing a class in C++ (C) F. Estrada 2024

program becomes when it uses objects to do its work. The equivalent C code would have much longer and more
cumbersome function calls (which require additional parameters) and would be longer and less tightly integrated
than the object oriented program shown above.

As a very simple example, consider the task of figuring out the length of the list. In the C implementation
there was no easy way to keep track of this value, and we had to do a list traversal to count the number of entries
every time we needed to find the length. In the StringList class this is easily resolved by having a member variable
that keeps track of the length, and that is directly manipulated by functions that insert or remove entries from the
list. This removes the need for a list traversal.

Compiling and running the code above produces the following output:
> ./a.out
Adding a couple of strings to the list...
The length of the list is 2
*** The strings currently in our list are:
Second String
First String
Add one string and delete another...
The length of the list is 2
*** The strings currently in our list are:
Third String
Second String
Clear the list of strings...
The length of the list is 0
*** The strings currently in our list are:

6.7.1 Method Overloading

Recall that as we were designing a simple API for path finding, we ran into a situation where one some of
the users of our module wanted to use an adjacency list instead of an adjacency matrix. In C there is no clean
solution that allows users to use either of these (as needed) to access the functionality provided by our module,
and we were stuck creating multiple functions with similar names and significant amounts of code duplication in
order to provide the needed functionality. Code duplication is not a good thing and should be avoided whenever
possible. We will soon see ways in which object orientation allows us to elegantly expand and refine an object’s
functionality without unnecessary code duplication. But first, let’s look at a feature of object oriented languages
that allows us to avoid having multiple functions with similar names all of which are intended to provide the same
functionality.

In C++ and other object oriented languages, we are allowed to declare multiple functions with the same
name but different arguments and/or return value types. This is called method overloading.

In our API example, we had a situation where some users needed a function that worked with an integer
adjacency matrix, some users wanted a function that worked with a floating point adjacency matrix so they
could use it on graphs with weighted edges, and some users wanted a function that worked with an adjacency list
(we decided we should also support weighted and non-weighted edges). This created four functions with different
names in C. With C++ the situation is different, we are allowed to declare the functions as follows:
intList *findPath(int Adj[N][N], int N, int start, int goals[k], int k);
intList *findPath(double Adj[N][N], int N, int start, int goals[k], int k);
intList *findPath(intList* A[N], int N, int start, int goals[k], int k);

280

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

intList *findPath(floatList* A[N], int N, int start, int goals[k], int k);

This may not seem like a big change - after all we still have four functions with slightly different functionality
which all do the same thing. However, they all have the exact same name which makes it conceptually easier for a
developer to work with them. Method overloading makes the code for programs using a module easier to read, and
allows an API to provide the functionality required in a clean and concise way. With an object oriented language,
there is no possible confusion between functions that have similar names but provide different functionality, and
variations of the same function which have different names because the language doesn’t support overloading.

How does method overloading work in practice? The compiler has access to all the different variations of the
function, when a user program calls the function, the compiler checks the list of arguments passed to the function
and finds a matching definition among the overloaded methods we provide in our module. If a matching method
is found, the compiler will use the correct function all. Otherwise it reports that there is no matching method for
the specific list of parameters the user provided.

Just a word of caution: While we can provide as many different overloads for any given method as we want,
we should not simply create code blot by providing every possible combination of parameters we can think of.
Instead, every version of an overloaded method that we decide to add to the API should be supported by a valid
use case.

Note

Method overloading is an example of what in object oriented programming is called polymorphism.
Polymorphism is a term for a thing that has multiple different shapes. In the case of method overloading,
it refers to a function that has the same purpose (same functionality, same name) but different lists of
parameters and/or return type. We will soon see that polymorphism also occurs at the level of objects
and that it provides us with incredible power in terms of building functionality into our classes.

6.8 Inheritance and class hierarchies

A very common situation in software design involves writing programs that can work with a variety of data
items that are variations, or refinements of each other. For example, software to run a library catalog will need
to handle records for books, magazines, journals, periodicals, graphic novels and other media types. These are
all related, they have some common properties (e.g. a name, a date of publication, a library code), and some
different attributes that are specific to each particular type of item. As another example, consider a media player
application - it is required to handle a large variety of media types and media formats. The corresponding media
files have common properties as well as attributes that are specific to each media type.

Handling such situations without object oriented programming results is code that is cumbersome, hard to
maintain, test, debug, and expand, and that contains significant amounts of code duplication. To see why this
is the case, consider the following concrete problem:

Example 6.3 We are implementing a software synthesizer. This is a program that takes a music file that contains
information about notes in a song, the timing and duration of each note, and also the instrument that plays

281

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

each note. The synthesizer then generates sound to play the song. One way to think of it is this: Give the software
synthesizer a musical score, and it will play the music shown in that score. It is not the same as a recording
such as you would get from a streaming service or store on your smartphone - they key is that the user can change
the score and the music will change accordingly.

