
Linear Algorithms for Chordal Graphs of
Bounded Directed Vertex Leafage

Michel Habib 1 Juraj Stacho 1

LIAFA – CNRS and Université Denis Diderot – Paris VII, Paris, France

Abstract

The directed vertex leafage of a chordal graph G is the smallest integer k such
that G is the intersection graph of subtrees of a rooted directed tree where each
subtree has at most k leaves. In this note, we show how to find in time O(kn) an
optimal colouring, a maximum independent set, a maximum clique, and an optimal
clique cover of an n-vertex chordal graph G with directed vertex leafage k if a
representation of G is given. In particular, this implies that for any path graph G,
the four problems can be solved in time O(n) given a path representation of G.

Keywords: path graph, chordal graph, colouring, clique, linear algorithms

1 Introduction

In the following text, a graph is always simple, undirected and loopless. A
hole is a cycle with at least four vertices. A graph is chordal if it contains no
induced holes. A tree model of a graph G is a collection of subtrees {Tv}v∈V (G)

of a host tree T such that uv ∈ E(G) if and only if Tu ∩ Tv is non-empty.
In other words, G is the intersection graph of the subtrees {Tv}v∈V (G). It is
well-known[4] that a graph is chordal if and only if it has a tree model.

1 Email: {habib,jstacho}@liafa.jussieu.fr

Let G be a chordal graph. The leafage of G is the minimum integer k such
that G has a tree model where the host tree T has k leaves (see [8]). The vertex
leafage of G is the minimum integer k such that G has a tree model where
each subtree Tv has at most k leaves. The directed vertex leafage of G is the
minimum integer k such that G has a tree model where the host tree T is rooted
and directed (each edge is directed away from the root) and each subtree Tv

has at most k leaves (vertices of outdegree zero). Using a standard argument
(see [6]), one can assume that in all the above tree models, the host tree T

has at most |V (G)| vertices. In this paper, we only consider such tree models.

A graph is interval if it is the intersection graph of intervals of the real line.
A graph is a directed path graph if it is the intersection graph of directed paths
of a rooted directed tree. A graph is a path graph if it is the intersection graph
of paths of a tree. All these three types of graphs are chordal. In particular,
we observe that a graph G interval if and only if G has leafage two, a graph
G is a path graph if and only if G has vertex leafage two, and a graph G is a
directed path graph if and only if G has directed vertex leafage one.

An implicit representation [11] of an n-vertex graph G is an assignment of
labels of size O(log(n)) bits to each vertex of G such that adjacency of any
two vertices can be computed only from their labels.

Any graph on n vertices can be represented by its adjacency matrix using
O(n2) bits. On a random-access machine with log(n) word length 2 , any graph
with n vertices and m edges can be stored by listing its vertices and edges
in space O(n + m). This is best possible for general but also for chordal
graphs (for more details see [11]). However, both representations are not
implicit. Indeed, any implicit representation clearly requires only O(n) space.

On the other hand, any interval graph can be represented by storing in
each vertex v the endpoints lv, rv of the interval representing this vertex. The
endpoints of the intervals can be taken from the set {1 . . . n}. Hence, this
representation requires O(n) space, and it is implicit, since two vertices u, v

are adjacent if and only if lv ≤ lu ≤ rv or lu ≤ lv ≤ ru.

Similarly, for any chordal graph G with (directed) vertex leafage k, we
can construct a representation in space O(kn) using a tree model of G. In
each vertex v of G, we simply store the root and the leaves of the subtree Tv.
If k is fixed, this representation is implicit. 3

2 Throughout the paper, we shall use this model for complexity analysis.
3 To be precise, this requires that each vertex x of the host tree T is labeled with a pair of
numbers (dx, fx) where dx is the discovery time and fx is the finish time of the vertex x in
some depth-first traversal of T . In each vertex v of G, we store the labels (dx, fx) for the root
and the leaves x of Tv. Using these labels, the adjacency testing can be done in time O(k).

