
CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

8 Advanced Ray Tracing
We have now established the fundamental process of ray tracing a scene. Our Whitted ray tracer
can render complicated geometry and create realistic shading using a combination of Phong local
illumination and limited reflection and refraction for global lighting effects.
Now we will discuss how to extend the Whitted ray tracer to produce more realistic lighting with
area light sources, how to smooth out sampling artifacts with antialiasing, using textures to enrich
the appearance of objects in the scene, incorporating the thin lens model to produce accurate depth-
of-field effects, and using photon mapping for rendering illumination effects due to refraction such
as caustics.
Finally, we will take a look into the use of carefully designed data structures such as octrees to
accelerate the intersection testing process thus speeding up rendering for scenes with large numbers
of objects.

Ray traced scene generated with the Whitted ray tracer plus the advanced rendering techniques discussed in
this chapter

8.1 Area Light Sources and Soft Shadows
Real world light sources do not behave like point light sources. The first obvious difference is that
they have a definite shape and size. The shape is three-dimensional but for our purposed here we
will assume it is a simple flat shape. Additionally, the light source may cast light rays in a preferred
direction rather than in all directions uniformly.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 92



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Examples of real world area light sources

Area light sources produce a variety of visual effects that need to be simulated for rendering realis-
tic images. Most obiously, the light source itself may be visible depending on the point of view of
the camera. This is typically handled by introducing an object to the scene that has the right shape,
size, and location for the lightsource (e.g. a plane for a typical rectangular fluorescent light), and
giving this object the intended colour of the lightsource. The raytracing shading code must know
to give this object a uniform colour independent of viewing angle.
Secondly, area light sources produce soft shadows. This means that the transition between the illu-
minated part of a surface, and the dark part corresponding to the shadow of some object blocking
the lightsource is not sharp, but rather darkens gradually, as the object blocks more and more of
the lightsource from reaching the surface.

Area light source producing soft shadows. Part of the surface will be completely dark since the entire light
source is blocked, but close to the edge of the shaded area, larger and larger portions of the lightsource

become visible creating a smooth transition between the fully dark and the fully illuminated regions of the
surface. [Sources: Flickr, Wikipedia, Authors: Michael Caven, Gisela Giardino, Dmitry G, Matt Buck]

Implementing soft shadows, as it turns out, is straighforward. Recall that shadow testing in the
Whitted ray tracer consists of shooting a ray from the intersection point in the direction of the light

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 93



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

source, and if this ray is blocked, zeroing-out the diffuse and specular components of the Phong
local model for that surface point.
With area light sources the process is the same, however, instead of shooting a single shadow ray
in the direction of the lightsource, we shoot K rays from the intersection point toward randomly
and uniformly sampled points on the area lightsource. We count the number of light rays k that are
not blocked, and then evaluate the reflectance at the intersection as
E = raIa + k

K
rdId max(0, ~n · ~s) + k

K
rsIs max(0,~c · ~m)α + rgIspec

As before, if multiple area light sources are present, the process must be carried out for each area
light source and their individual contributions are added up to obtain the final reflectance at the
surface.

Casting shadow rays toward randomply sampled points on the area lightsource to determine how much
light reaches the surface.

Sampling area light sources

Determine the percentage of the light source’s area visible from
a given surface point

1.1) Set a counter of unblocked shadow rays k=0
1.2) Repeat for K shadow rays

1.2.1) Randomply and uniformly sample a location on the light
source

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 94



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

1.2.2) Cast a shadow ray from the surface point toward the
sampled location, and check whether it is blocked by
an object in the scene.

1.2.3) If the ray is not blocked, increment k=k+1

1.3) The estimated area of the light source visible from the surface
point is k/K

Detail from an image containing an area light source. Notice the soft boundaries of the shadow on the
ground plane

Note:
To sample points from an area lightsource that is defined as the result of applying
an affine transformation to a canonical object such as a plane, obtain a randomly,
uniformly sampled surface point on the canonical object, then apply to it the same
transformation used to define the lightsource.

8.2 Antialiasing
Since the image has a finite resolution, the raytracer will suffer from sampling artifacts around
surface boundaries, and along regions where texture or illumination patterns change rapidly. The

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 95



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

resulting jaggies are the result of a process called aliasing. Aliasing is the result of high-frequency
brightness information that can not be captured at the current resolution being folded onto (i.e.
aliased) lower frequency brightness changes present in the scene.