A key component of the software synthesizer is a list of notes that are playing at a particular time. Each of
these is then processed to generate the corresponding sounds. In C, we would normally represent a note as a CDT
using something like this:

typedef struct note_struct
{

double time_position; // Note’s position in the musical score
double frequency; // The note’s frequency
double duration; // How long the note is played
int volume; // The loudness of the note
int instrument_ID; // Indicates which instrument this note

// should be played with
double *note_data; // Pointer to the note’s data array

} Note;

But if you think about it, this is very limiting. Different instruments may require additional information in
order to play a note properly. For example, if a note is being played by a guitar, we may need to know which of the
guitar’s strings is used to play it (which will change the sound). If in addition the note is being played by an electric
guitar, we may need to know the state of the distortion pedal or the wah-wah lever. The point is, if we are using
CDTs, and we need the software to work with notes as a fundamental unit of information, we would need to pack
every single piece of information that any of the instruments may need into the same CDT - there is no way to
modify or adapt the CDT for each instrument. The resulting CDT will look like so:

typedef struct note_struct
{

double time_position; // Note’s position in the musical score
double frequency; // The note’s frequency
double duration; // How long the note is played
int volume; // The loudness of the note
int instrument_ID; // Indicates which instrument this note

// should be played with
int stringNo; // Which string is used (for guitar only)
double pedal_val; // State of the pedal (for electric guitar only)
double wahwah; // State of the wah-wah level (electric guitar only)
double soft_p; // State of the soft pedal (piano only)
double damper_p; // State of the damper pedal (piano only)
.
. // Many, many more variables needed by each of the
. // different instruments
.
double *note_data; // Pointer to the note’s data array

} Note;

This is not a very elegant solution, and also wastes a significant amount of storage space, as most notes will use
only a handful of the variables contained in the CDT to generate their sound.

Having a big and bulky CDT is not ideal, but it is not our only problem. Somewhere in the software synthesizer
code there will be a function whose job is to generate the actual sound data for a particular note. You can imagine

282

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

a loop that goes over each of the notes that need to be played at some point in time, and for each node, it calls the
function that actually produces the corresponding sound. The sound producing function will look as shown below:

double get_sound_sample(note *my_note, double time_index)
{

// Computes and returns the sound value for the specified note
// and time index.

if (note->instrument_ID==0)
{

// Do the processing required to get a sound value
// for instrument 0, using the required variables
// from the CDT

}
else if (note->instrument_ID==1)
{

// Do the processing required to get a sound value
// for instrument 1, using the required variables
// from the CDT

}
else if (note->instrument_ID==2)
{

// Do the processing required to get a sound value
// for instrument 2, using the required variables
// from the CDT

}
else if ... // for as many instruments as the synthesizer

// supports (this can be hundreds!)

}

Within each if...else block, there will be code that produces sound for a specific note and specific instrument.
A significant portion of this code will be identical, so there is a lot of code duplication going on here. Beyond
being long, cumbersome, and hard to read for a developer, we have a serious problem in terms of maintaining,
expanding, testing, and debugging this function. With so much duplicated code, if we find a bug chances are we
will have to apply fixes (and then test them) at multiple places in this function. This increases the likelihood we
will miss something. Expanding the functionality of the function (e.g. to add another instrument) only makes this
situation worse.

In a situation like this, it is not difficult for the code to become unmanageable, unmaintainable, and eventually
stale as the effort required to keep it up to date, fix bugs, and add functionality becomes too great.

We would like to solve a problem similar to the one we just described above, but at the same time we need to:

Maximize code reuse - Any code that is shared among the different variations of our items should be
implemented only once.
Minimize data duplication - Common variables and data should be declared only once.
We want to be able to extend and/or refine the behavior of any of our items without affecting the rest.
We want our resulting software to be organized in a way that makes the relationship between our data items
clear, and easy to understand conceptually.

283

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

6.8.1 Hierarchies of objects

With object orientation, we can build programs that take advantage of the idea that related objects can be
organized into hierarchies in such a way that shared characteristics and functionality are not duplicated but
we can, at the same time, provide any level of refinement that we need for each of the different objects in the
hierarchy.

For our software synthesizer and the various types of notes it has to handle, a possible hierarchy would look
like the diagram shown in Fig. 6.10.

Figure 6.10: A diagram illustrating the hierarchical relationships between different types of notes. The idea being
that we can build functionality by starting with more general (abstract) items, and then creating multiple specialized
versions of them that share common attributes.

The diagram illustrates the notion that there are attributes (variables and functionality) that all notes must
have. It makes sense to bundle them together into a plain Note. We can then derive different versions of the plain
Note, one for each of the instruments our synthesizer supports. The specialized note types will inherit all the
common attributes of their parent (the plain Note), and add their own specialized attributes that are required to
generate their particular type of sound. We can create as many levels of specialization as we need, so for example
we can derive various specialized types of Guitar Note, or Piano Note, or Violin Note in order to further enrich
our synthesizer’s capabilities.