The paper is structured as follows. In Sections 2 and 3, we explain two
auxiliary problems and introduce data structures we shall need later. Then in
Section 4, using the results from the previous two sections, we explain how to
find an optimal colouring, a maximum clique, a maximum independent set,
and an optimal clique cover of any chordal graph with directed vertex leafage k

in time O(kn). We conclude the paper by discussing some remarks regarding
the complexity of computing leafage and (directed) vertex leafage.

2 Preprocessing I.

Suppose we are given a rooted directed tree T whose vertices are labeled by
some preorder traversal of T , and we are also given an ordered list P of directed
paths of T . For each directed path P ∈ P, let top(P) and leaf(P) denote the
two extremes of P such that P is a directed path from top(P) to leaf(P).

For paths P, P ′ ∈ P, we write P ≺ P ′ if and only if either the label of
leaf(P) is strictly smaller than the label of leaf(P ′), or the two labels are
equal and P appears on the list P before P ′. (Recall that the vertices of T

are labeled by a preorder.) Clearly, ≺ is a linear ordering of P.

For each vertex x of T , let Clique(x) denote the paths P ∈ P with x ∈ P

listed in the order ≺. Similarly, for each edge xy of T , let Clique(xy) denote
the paths P ∈ P with x, y ∈ P listed in the order ≺.

For a path P ∈ P, let before(P) denote the path that appears just before
P in the list Clique(top(P)). If there is no such path, let before(P) = nil.

For each edge xy of T , let first(xy), respectively, last(xy) denote the path
listed first, respectively, the last on the list Clique(xy).

To compute these values, we use Algorithm 1.

Proposition 2.1 Algorithm 1 computes correctly the values before(P), first(xy)
and last(xy) for all paths P ∈ P and all edges xy of T in time O(|V (T)|+|P|).

Proof. Correctness is proved by showing by induction that (i) after line 6,
the value of the variable L(x) is exactly Clique(x), and (ii) after line 12, the
value of the variable L(zx) is exactly Clique(zx).

In addition, we store the lists L(x) and L(zx) as doubly linked lists. This
allows us to perform all operations (lines 6, 8, and 12-14) on these sets in
constant time. Secondly, the sets used in line 4 and in the for cycles in lines
7 and 12 are precomputed in time O(|V (T)|+ |P|) by sorting the paths P of
P according to the labels of leaf(P), respectively, top(P).

Finally, each path P ∈ P is processed only once in lines 7-8 and 11-12
Hence, O(|V (T)|+ |P|) complexity follows. 2

1. S ← ∅ // processed vertices
2. while S 6= V (T) do

3. pick x ∈ V (T) \ S that has all children in S

4. L(x)← all paths P ∈ P with leaf(P) = x listed in the order ≺.
5. for all children y of x considered in increasing value of the label of y do

6. L(x)← L(x) ∗ L(xy) // concatenate L(x) and L(xy)
7. for each P ∈ L(x) with top(P) = x do

8. before(P)← vertex before P in L(x)
9. if x has a parent z then

10. L(zx)← L(x) // copy a pointer
11. for each P ∈ L(zx) with top(P) = x do

12. remove P from L(zx)
13. first(zx)← the first element of L(zx)
14. last(zx)← the last element of L(zx)
15. add x to S

Algorithm 1. Computing the values before(P), first(xy), and last(xy).

3 Preprocessing II.

We also consider another auxiliary problem. Suppose that we are given a
rooted directed tree T . Initially, each vertex of T is unmarked.

We want to perform a mixed sequence of the following two operations.

• mark(x): marks the vertex x of T .

• get(x): outputs all unmarked vertices in the subtree of T rooted at x.

We want that the procedure mark(x) has constant amortized time complexity,
and the complexity of get(x) is O(1 + d) where d is the size of the output of
get(x). In addition, we allow O(|V (T)|) preprocessing time.

We implement these two procedures as follows. For each vertex x of T , we
keep a value low(x) initially set to x. In addition, we use a static tree union
structure on T . That is, we maintain a partition of T into connected subtrees
which allows us to perform any mixed sequence of following two operations

• find(x): returns the root of the subtree to which x belongs

• link(x): unites the subtree containing x with the one containing its parent

where the initial partition of T puts each vertex x in its own set {x}.