Zoom-in of a small area of the image. Because of the finite resolution, rays through neighbouring pixels
may end up hitting completely different objects. The resolution is not sufficient to resolve detail at the

boundary and jaggies will be visible in the image

Since aliasing occurs because of limits in the sampling of light coming from the scene, the solution
is to supersample light rays through image pixels. That is, instead of casting a single ray per pixel
(through the centre of the pixel), we randomly and uniformly sample a small number of rays
through coordinates within the pixel’s area. The colour values returned for these rays are then
averaged to obtain the final colour at the pixel.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 96



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Casting multiple rays through a pixel, at coordinates randomly and uniformly sampled over the pixel’s
area, results in a range of colour values that better capture the light arriving from the scene at that pixel.
The final pixel colour is the average of the colour values returned for the set of supersampled rays. The

resulting image will be smooth and free of jaggies

Note that the supersampling process does not increase the visible resolution of the scene. It only
reduces aliasing artifacts. The highest quality scene will have an intrinsically high resolution, as
well as anti-aliasing.

Comparison of images rendered with (left) and without (right) antialiasing. Note the smooth boundaries in
the image processed with anti-aliasing. Conversely, the image rendered without anti-aliasing shows sharp

colour transitions at the boundaries - jaggies

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 97



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

8.3 Texture Mapping
In order to achieve realistic results for complex materials, we need to be able to define a surface
reflectance that is not uniform over the entire surface of the objects we have in our scene. Complex
materials are characterized by surface irregularities and changes in reflectance (colour) across their
surface. Simulating these factors accurately is difficult and computationally expensive. However,
we can achieve realistic results by using texture mapping - a techinique that allows us to specify
the reflectance properties of an object from a separate texture map in such a way that the surface
appears to show complex changes in reflectance.
The two natural sources of visual texture on object surfaces are:

• Surface markings — variations in albedo (i.e. the total light reflected from ambient and
diffuse components of reflection), and

• Surface relief — variations in 3D shape which introduces local variability in shading.

The first aspect of visual texture, changes in abedo, are the target of traditional texture mapping.
Later on we will see how the same technique can be applied to simulate small variations in surface
relief via the related technique of bump mapping.

Example of visual texture from changes in surface albedo (leftmost 2 images), and from variations in
surface relief (rightmost 2 images). [Source: Wikipedia, Flickr, Authors: Pentocelo, Mitch Featherston,

Yann Caradec, Eddi Van W]

8.3.1 Texture Sources

The two most common types of textures used in computer graphics are procedural textures and
digital images.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 98



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

8.3.2 Texture Procedures

Textures may be defined procedurally, that is, there is a function or set of functions in the program
code whose job is to determine the texture colour corresponding to each point along an object’s
surface. The texture procedure typically involves a stochastic (random) component.
The texture procedure takes as input a point on the object’s surface, it returns the reflectance prop-
erties at the point: Albedo, and possibly specular and/or alpha values at that point. Examples of
procedural textures include checkerboards, fractals, voronid or similar tesselations, and various
forms of noise.

Samples of textures generated procedurally. [Source: Wikipedia, Authors: Falstaff, Soylent Green,
Wiksaidit]

8.3.3 Digital Images

We can map any digital image onto a surface. This means we can approximate the appearance of
any material for which we have a photograph. The texture image is applied to the object’s surface
in much the same way as we would apply a decal to a real object.
We can define texture coordinates (u, v) to be in [0, 1]. This is done to establish a consistent
texture coordinate space that is independent of the texture image’s resolution. Each point [u0, v0]
in texture space is mapped to a corresponding point (x0, y0) in the image as x0 = u0 ∗ (sx − 1),
y0 = v0 ∗ (sy − 1), where sx, sy is the image resolution.
To complete the texture mapping process, we need to establish a correspondance between surface
points and pixels in the texture image. To do this, we define a correspondence between object
surface coordinates and texture coordinates. For objects consisting of a triangle mesh, each vertex
p̄i in the mesh is associated with a specific texture coordinate (ui, vi). For points within each
triangle, texture coordinates are interpolated from vertex texture coordinates.
For parametric surfaces, we define a mapping between the two parameters defining the span of the
surface and the two texture coordinates. This mapping is continuous, and gives a corresponding
texture coordinate to every possible point on the object’s surface.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 99



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Example:
For a planar patch s̄(α, β) = p̄0 + α~a+ β~b, where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.
We can define the mapping from object surface points to texture coordinates as u = α
and v = β.