Because our different notes are organized in this hierarchical fashion, there is little or no duplication of either
data or functionality. Each specialized type will define only those attributes that are not shared with other types
of note, and that make each specialized type unique. Any common attributes are created once and then shared
according to the relationships described by the hierarchy.

284

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

6.8.2 Implementing hierarchies and inheritance

Object oriented languages allow us to implement hierarchies like the one shown in Fig.6.10 by allowing us
take any class, and derive specialized versions of it. The derived classes are often called child classes, while the
original class is usually called either base class or parent class. Let’s see how that would work in the example of
the software synthesizer and see how the use of class hierarchies results in a program that is much cleaner, and
easier to read, maintain, test, and debug.

Example 6.4
One of the first step in designing the software synthesizer would have been to figure out the hierarchy of

object types that we need to handle. This is not always straightforward and should receive careful attention because
once the hierarchy is implemented, it can be difficult to change it in a significant way. So as part of our design
process (as described in Chapter 2), with OOP we have to spend a good amount of time figuring out how to organize
our data and functionality into classes and class hierarchies, and we need to figure out which attributes will
belong in which class within the hierarchy. This work is well worth the effort, as a well designed class hierarchy
will make our work all that much easier when implementing, testing, and debugging our software.

For this example, we will work with the hierarchy shown in Fig. 6.10 and implement the plain Note as well
as two child classes, the Guitar Note and the Piano Note. This is simply to illustrate how the process works
and the principles involved in building and using a simple class hierarchy. The example can easily be extended to
incorporate more child classes at different levels of specialization.

Let’s have a look at the implementation of the Note class which is the parent class for both Piano Note and
Guitar Note.
class Note
{
// Member variables
protected:

double time_position; // When the note starts
double frequency; // The note’s frequency
double duration; // Duration in milliseconds
int volume; // Volume in 0-10
double *note_data; // Data array for the note

// Class methods
public:

Note()
{

// Default constructor, used when we do something
// like this: my_note = new Note;
this->time_position=0;
this->frequency=0;
this->duration=0;
this->volume=0;
this->note_data=NULL;

}

Note(double t, double f, double d, int v)
{

// A constructor that initializes the various values
// for this note, used when we do something like

285

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

// this: my_note = new Note(1.25,440,1.5,7);

// It is an example of member overloading. The
// compiler chooses the right constructor based
// on the parameters we specify while creating the
// Note!

this->time_position=t;
this->frequency=f;
this->duration=d;
this->volume=v;
this->note_data=NULL;

}

virtual ~Note()
{

printf("* Note class destructor called!\n");
// Release memory for this note!
if (note_data!=NULL) delete note_data;

}

virtual double get_sound_sample(double time_idx)
{

// This function would generate the
// correct sound value for a plain Note
// (maybe sounds like a beep?) at the
// specified time index, given the
// note’s frequency, duration, and volume.

// Here, for simplicity, it will simply
// print a message

printf("A plain Note with frequency %f is making sound at time %f\n",this->
frequency,time_idx);

return 0;
}

virtual void print_note_info()
{

// Prints out the values of the note’s
// variables
printf("This generic Note has frequency %f\n",this->frequency);
printf("This generic Note has duration %f\n",this->duration);
printf("This generic Note has volume %d\n",this->volume);
printf("This generic Note plays at time index %f\n",this->time_position);

}
};

The Note class contains all the attributes that are common across all the possible types of notes that our synthesizer
may need to handle. This includes a few key member variables, and two methods that are common to all notes.
A couple of notes on syntax:

The protected access modifier is something we didn’t see before. It allows us to share common attributes
amongst objects that are part of a class hierarchy while preserving information hiding. Specifically,
protected components of a class are visible within code in the derived classes but are hidden from code
that is not part of the parent or derived classes. As far as code outside the classes is concerned, protected

286

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

components behave as if they were private. We do not use the private access modifier here because any
private attributes would not be visible within derived classes (notice that they still can be used by a derived
class object through any inherited methods implemented in the base class). Having both private and protected
access modifiers allows us to have very fine control regarding how class attributes are shared or not across
a hierarchy, and at the same time enforce information hiding.
There are two constructors, the default constructor which takes no parameters and initializes the class’
attributes to default values, and a constructor that accepts a list of initialization values for the data members
of the class. This is an example of method overloading and is very common - often we want to provide
different constructors corresponding to different ways in which users may need to create objects of a given
class.
The get_sound_sample() method is declared as virtual - this tells the compiler that we expect this function
to be specialized by the derived classes. This doesn’t mean that child classes are forced to re-implement the
function, it simply means that they could and often will do just that. If the derived class provides their own
version of get_sound_sample(), then their specialized version will be used. Otherwise the implementation
from the Note class will be used.

In the listing above, we created a very simple dummy function to generate sound samples. It doesn’t actually
make any sound, it prints a message instead - we will use this in a moment to see how the class hierarchy works,
but in a real implementation there would be a whole lot of code in this function, related to computing and returning
the appropriate sound value for the Note at the specified time index.