Gabow and Tarjan[3] give an implementation of the above procedures on
random access machine with log(|V (T)|) word size. Their implementation
allows executing any above sequence of length M in time O(|V (T)|+ M).

The details of our implementation of the procedures mark(x) and get(x)
can be found as Algorithm 2. During the processing of the sequence of these
two operations, we maintain the following invariants: (i) each subtree of the
partition of T is a directed path, and (ii) for each subtree of the partition with
a root z, low(z) is the (only) leaf of this subtree, and (iii) whenever compact(x)
or output(x) is called, x is a leaf of a subtree of the partition.

procedure mark(x)
1. if x is unmarked then

2. mark x

3. call compact(x)

procedure compact(x)
1. if x is marked then

2. if x has exactly one child y then

3. low(find(x))← low(y)
4. call link(y)
5. if x has no children and

find(x) has a parent z then

6. remove the edge (z, find(x))
7. call compact(z)

procedure get(x)
1. call output(low(find(x)))

procedure output(x)
1. if x is unmarked then

2. output x

3. for each child y of x do

4. call output(low(y))

Algorithm 2. Implementation of the auxiliary problem

Proposition 3.1 The implementation of mark(x) and get(x) in Algorithm 2
is correct and has the desired amortized complexity as explained above.

Proof. Follows from proving invariants (i)-(iii). 2

4 Algorithms

In this section, using the algorithms and data structures from the previous
sections, we prove the following theorem.

Theorem 4.1 Given a representation of an n-vertex chordal graph G with
directed vertex leafage k, one can find in time O(kn) an optimal colouring, a
maximum independent set, a maximum clique, and an optimal clique cover of G.

Let G be a chordal graph with directed vertex leafage k, and let a rooted
tree T with a subtree Tv for each v ∈ V (G) be a representation of G. For
vertices x, y of T , let lca(x, y) denote the lowest common ancestor of x, y.

Recall that each subtree Tv is a rooted directed tree and has at most k

leaves (vertices of outdegree zero). Let v1, . . . , vt(v) be leaves of Tv ordered
increasingly by their label. Let P 1

v
be the directed path from the root of Tv

to v1. For i ≥ 2, let P i

v
be the directed path from lca(vi−1, vi) to vi.

We observe that Tv is the union of paths P(v) = {P 1
v , . . . , P

t(v)
v }. We say

that the paths in P(v) are associated with each other, and that the vertex v and
each path in P(v) are corresponding. Let P denote the union of P(v) over all
v ∈ V (G). By the result of [1], we have that P can be computed in time O(kn).

4.1 Minimum colouring and maximum clique

Our colouring algorithm follows the idea of O(n) time algorithm for the colour-
ing of interval graphs [7]. We process the vertices of G in the reverse of a
perfect elimination ordering while colouring the vertices with colours not used
in their neighbourhoods. For that we maintain a list L of coloured vertices
adjacent to the currently processed vertex v, and a list Free of free colours
(that is, the list of coloured vertices that were most recently coloured and are
not adjacent to v). To colour v, we first remove a vertex from Free and use
its colour to colour v. Since we maintain that no vertex in Free is adjacent
to v, this always gives a proper colouring. If Free is empty, the coloured
neighbours of v use all colours available. But since they also form a clique,
we use a new colour to colour v. The only difficulty is to maintain the lists L

and Free. For that we use the preprocessing from Section 2.

We now explain more details. Instead of storing L and Free as lists of
vertices of G, we store them as doubly linked lists of paths of P corresponding
to those vertices. The algorithm then goes as follows. First, we run Algo-
rithm 1 computing the values before(P), first(xy) and last(xy) for each path
P ∈ P and each edge xy of T . Then, we process the vertices of T from the
root to the leaves while colouring the vertices of G. We maintain the lists
L and Free using the precomputed values before(P), first(xy) and last(xy).
In addition, for each path P ∈ P, we use vertex(P) to denote the vertex of
G corresponding to P , and for each coloured vertex v of G, we keep a value
represent(v) pointing to a particular path of P corresponding to v.