Example:
For a surface of revolution, s̄(α, β) = (cx(α) cos(β), cx(α) sin(β), cz(α)), with 0 ≤
α ≤ 1 and 0 ≤ β ≤ 2π.
The mapping from surface coordinates to texture coordinates can be defined as u = α
and v = β/2π.

Texture mapping Jupiter’s moon Io. Given the parametric coordinates of a point on the sphere, we map this
point onto texture space (u, v), then use the texture coordinates to look up the corresponding pixel in the

texture image. [Texture source: NASA]

8.3.4 Textures and Phong Reflectance

Whatever the texture mapping process, the end result is a colour value for the corresponding surface
point. This colour value has to affect the ambient and diffuse components of the Phong model. The
Phong reflectance at the intersection point becomes:
E = ractIa + rdctId max(0, ~n · ~s) + rsIs max(0,~c · ~m)α + rgIspec,
where ct is the texture colour. Of course, in RGB the reflectance will have three colour compo-
nents. Note we could also choose to multiply the specular component, and/or the global reflection
component by the texture colour depending on the desired visual behaviour of the surface. For
objects with transparency, the texture colour would modulate the colour of the ray transmitted
through the object.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 100



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Raytracing texture mapped surfaces - the texture image provides colour information used to modulate the
components of the Phong model

Texture Mapping

1.1) Obtain intersection point between the ray and the surface

1.2) Compute the values of the parametric surface coordinates
for the corresponding 3D surface

1.3) Obtain the corresponding texture coordinates

1.4) Determine the corresponding image coordinates

1.4.1) Obtain the corresponding colour from the texture
image. This will involve bi-linear interpolation
when image coordinates are non-integer

8.4 Bump Mapping
As noted above, the second natural source of visual texture is variations in surface relief. While we
could in theory model in great detail the smallest changes in surface geometry for a given object,

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 101



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

this will result in an unmanageable increase in the complexity of the scene and therefore in the
time required to render an image. However, we can apply the same process used above to generate
textured surfaces to simulate small changes in relief on otherwise simple surfaces so as to increase
the visual quality of the rendered scene.

We can use bump mapping to simulate detail-rich surface geometry while keeping the complexity of the
object models under control. [Source: Wikipedia, Author: Paolo Cignoni]

There are two common forms of bump mapping. The original bump mapping formulation used
a displacement map that stored for each point in the surface a small displacement vector. At
rendering time, the surface geometry would be modified according to the displacement map, and
appropriate surface normals and intersection points would be computed.
However, at the present the most common form of bump mapping is implemented via normal
maps. A normal map is a special kind of texture image that stores normal vector components
for each point on the object’s surface. The RGB values in [0255] are used to represent vector
components in [01]. The normal vector can be encoded either directly (i.e. the correct normal
vector for each surface point is stored in the map), or as a perturbation on the surface normal (i.e.
we need to combine the information in the normal map with the surface normal to determine the
actual surface orientation).

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 102



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Examples of normal maps. Note that the map itself conveys the impression of changes in surface relief

At rendering time, the normal vector at an intersection point is obtained from the normal map using
the same process described above for texture mapping.

Comparison of surface appearance without (left) and with (right) bump mapping. Notice the way the
normal map affects refraction, creating a definite impression of surface relief despite the fact that the
underlying geometry is still perfectly spherical. Note the limitations of bump-mapping - the object’s

shadow remains perfectly elliptical

It is worth noting that we can generate map for other visual properties of objects. Specular maps
and alpha maps are common, and they are implemented in the same way.

8.5 Photon Mapping
At this point our raytracer is capable of rendering a realistic scene with complex visual surface
effects. However, it has one major limitation. The handling of light from secondary bounces is
limited to the global specular component of the Whitted ray tracer. This means that certain visual
features of images are missing in our renders. Note the shadows of the transparent spheres in

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 103



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

the bump mapping examples above. The shadows are completely dark. We would expect these
transparent spheres to transmit and possibly concentrate the light from the area light source in
some way over the ground plane. However, due to the way our ray tracer handles shadow testing,
any points on the scene for which the lightsource is blocked will appear dark. The ray tracer has
no way to estimate where refracted light goes and how bright it should look.
The core of the problem is that our Whitted ray tracer is really a crude approximation to actual light
transport. We will address the issue of accurately simulating global light transport in the following
chapters. For now, we will discuss a common technique for handling refracted and reflected light
with our Whitted ray tracer.