Now that we have the parent class, let’s see how we would create the two child classes: Piano Note and
Guitar Note:

class PianoNote : public Note
{

// This is a derived or child class. The parent is ’Note’
// and the ’public’ access modifier states that:
// All ’public’ attributes of ’Note’ will be ’public’ in PianoNote
// all ’protected’ attributes of ’Note’ will be ’protected’ in PianoNote

protected:
double soft_p; // State of the soft pedal
double damper_p; // State of the damper pedal

public:
PianoNote():Note()
{

// Default constructor - it calls the default constructor of the parent class!
this->soft_p=0;
this->damper_p=0;

}

PianoNote(double t, double f, double d, int v, double sp, double dp) : Note(t, f, d,
v)

{
// Constructor with initialization data, calls the corresponding constructor
// in Note for initializing common attributes.
this->soft_p=sp;
this->damper_p=sp;

287

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

}

~PianoNote() override
{

// Should do anything needed to clean up after
// PianoNote information *but* not the common
// information from ’Note’, since the destructor
// for ’Note’ will be called immediately after this
// function is done.
// So, here, we don’t need to do anything at all...
printf("** PianoNote class destructor called!\n");

}

double get_sound_sample(double time_idx) override
{

// This is the implementation of the get_sound_sample
// which should be different from a PianoNote. Here
// we will simply place a print statement to indicate
// this function is being called

printf("A PianoNote with frequency %f is playing at time index %f\n",this->
frequency,time_idx);

return 0;
}

void print_note_info() override
{

// Prints information for this PianoNote
printf("This PianoNote has frequency %f\n",this->frequency);
printf("This PianoNote has duration %f\n",this->duration);
printf("This PianoNote has volume %d\n",this->volume);
printf("This PianoNote’s soft pedal is at %f\n",this->soft_p);
printf("This PianoNote’s damper pedal is at %f\n",this->damper_p);
printf("This PianoNote plays at time index %f\n",this->time_position);

}

};

Consider how easily we created a new type of note. We used the common attributes from Note, and simply
added the data members that are specific to the PianoNote. Just two variables, because PianoNote will inherit
frequency, duration, time_position, and volume from Note. We are actually using those common attributes
within the implementation for PianoNote, for instance, in the function that prints the values of the PianoNote
variables. But we don’t have to declare them within the PianoNote class, they are passed down from the parent
class.

Notice as well that the constructors for PianoNote are short and do not duplicate code - we simply call
the constructor for the parent class and let that constructor deal with the common attributes. The PianoNote
constructors need only worry about the attributes that are specific to piano notes. Similarly, the destructor for
PianoNote doesn’t need to do anything - because the compiler will call the Note destructor automatically after the
PianoNote destructor has done its work, so as to ensure that proper cleanup of common attributes is performed.

Finally, and importantly, notice that PianoNote provides its own implementation of get_sound_sample().
This is possibly the most important bit since it is what allows PianoNote to refine or specialize its behaviour over
that of a generic Note. This is called method overriding (do not confuse this with method overloading which we

288

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

discussed earlier) and is explicitly indicated in the declaration of the function.
When the get_sound_sample() function is called, the compiler checks if the child class has provided an

override, and if so, it uses the child class function. If, on the other hand, the child class did not provide its own
implementation, then the parent’s class version is called.

This provides us with the flexibility to decide which functionality will be refined by the child class, and which
functionality will be identical to what is provided by the parent class.

To complete the example, here’s the declaration for GuitarNote:
class GuitarNote : public Note
{

// GuitarNote is also a child of Note

protected:
int stringNo; // Which string was plucked

public:
GuitarNote():Note()
{

// Default constructor - it calls the default constructor of the parent class!
this->stringNo=0;

}

GuitarNote(double t, double f, double d, int v, double strNo) : Note(t, f, d, v)
{

// Constructor with initialization data, calls the corresponding constructor
// in Note for initializing common attributes.
this->stringNo=strNo;

}

~GuitarNote() override
{

// Nothing to do here, the compiler will call the destructor from
// ’Note’ after this function is called to ensure proper cleanup.
// GuitarNote didn’t add any dynamic data that needs cleanup!
printf("** GuitarNote class destructor called!\n");

}

double get_sound_sample(double time_idx) override
{

// This is the implementation of the get_sound_sample
// which should be different from a GuitarNote. Here
// we will simply place a print statement to indicate
// this function is being called

printf("A GuitarNote with frequency %f is playing at time index %f\n",this->
frequency,time_idx);

return 0;
}

};

The definition for GuitarNote is similarly small, and doesn’t duplicate any of the work that is already done in
Note. Notice that we did not create a specialized version of print_note_info(), so if we call this function from a
GuitarNote, we will in effect be using the function inherited from the parent class.