The algorithm is described in detail as Algorithm 3. In the algorithm, we
maintain the following invariants: (i) after line 8, the value of L is Clique(x)
(ii) after line 19, the value of L is Clique(xy), and (iii) after line 11 and after
line 18, no two paths of L correspond to the same vertex.

Proposition 4.2 Algorithm 3 correctly computes an optimal colouring of G

in time O(kn).

procedure colour()
1. run Algorithm 1 on P
2. call process(root(T), ∅, ∅)

procedure process(x, L, Free)
1. for all paths P ∈ P with top(P) = x considered in the order ≺ do

2. insert P into L after before(P)
3. if vertex(P) is not coloured then

4. represent(vertex(P))← P // make P a representative of vertex(P)
5. if Free is not empty then

6. remove the first element P0 from Free

and colour vertex(P) with the colour of vertex(P0)
7. else colour vertex(P) with a new colour
8. for all paths P ∈ P with top(P) = x do

9. if P 6= represent(vertex(P)) then remove P from L

10. for all children y of x considered in increasing value of the label of y do

11. for all paths P ∈ P with top(P) = x and y ∈ P considered in ≺ do

12. if P is not in L then

13. insert P into L after before(P)
14. remove represent(vertex(P)) from L

15. represent(vertex(P))← P

16. remove from L all paths before first(xy) and all paths after last(xy)
and add these paths to Free

17. call process(y, L, Free)
18. restore the values of L and Free to those before step 19.
19. restore the values of L and Free and the values of represent(vertex(P))

for each P ∈ P with top(P) = x to those before step 1.

Algorithm 3. The colouring algorithm.

Proof. The correctness follows from proving invariants (i)-(iii). Regarding
the complexity, since L is a doubly linked list, insertions, deletions, concate-
nations and splitting can be implemented each in constant time. In line 19,
we compute the new values of L and Free by splitting L into three parts, and
then concatenating two of them to obtain Free. To be able to reverse this
process, we just need to store in addition a pointer to the first path before
first(xy) in L and a pointer to the first path after last(xy) in L. Similarly, we
can reverse the process from lines 1-8 and 12-15.

Finally, we observe that each path of P is used only a constant number of
times, and T has O(n) vertices. The complexity now follows. 2

Now, since G is chordal, the number of colours used in the colouring pro-
cedure above yields precisely the size of the largest clique. In fact, if v is the
last vertex of G that was coloured with a new colour, the paths in the list L

during the processing of v correspond to a largest clique of G.

Proposition 4.3 Algorithm 3 can be used to find a maximum clique of G.

4.2 Maximum independent set and minimum clique cover

Our algorithm for maximum independent set follows the standard algorithm
for chordal graphs by Gavril [6]. This algorithm processes the vertices of G

in a perfect elimination ordering. Each time a vertex v is processed, it is
placed in the independent set and all its neighbours are removed from G.
Since the neighbours of v necessarily form a clique, this way we construct an
independent set of maximum size and also an optimal clique covering of G.

The algorithm of Gavril runs in time O(n) but requires complete informa-
tion about the neighbourhoods of all vertices. However, it can be seen that we
only need to know the neighbourhoods of the vertices which are placed in the
independent set. Our O(kn) time algorithm uses this fact and computes these
neighbourhoods on demand. For that we use the data structure from Section 3.

We now explain more details. We initialize the algorithm by assigning to
each vertex x of T a list Ltop(x) consisting of all paths P ∈ P with top(P) = x,
and a list Lleaf(x) consisting of all paths P ∈ P with leaf(P) = x. For each x

with empty Lleaf(x), we call mark(x).

Then, we construct a maximum independent set of G by processing the
vertices of T from the leaves to the root. Each vertex x of T is processed by

1. choosing a path P ∈ Ltop(x),

2. adding the vertex corresponding to P to the independent set,

3. removing from lists Lleaf and Ltop the path P and all paths associated
with P (representing the same vertex), and

4. removing from lists Lleaf and Ltop all paths P ′ (also removing their asso-
ciated paths) such that leaf(P ′) belongs to the subtree of T rooted at x.