Refracting and reflecting objects concentrate light in bright regions known as caustics. We use photon
mapping to simulate these light effects in simple ray tracing.

Photon mapping handles indirect illumination from reflecting and refracting surfaces by perform-
ing one pass of forward light tracing before the raytracing process begins. In the previous chapter
we noted that forward ray tracing is able to create complex global illumination effects but does so
at the cost of a huge computational expense. In photon mapping, we carry out a limited amount of
forward light tracing. Since we do not need to generate a smooth image, we can get away with a
manageable amount of computation while at the same time allowing our raytracer to render high
quality caustics.

8.5.1 Forward Pass

The forward pass works in the following way:

Photon Mapping Forward Pass

1) For each of N light rays

1.1) Select an area light source. Cast a ray from a random
location on the lightsource in a random direction.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 104



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

1.2) Trace the light ray until

1.2.1) The ray hits nothing (it leaves the scene). Stop
tracing

1.2.2) The ray hits a reflecting/refracting object. Compute
the direction of the resulting ray and trace this
ray

1.2.3) The ray hits a diffuse surface. If the ray has been
reflected or refracted at least once, store
one photon at the location of the intersection point
and stop tracing

1.2.4) Maximum recursion depth is reached. Stop tracing

Simply put, the forward pass traces the path of light rays as they travel through the scene being
reflected or refracted by objects and until they hit a diffuse (non reflective, non refractive) surface.
At that point, we store a small amount of light, a photon in a suitable data structure. The photon
contains information about the colour of the ray that hit the surface as well as the location on the
surface where the ray hit.

Forward ray tracing through a refractive object. Light rays are bent toward the surface, and at the point
where they hit we store a photon.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 105



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Note that photons are only stored if the ray has been reflected or refracted at least once. We do
not store photons for direct illumination, since direct illumination is handled by the Phong model.
Also, note that for forward ray tracing, we must keep track of the colour of the light ray as it is
reflected or refracted by scene objects. The initial ray has the same colour as the light source, but
its colour will be modulated by the objects it interacts with.

8.5.2 Rendering Pass

Once the forward pass has been completed, we perform a rendering pass that consists of our stan-
dard Whitted ray tracer with one modification:
Wherever a ray hits a diffuse surface where photons may have been deposited we do a lookup into
our stored photon map and add up the colour contribution of any photons within a sphere centered
at the intersection point. The radius of the sphere controls how sharp or smooth the caustics will
look - a larger sphere pools brightness from a larger region, and will produce smoother caustics
with fewer forward light rays. Sharper caustics will require larger amounts of photons being cast
during the forward pass.
In either way, once we have accumulated nearby photons and have obtained an average colour for
them, we add their contribution to the radiance at the intersection point:
E = ractIa + rdctId max(0, ~n · ~s) + rsIs max(0,~c · ~m)α + rgIspec + τk/NIphoton,
where τ is a tnable constant that determines how much brightness is contributed by photons to the
radiance at the intersection point, k/N is the proportion of the total number of photons cast that
is pooled around the intersection point, and Iphoton is the average RGB colour of the accumulated
photons.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 106



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Rendering pass. When a ray hits a diffuse surface, we look up any photons within a small radius of the
intersection point, obtain their average colour, and add a small amount of brightness with this colour to the

radiance at the intersection point computed by our ray tracing shading model.