To complete the example, let’s see how, once we have spent time and energy building a nice class hierarchy

289

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

of notes, we can easily write a program that is easy to read and understand, doesn’t have to deal with the
complexities of different types of notes, and yet is able to use any of the types of notes we have provided.
int main()
{

// Let’s declare an array of pointers to ’Note’ objects
// so we can simulate a loop that would ’play’ music
// from a set of notes.

Note *all_notes[10];

// Pay close attention, the array is for ’Note’ objects!
// but see what we can do now that we have a class hierarchy:

all_notes[0]=new Note(1.25, 440, 2.0, 7); // A generic ’Note’
all_notes[1]=new PianoNote(1.5, 880, 1.0, 5,0,0); // A ’PianoNote’
all_notes[2]=new GuitarNote(2.0, 550, .5, 8,1); // A ’GuitarNote’

// We don’t need to fill the remaining entries, but we could.
// The key point here is: The program thinks its working with
// ’Note’ objects - but we can put *any derived* class objects
// in this array. Why?
// Because a PianoNote is a Note (just a specialized one!)
// and a GuitarNote is also a Note
// So software that works with ’Note’ objects can use
// any of the specialized versions without modification!

// Let’s see what happens when we want to ’play’ sound from
// these notes:

printf("******************\n");
printf("Playing all notes:\n");
all_notes[0]->get_sound_sample(1.0);
all_notes[1]->get_sound_sample(1.0);
all_notes[2]->get_sound_sample(1.0);
printf("\n");

// Notice that the code above doesn’t need to worry about the
// fact each of these notes is actually a different type of
// object! but the correct behaviour is obtained. For the
// PianoNote, the PianoNote function is used, for the GuitarNote
// the corresponding function is called.

// Now see what happens when we call the print_note_info()
// function:

printf("******************\n");
printf("Printing info for a generic Note:\n");
all_notes[0]->print_note_info();
printf("\nPrinting info for a PianoNote:\n");
all_notes[1]->print_note_info();
printf("\nPrinting info for a GuitarNote:\n");
all_notes[2]->print_note_info();
printf("\n");

// The last call above is interesting. GuitarNote does not provide
// a specialized version of ’print_note_info()’, so the
// function from ’Note’ is automatically called instead!

// That’s it for this short example, let’s clean up!

290

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

printf("Deleting a generic Note\n");
delete all_notes[0];
printf("\nDeleting a PianoNote\n");
delete all_notes[1];
printf("\nDeleting a GuitarNote\n");
delete all_notes[2];

return 0;
}

The most important thing to notice in the listing above is that the program concerns itself only with Note
objects - it doesn’t know or care about PianoNotes or GuitarNotes (and if we had many, many more derived note
classes, it wouldn’t worry about those either). The program defines an array of Note objects, and then proceeds to
use it to handle all of the types of notes that exist in our class hierarchy.

This works for a reason that is both elegant and intuitive: a PianoNote is a Note. A GuitarNote is also a Note.
And if we had defined ElectricGuitarNote objects, we would realize that they are GuitarNotes and therefore also
Notes. The result of this is that if we write a program that can handle Notes, the same program will be able to
handle every derived class that is a specialized version of a Note. This is a fundamental idea in OOP and makes
software design and implementation a lot easier and cleaner. Compare the code above with the long, cumbersome,
and repetitive get_sound_sample() we tried to implement in C, and it should be clear that OOP has allowed us to
create software that is significantly better in terms of the properties we described earlier in this Chapter.

Compiling and running the program in the listing above results in this output:
> ./a.out

Playing all notes:
A plain Note with frequency 440.000000 is making sound at time 1.000000
A PianoNote with frequency 880.000000 is playing at time index 1.000000
A GuitarNote with frequency 550.000000 is playing at time index 1.000000

Printing info for a generic Note:
This generic Note has frequency 440.000000
This generic Note has duration 2.000000
This generic Note has volume 7
This generic Note plays at time index 1.250000

Printing info for a PianoNote:
This PianoNote has frequency 880.000000
This PianoNote has duration 1.000000
This PianoNote has volume 5
This PianoNote’s soft pedal is at 0.000000
This PianoNote’s damper pedal is at 0.000000
This PianoNote plays at time index 1.500000

Printing info for a GuitarNote:
This generic Note has frequency 550.000000
This generic Note has duration 0.500000
This generic Note has volume 8
This generic Note plays at time index 2.000000

Deleting a generic Note
* Note class destructor called!

291

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Deleting a PianoNote
** PianoNote class destructor called!
* Note class destructor called!

Deleting a GuitarNote
** GuitarNote class destructor called!
* Note class destructor called!

As you can see from the output - the program correctly handles each subtype of note - the compiler generates
a program that automatically calls the correct function based on the subtype of note that is actually being used at
any given time. We can see that the overrides work properly: The correct get_sound_function() is being called
for each of the subtypes of note, and where no override is provided (as is the case for the print_note_info() in the
GuitarNote class), the function provided by the parent class is called. Finally, the destructors are being called in
order (as expected) - first the destructor for the child class and then the destructor for the base class.