If in step 1 the list Ltop(x) is empty, we skip the steps 2-4.

To do this efficiently, we utilize the structure from Section 3. Each time a
list Lleaf(x) becomes empty, we immediately call mark(x). To obtain the list
of all paths P ′ in step (iv), we call get(x) and output the lists Lleaf(z) for all
vertices z we obtain from get(x).

Finally, note that it can be shown that all paths that we remove while
processing each vertex x of T correspond to vertices of G forming a clique.
Hence, using the above algorithm we also obtain an optimal clique cover.

Proposition 4.4 The above algorithm correctly computes the maximum in-
dependent set and an optimal clique cover of G in time O(kn).

Proof. In the algorithm, we maintain that (i) all unmarked vertices of x have
non-empty list Lleaf(x). The correctness follows. Also, it can be seen that each
path of P is considered only once. Since there are O(kn) paths in P and the
tree T is of size O(n), the complexity follows from Proposition 3.1. 2

5 Conclusion

In the conclusion, we mention some remarks on the complexity of computing
leafage, vertex leafage, and directed vertex leafage of chordal graphs.

Since interval graphs and path graphs can be recognized in polynomial time
[2,10], deciding that the leafage, respectively, the vertex leafage of a chordal
graph is at most two is polynomially solvable. Moreover, by the result of [9],
deciding that the leafage is at most three is also polynomial time solvable.

However, for other fixed values of k, the complexity of the two problems is
not known. Moreover, the complexity when k is part of the input is also not
yet established [12].

We have similar situation with directed vertex leafage. The complexity is
open for fixed k ≥ 2 or when k is part of the input, whereas, for k = 1, there
exists a polynomial time algorithm [5].

References

[1] Bender, M. A. and M. Farach-Colton, The LCA problem revisited, in:
Proceedings of the 4th Latin American Symposium on Theoretical Informatics,
2000, pp. 88–94.

[2] Booth, K. S. and G. S. Lueker, Testing for the consecutive ones property,

interval graphs, and graph planarity using PQ-tree algorithms., J. Comput. Syst.
Sci. 13 (1976), pp. 335–379.

[3] Gabow, H. N. and R. E. Tarjan, A linear-time algorithm for a special case of

disjoint set union, J. Comput. Syst. Sci. 30 (1985), pp. 209–221.

[4] Gavril, F., The intersection graphs of subtrees in trees are exactly the chordal

graphs, Journal of Combinatorial Theory B 16 (1974), pp. 47–56.

[5] Gavril, F., A recognition algorithm for the intersection graphs of directed paths

in directed trees, Discrete Mathematics 13 (1975), pp. 237–249.

[6] Golumbic, M. C., “Algorithmic Graph Theory and Perfect Graphs,” Academic
Press, New York, 1980.

[7] Gupta, U. I., D. T. Lee and J. Y.-T. Leung, An optimal solution for the channel

assignment problem, IEEE Trans. Computers C-28 (1979), pp. 807–810.

[8] Lin, I.-J., T. A. McKee and D. B. West, The leafage of a chordal graph,
Discussiones Mathematicae Graph Theory 18 (1998), pp. 23–48.

[9] Prisner, E., Representing triangulated graphs in stars, Abhandlungen aus dem
Mathematischen Seminar der Universitt Hamburg 62 (1992), pp. 29–41.

[10] Schäffer, A. A., A faster algorithm to recognize undirected path graphs, Discrete
Applied Mathematics 43 (1993), pp. 261–295.

[11] Spinrad, J. P., “Efficient Graph Representations,” American Mathematical
Society, 2003.

[12] West, D. B. (2008), personal communication.

	Introduction
	Preprocessing I.
	Preprocessing II.
	Algorithms
	Minimum colouring and maximum clique
	Maximum independent set and minimum clique cover

	Conclusion
	References