8.5.3 Baked-in Radiance

The process described above has the advantage that we do not need the cached photons to create
a smooth pattern on diffuse surfaces. The use of a small spherical region for accumulating photon
radiance has the effect of smoothing the resulting caustics. However, the downside is that at each
intersection point we must perform a look up for nearest neighbours within the data structure that
holds the cached photon map. This can become computationally expensive.
An alternative way to store photon maps that avoids this lookup step is to bake them onto initially
black texture images. The process is simple - a photon map texture image is associated with every
diffuse object in the scene. Each photon map texture is initially black. During the forward pass, if
a photon lands on a diffuse surface, we store a small amount of brightness with the corresponding
photon’s colour at the pixel location in the photon map corresponding to the place where the ray hit
the surface (this is done using the same procedure described above for obtaining a texture colour
for a surface point).
Once all the photons have been cast and accumulated, each photon map texture is post-processed to
smooth out the brightness pattern produced by the cached photons (otherwise the photon map will
look like a noisy collection of bright dots on a black background), and to modulate the brightness
of the final caustics in the rendered scene.
During the forward rendering pass, at each intersection point for diffuse objects we perform an
additional texture lookup and retrieve the amount of light contributed by the photon map at that
location, then simply add it to the remaining components of the shading model.
This method for handling photon maps results in a faster rendering pass, at the cost of requiring a
larger amount of traced photons to produce smooth caustics. Tuning the post-processing of photon
map textures so the final rendered caustics look realistic can be tricky.
Regardless of the method used, photon mapping can produce stunning results when carefully im-
plemented.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 107



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Transparent spheres rendered using photon mapping (baked-in radiance photon map). The caustics
produced by refracted light are cleanly rendered.

8.6 Depht of Field
So far we have been working under the assumption of a pinhole camera. As we have seen in
previous chapters, real cameras use lenses to focus light onto the imaging plane, thereby allowing
for images to be captured in a practical amount of time. Introducing a lens fundamentally changes
the way a captured image looks: Certain parts of the image will be in focus, and appear in sharp
detail, while out of focus regions will appear blurred. The relative depth interval within the image
for which objects appear in focus is called the depth-of-field (DoF).
For a raytraced image to look convincingly like it was captured by a camera, we need to simulate
the depth-of-field effect. We can do this using the thin lens model. Recall that the thin lens model
replaces the pinhole by an aperture fitted with a thin lens which focuses light according to the thin
lens equation:
1
z0

+ 1
z1

= 1
f

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 108



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Thin-lens model. The camera’s lens focuses light rays parallel to the optical axis at a distance f behind the
aperture. Scene points that will be in-focus are located at a distance x1 along the optical axis, and will

focus onto the image plane at a distance of x0 behind the aperture. The thin-lens equation gives the
relationship between f , x0, and x1.

Simulating DoF requires us to replace the single ray through pixel (i, j) by a cone of rays from
the aperture all of which converge at a point in space located on the focus plane. The process is
straightforward:

Depth-of-Field for a pixel at (i,j)

Inputs: focal length f, aperture size, focus plane distance x_1

1.0) Compute image plane distance x_0 from the thin-lens equation

1.1) Cast a ray r_0 through the pixel at (i,j) and the center of
projection (this is the same ray we trace for a pinhole
camera). Note that this time the image plane is at distance
x_0, not f as was the case for the pinhole camera

1.2) Compute the intersection point p_d of r_0 with the perfect
focus plane at distance x_1 along the optical axis.

1.3) For N depth-of-field rays

1.3.1) Randomly select a point p_0 on the aperture (we can
approximate the aperture shape with a circle of the

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 109



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

specified diameter)

1.3.1) Cast a ray r_i from p_0 toward the intersection at
p_d

1.3.2) Raytrace r_i and accumulate the returned colour onto
the pixel’s colour at (i,j)

1.4) Divide the values at pixel (i,j) by N to obtain the final
colour

Detail of an image rendered with depth-of-field showing sharp in-focus areas as well as soft focus regions
away from the focus plane.

8.7 Accelerated Intersection Testing
So far we have not considered the computational expense of ray tracing. The two basic operations -
ray casting, and intersection testing, will easily be repeated billions of times for a scene of moredate
complexity and resolution. Once we consider the added cost of sampling for area light sources,
depth of field, and photon mapping, the amount of computation required to render the scene can
quickly become unmanageable.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 110



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

Typically, the most expensive component of the raytracing process is the intersection testing be-
tween rays and objects. For a scene with N objects, the naive implementation of ray tracing we
have been using thus far incurs a cost of O(N) per ray for intersection testing. For complex scenes
with polygonal meshes consisting of millions of triangles, this becomes the dominant factor deter-
mining rendering time.
Most of the time spent by the naive implementation is wasted. A ray will likely hit only a very
small number of the objects in the scene. The important observation to make is that we should be
able to quickly discard from consideration objects that have no chance whatsoever of being hit by
the ray. If we do this cleverly, we can reduce by a large factor the number of intersection tests that
need be carried out.
The most common acceleration techniques rely on space subdivision. The idea is to create a
hierarchical structure that divides the scene into regions of progressively smaller volume (typically
nested boxes of decreasing size), and to test a ray against these boxes to quickly determine what
regions of the scene are traversed by the ray, so that only objects within those regions are actually
checked for intersection.