In summary, object oriented languages provide a way for us to build rich hierarchies of related objects that
provide a conceptually clear model for the objects our software will be working with, allow us to implement
functionality and store information with little or no duplication, and with flexibility in deciding what behaviours
will be refined by derived classes, and what behaviours will be inherited. A lot of tedious work is taken care of
automatically (e.g. calling constructors and destructors, figuring out which version of a function to call), and
this allows us to think of, design, and implement software at a more abstract level.

The result is better software - assuming that the proper amount of thought and care was put into the design
of the class hierarchy and how to use the features of OOP to make the software solid with regard to our good
software wish list.

This wraps up our very short look at Object Oriented Programming and good software design. This is
really just a tiny overview of what is a complex, rich, and fascinating discipline. If you are interested in it, try a
book on Software Design, or OOP next! There’s just one more thing for us to discuss before the end of the Chapter.

6.9 Building programs that work - Part 6

Now that we have spent some time considering the issues involved in designing good software, and we know
just how much work, thought, and time goes into building solid, useful libraries and software modules for others
to use; it is time for us to think about the huge amount of software that has already been written and is available
for us to build upon. The goal here is not to understand the technical details of how to use a software module
implemented by someone else for our own projects. In this last section we want to learn about things we want
to keep in mind when deciding whether or not we want to incorporate a specific software module developed by
someone else into our own project. As we will see, the choices we make in this regard can have some meaningful
impact for our project, including imposing certain conditions regarding how our work can be used, distributed,
and/or commercialized.

The most important thing to remember here is that we can not simply take software we did not create and
put it into our project. We have to think through how to properly give credit where and as needed, and we have
to be certain we understand any copyright, licensing, and distribution conditions that come with any software we
pick up to use with our projects.

292

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

6.9.1 Common libraries distributed with the compiler and operating system

The first source of software that we can definitely use for our own projects consists of all the system libraries
that are distributed with your compiler. They include a fairly wide range of common functionality that many projects
will need. You’ve already used some of these libraries: stdio, stdlib, string and math at the very least. These are
provided to us free of any charge and with no expectation regarding how we will distribute or commercialize our
programs.

If you want to see which libraries are included with your compiler, you want to find the directory that contains
the header files (on a Linux system this is typically in /usr/include, there will be a corresponding location on
Windows and Mac).

Beyond the libraries already included with your compiler, there are many libraries you can in install to provide
specialized functionality, and this includes anything from handling image files, network connectivity, machine
learning, security and cryptography and much more. Compiler libraries are usually distributed under the GNU
Lesser General Public License (https://www.gnu.org/licenses/lgpl-3.0.en.html). This is something
we should think about for a moment - it means there are terms and conditions that we have to be aware of and
willing to accept if we use any of these libraries within our programs.

Fortunately, the LGPL is fairly permissive - this makes sense, if these libraries placed too many conditions on
what users can do with programs that contain them, no one would use them. An important section of the license
states the following: You may convey a Combined Work under terms of your choice that, taken together,
effectively do not restrict modification of the portions of the Library contained in the Combined Work and
reverse engineering for debugging such modifications. This tells us that if we incorporate libraries distributed
under the LGPL within our programs, we are not restricted in how we can distribute our work and what licensing
terms we apply to the resulting programs as long as the users of the software are still able to freely modify and
reverse engineer the parts of the libraries that were used within the software.

In other words - we can’t lock down any portion of the libraries distributed under LGPL that are part of our
software, which is not usually a problem unless we are distributing the library’s source code in some form. Most
commercial software comes in the form of executable programs that do not contain the source code for libraries
used to build them, so there are no restrictions placed by the LGPL on such software and how we can distribute or
commercialize it.

But, you should always check the licensing terms for any non-standard libraries that you may be thinking of
using and make sure you are aware of what restrictions, if any, they place on software you are building.

6.9.2 Free and Open Source Software (FOSS)

An immense variety of software out there is distributed as Free and Open Source Software (FOSS). You
can find FOSS for pretty much any purpose and written in any programming language. The part that makes FOSS
interesting to us is that modules distributed under open source licenses allow us to use, modify, and distribute the
source code for the module free of charge. That means we have access to an incredibly rich software base which
could allow us to build fairly sophisticated programs quickly and with more functionality than we could provide if
we had to write every piece of the software ourselves.

However, before we go ahead and start using that wonderful package we just saw on GitHub, we should

293

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

consider:

There are many different licenses for FOSS. The type of license makes a big difference on what you can do
with the resulting software.
Permissive licenses such as BSD, MIT, or Apache allow you to distribute and sell resulting software with
almost no restriction.
CopyLeft licenses such as GPL require that the resulting software’s source code be provided to users - in
other words, any software you write that uses modules distributed under such a license must remain open
source.

So depending on what we intend to do with the software we are developing, we may or may not want to
use a particular FOSS module. Our process should always include checking the license terms for any piece of
software we want to use as part of our code. And we have to be aware of the terms of the license and comfortable
complying with any restrictions it places on our software.

One more thought along these lines: If we develop a software package and we want to distribute it as a FOSS
project, we definitely want to give considerable thought to the issue of choosing which license we want to be applied
to our software. The choice will place conditions on what other developers can do with it, and as a result it will
also change the set of projects that will ultimately feature our work. So becoming familiar with these licenses will
eventually be important.

294

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Note

Here is another important thing to remember: whether you are using standard C libraries, or whether you
are using FOSS modules, keep the following in mind:

We can not assume the software is correct (free of bugs) simply because it is used extensively by
many developers.
We can not assume the software is safe in terms of data privacy or prevention of software vulnera-
bilities.
We can not assume the software is efficient in its use of resources.

All of these issues have to be considered while deciding whether or not to incorporate a particular software
module into something we are building. However, there are also advantages to using open source software:

Because it is open source, there are no hidden features - it is difficult to hide malware and spyware
on software that can be openly inspected by anyone at anytime.
While we can’t assume the software is bug free, known problems are openly documented and there
is often a solid process for resolving bugs and updating the software - this can be slow, but at least
developers are aware of known problems.
We can benefit from the experience of a large group of software developers who are using or have
used the software and can provide help if issues arise.

As long as we are aware of what is involved in using open source software, we can always find a way to get
the most out of the work many others have done and made available for the benefit of everyone.

6.9.3 Large Language Models and other A.I. tools

A completely different source of help in building software is now extensively available in the form of a number
of Artificial Intelligence platforms whose functionality and ability to interact with users has grown incredibly fast
in a very short span of time. Of particular note among current A.I. tools are the so-called Large Language Models
(LLMs) which power platforms such as ChatGPT and Gemini.

These tools do anything from providing help with concepts, and explaining details about algorithms,
to summarizing algorithms in pseudocode, to providing program code that performs a specified task and
suggesting tests for software we are writing. Current LLMs are already incredibly powerful, and are becoming
better and more capable by the day. We should definitely learn how to use them to support our work and increase
our ability to build good software.

But we have to do this with full awareness that we are entirely responsible for the result of the work we
produce regardless of whatever information or help we obtained from A.I. tools. And we should remember that the
information we obtain is not always correct. This includes both conceptual information, as well as program
code. Let’s see a couple of examples of this to make the point clear.

295

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Suppose we want to consult factual information about a specific programming language because we want
to understand what its features are, and what we can expect from it. This type of information is what we may expect
to find in a book or technical blog, or perhaps class lecture notes, and as such it is often reliably and accurately
provided by the latest LLMs. Fig. 6.11 shows an example interaction in which we are attempting to find out how
well Python implements the key components of OOP we discussed earlier in the chapter.

Figure 6.11: Asking an LLM how well Python supports encapsulation and information hiding.

As you can see, the response is correct and describes concisely what Python does in terms of encapsulation
and information hiding. The response obtained was actually longer and provided examples supporting each of
the claims the LLM made. Current LLMs are quite good at summarizing information from multiple sources and
presenting it in a concise form, which can be very useful when we are trying to verify our understanding of a
concept, algorithm, or problem. The flipside of this is that the more specific the query, the higher the likelihood
the information may be not entirely correct - as an example, suppose we are trying to recall what the complexity
of a particular graph operation is, and we decide to ask an LLM about it. The resulting conversation is shown in
Fig. 6.12

Notice two things: Firstly the LLM will provide a very confident answer that tends to seem correct and
therein the danger - if you are not constantly thinking through what you’re being told, and making sure it is
consistent with your own hard-earned understanding of how things work in computer science, you could easily
just take the explanation as correct and go with it. Which would be a mistake. In this case, we know (from what
we learned in Chapter 5) that this answer is not correct, and prodding the LLM results in confirmation of our own
understanding of things.

Why does this happen? - what we must keep in mind is that the current generation of LLMs works by
predicting each successive token (which is a word, or symbol) in the answer given the prompt and any part
of the answer that has already been produced. It is a matter of choosing among all possible tokens the one
that has the highest likelihood of being the correct one. As it turns out, with a large enough LLM, and with a
sufficiently large and rich set of training data, the LLM can do this task extremely well. Of course, this is an over
simplification and truly understanding how the LLM works requires long and serious study.

296

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Figure 6.12: A more specific technical query does not produce the right result.

But it is enough to tell us something: The LLM is not checking its own answer against a thought process of
some sort, or checking it is accurate against its own knowledge base. It just predicts tokens one after the other and
comes up with an answer that has high probability of being correct. You should expect that for material for which
there is a lot of available training information - such as general concepts in computer science, or implementations
of common algorithms, or material that is discussed in books, blogs, lecture notes, and so on; the LLM will likely
come up with the correct response - in effect, it has seen the answer (many times) before.