Example of a space sub-division hierarchy in 2D (with bounding boxes). The scene S is progessively split
into smaller regions forming a tree-shaped hierarchy. An incoming ray is tested against bounding boxes

starting at S. In this example, the ray would be tested against B1, B2, then B5, and B6, and finally against
B7 and B8. At B7 there is a list of objects the ray has to be tested against to determine intersection. For a

complex scene, the hierarchical testing process quickly discards a large number of scene objects from
having to be tested for intersection with the ray.

There are two commonly used methods for generating a spatial sub-division hierarchy: a) Octrees
- which use cubic-shaped volumes to deivide the scene, and progressively divide each cube into 8
equal-sized cubic regions; and b) Bounded Volume Hierarchies (BVHs), which use appropriately
sized bounding boxes to split the scene (similar to the example above). Each method has advan-
tages and disadvantages. Octree partitioning is easy to produce since the subdivision process is

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 111



CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

fixed and the bounding boxes for each subregion are easy to determine and unique. However, since
octree boxes do not align with object bounding boxes, Octree hierarchies tend to require more sub-
division to split objects in the scene from one another. BVHs on the other hand create boxes that
fit object bounding boxes, and thus tend to require less splitting. However, each sub-region can
be split in a number of different ways (in the example above, the scene could have been split so
that B1 and B2 are chubby instead of tall, and this would produce a completely different hierarchy.
There are specialized heuristics that can be used to guide the splitting process.

Corresponding Octree and BVH decompositions for two scenes. Note the regular lattice-like structure of
the Octree hierarchy, and the visibly greated amount of boxes compared to BVH. Conversely, note the

non-trivial arrangement of splits for the BVH hierarchy. Images courtesy of Thomas Diewald
(http://thomasdiewald.com/blog/?p=1488)

While there is no general consensus about which of these subdivision methods performs best in a
general scene, both provide very significant reduction of rendering time by reducing the number
of intersection tests carried out for each ray. One final issue worth mentioning is that the amount
of storage space required to maintain the Octree or BVH structure can grow very quickly, so in
practice the speed-up obtained from a given amount of hierarchical splitting has to be balanced
against the additional memory requirements.

Hierarchical space-subdivision procedure

Starting with the whole scene

1.1) Given the current node and the list of objects contained in
this node’s volume.

1.2) Compute a suitable split (either into octants for Octrees, or
a pre-defined number of boxes for BVH).

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 112

http://thomasdiewald.com/blog/?p=1488


CSC418 / CSCD18 / CSC2504 Advanced Ray Tracing

1.3) Insert each sub-region as a child of the current node

1.4) Determine which objects in the current node are contained by
each of the children, and update their corresponding list of
objects removing them from the parent’s list (to avoid
unnecessary duplication).

1.5) Recursively apply 1.1 to each of the children of this node
until:

1.5a) A pre-defined maximum depth has been reached
1.5b) A sub-region contains no objects (remove it from the

parent node’s children list)
1.5c) The number of objects contained in the subregion is

at most a pre-defined maximum value (which could be 1)

Ray testing against a hierarchical space-subdivision structure

Starting at the root

1.1) Test the ray for intersection against each the bounding
box of each child of the current node

1.2) If the ray intersects the boundig box

1.2a) If the child is not a leaf node apply 1.1
recursively to this child node

1.2b) Test the ray for intersection against every object
in the list of objects contained within this
bounding box. Return the closest intersection
(if any)

Note: The ray must be tested against every child of a node whose
bounding box is intersected, as it is possible for a ray to
cross multiple sub-regions for any given boundig box.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 113


	Advanced Ray Tracing
	Area Light Sources and Soft Shadows
	Antialiasing
	Texture Mapping
	Texture Sources
	Texture Procedures
	Digital Images
	Textures and Phong Reflectance

	Bump Mapping
	Photon Mapping
	Forward Pass
	Rendering Pass
	Baked-in Radiance

	Depht of Field
	Accelerated Intersection Testing