For more specialized queries, ones for which the training data may not contain enough examples (or in fact
may even contain incorrect information), the LLM should be expected to have a harder time and can possibly give
us an incorrect answer, it will do this with great confidence, and it will fail to notice obvious mistakes - to drive
home this point, see the conversation in Fig. 6.13 in which a fairly obvious mistake is made for a technical question
that a human observer would not be confused by.

Figure 6.13: The answer by the LLM is clearly incorrect - inspection of its own BST example shows there are only
2 edges between 5 and 9, yet the LLM confidently asserts that there are 3 edges between these nodes.

297

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

The point here is not to criticize or make less of the usefulness of LLMs - they are fantastic tools and used
correctly they can make our work a lot easier, more fun, and improve your productivity significantly. But the
key to this is that we must always remember to think through the information we are getting back, consider whether
or not it is consistent with what we have learned and what we would expect, as well as common sense, and then
decide how to use the information. If anything seems odd or not consistent with what we think is correct - then
we must do the work of asking further questions and/or checking with other sources before we proceed with
information whose accuracy we can’t determine by ourselves.

A special problem is posed by the use of advanced A.I. tools for generating code. Much like with conceptual
answers, LLMs can be expected to provide solid, correct, working code for very common problems. For
instance, if you need code to insert a node into a linked list - well, chances are that the training data for coding
A.I. contains hundreds if not thousands of examples of this procedure, in different languages, with different types
of data structures. So the answer you get will likely be correct.

So A.I. tools for code generation can be incredibly useful, once more, if used correctly. In particular, they
can be very helpful with tasks that require us to write in a language we are not familiar with. For instance, Fig. 6.14
shows the result of requesting a fairly specialized Linux shell script to carry out a file counting task.

Figure 6.14: Current LLMs that can produce program code have become quite capable, and can produce fairly
specialized, correct, and well documented code for tasks they have encountered in their training set (or those that
are very similar).

The resulting script works, and the LLM output also included instructions on how to use it, examples, and
comments on possible variations or different ways to carry out this particular task. In all, it is incredibly helpful
and saved a lot of time. But of course, just as with factual answers the program code you obtain may be incorrect
and the LLM will not notice it.

There is also a potential issue with copyright - because these tools generate program code based on the

298

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

examples it has seen in training data, and the training data consists of programs that have been written by human
developers, the code produced by the LLM can often closely resemble or even replicate existing programs or parts
of programs written by developers who put their code somewhere accessible online.

Because it is often the case that LLMs use code from online repositories as training data, often without
the knowledge or explicit consent from the authors, and offering no financial compensation for the use of their
code. It is at the present not entirely clear that program code produced by an LLM is free of potential copyright
infringement issues. At the very least, we as users of an A.I. tool that produces code we intend to use have to be
fully aware that we are potentially taking advantage of someone else’s work - without due credit being given, and
providing nothing in return. Not an ideal situation.

So, how are we to proceed with code-generating tools? The rules are changing quickly, the LLMs themselves
are evolving very fast and their capabilities are improving and expanding in a very short time frame. But at the
present time, here are a couple of generally good ideas to keep in mind if you intend to use LLMs to generate code
for you:

We must always carefully read through, the code we obtain, carefully following the process and under-
standing the algorithm and how it is implemented to determine whether is does the right thing. If we do
not understand either the algorithm, or the implementation, or we can’t decide whether it is correct or
not, then we should NOT use it.
We must be aware of potential copyright issues and check whether the use we are making of the automatically
generated code may turn into a problem. If working in industry we must always check the company’s policy
on use of A.I. tools for generating code and follow their guidelines. If we are going through a program of
study, for instance at a University, we must be aware that many institutions forbid the use of A.I. tools or place
very strong restrictions on how and where they can be used - we should check the rules that apply and steer
clear of potential trouble.
Always develop a thorough testing framework - just as we would for code we are developing ourselves, for
testing any A.I. generated code. The point is that since the code we obtain is the result of training data which
is itself human-generated code, there is every expectation that it can and will contain bugs. So we have to
thoroughly test it and check it for correctness as discussed in Chapter 3.

We can always use an LLM to improve our own understanding of things, and automated code generation can
be a powerful learning tool. So we should consider getting help with specific syntax or use cases in a language
we are learning, or request examples of how a particular algorithm works, or asking for examples on how to
work with a particular tool, framework, or API. There are many, many possible uses of an LLM in the context
of computer science and software development that make the most of the LLMs capabilities without tripping on
issues such as we described above. So it is worth spending time learning how to interact with these tools, and
training ourselves to correctly interpret, learn from, and when necessary correct the information we receive from
them.

With that, we wrap up this book on introductory computer science, and on how to build programs that work.
Now let’s get out there, apply all that we have learned to the task of solving exciting problems, and choose what we
want to learn next. This book is just a glance at a fascinating and incredibly rich area of science, and whatever our
interests and goals, there will be more to explore that will match our interests and help us get to where we are going.

299

