
The vertex leafage of chordal graphs

Steven Chaplicka, Juraj Stachob

aDepartment of Physics and Computer Science, Wilfrid Laurier University, 75 University Ave. West, Waterloo, Ontario N2L 3C5, Canada
bDIMAP and Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

Every chordal graphG can be represented as the intersection graph of a collectionof subtrees of a host tree, a so-called
tree modelof G. This representation is not necessarily unique. The leafageℓ(G) of a chordal graphG is the minimum
number of leaves of the host tree of a tree model ofG. The leafage is known to be polynomially computable.

In this contribution, we introduce and study thevertex leafage. The vertex leafagevℓ(G) of a chordal graphG
is the smallest numberk such that there exists a tree model ofG in which every subtree has at mostk leaves. In
particular, the casevℓ(G) ≤ 2 coincides with the class of path graphs (vertex intersection graphs of paths in trees).

We prove for every fixedk ≥ 3 that deciding whether the vertex leafage of a given chordal graph is at mostk is
NP-complete. In particular, we show that the problem is NP-complete on split graphs with vertex leafage of at most
k + 1. We further prove that it is NP-hard to find for a given split graphG (with vertex leafage at most three) a tree
model with minimum total number leaves in all subtrees, or where maximum number of subtrees are paths. On the
positive side, for chordal graphs of leafage at mostℓ, we show that the vertex leafage can be calculated in timenO(ℓ).

Finally, we prove that every chordal graphG admits a tree model that realizes both the leafage and the vertex
leafage ofG. Notably, for every path graphG, there exists a path model withℓ(G) leaves in the host tree and we
describe anO(n3) time algorithm to compute such a path model.

Key words: chordal graph, leafage, tree model, clique tree, path graph

1. Introduction

In the following text, a graph is always finite, simple, undirected, and loopless. A graphG = (V, E) has vertex set
V(G) and edge setE(G). We writeuv for the edge(u, v) ∈ E(G). We useNG(v) to denote the neighbourhood ofv
in G, and writeNG[v] = NG(v)∪ {v}. The degree ofv in G is denoted bydegG(v) = |NG(v)|. Where appropriate,
we drop the indexG, and writeN(v), N[v], anddeg(v), respectively. We useG[X] to denote the subgraph ofG
induced byX ⊆ V(G), and writeG− X for the graphG[V(G) \ X]. We useG− v for G− {v}. We say thatX is a
cliqueof G if G[X] is a complete graph, andX is anindependent setof G if G[X] has no edges.

A tree modelof a graphG = (V, E) is a pairT = (T, {Tu}u∈V) whereT is a tree, called ahost tree, eachTu is
asubtreeof T, and a pairuv is in E if and only if V(Tu) ∩V(Tv) 6= ∅. In other words,T consists of a host tree and
a collection of its subtrees whose vertex intersection graph is G.

A graph ischordalif it does not contain an induced cycle of length four or more.It is well-known [1, 7, 21] that a
graph is chordal if and only if it has a tree model. Any chordalgraph admits possibly many different tree models.

For a treeT, let L (T) denote the set of itsleaves, i.e., vertices of degree one. IfT consists of a single node, we
defineL (T) = ∅. In other words, we consider such a tree to have no leaves.

The leafageof a chordal graphG, denoted byℓ(G), is defined as the smallest integerℓ such that there exists a
tree model ofG whose host tree hasℓ leaves (see [15]). It is easy to see thatℓ(G) = 0 if and only if G is a complete
graph, and otherwiseℓ(G) ≥ 2. Moreover the caseℓ(G) ≤ 2 corresponds precisely tointerval graphs(intersection
graphs of intervals of the real line) [5]. In this sense, the leafage of a chordal graphG measures how closeG is to
being an interval graph.

Email addresses:chaplick@cs.toronto.edu (Steven Chaplick),j.stacho@warwick.ac.uk (Juraj Stacho)

Preprint submitted to Elsevier September 8, 2012

In this paper, we introduce and study a similar parameter.

Definition 1. For a chordal graphG = (V, E), thevertex leafageof G, denoted byvℓ(G), is the smallest integerk
such that there exists a tree model

(

T, {Tu}u∈V

)

of G where|L (Tu)| ≤ k for all u ∈ V.

In other words, the vertex leafage ofG seeks a tree model ofG where each of the subtrees (corresponding to the
vertices ofG) has at mostk leaves and the value ofk is smallest possible. (See Figure 1 for illustration.)

a

b

c

d

e

f

g

h

i

jk
l

a)
aeil

adel

adhl

acg

abc

ab f

dekl bcj

b)

a
b
c
d
e
l
f , g, h
i, j, kc)

Figure 1:a) example graphG with ℓ(G) = 4 andvℓ(G) = 3, b) example clique treeT of G, c) tree model corresponding to (defined by)T

In the subsequent text, we shall say that a tree model ofG realizes the vertex leafage ofG to indicate that the tree
model satisfies the conditions of Definition 1 for smallest possiblek. Similarly, we shall say that a tree model ofG
realizes the leafage ofG to indicate that the number of leaves in the host tree of the tree model is smallest possible.

As in the case of leafage, the vertex leafage is a natural parameter related to some subclasses of chordal graphs
previously studied in the literature. To see this, recall the class of vertex intersection graphs of paths in trees, also
known aspath graphs[8] (see also [2, 14, 16, 18]). Now, observe that for a chordalgraphG, we havevℓ(G) = 0
if G is a disjoint union of complete graphs, and otherwisevℓ(G) ≥ 2. Moreover,vℓ(G) ≤ 2 if and only if G is a
path graph. Thus, the vertex leafage of a chordal graphG can be seen as a way to measure how closeG is to being
a path graph. Another connection comes from [11] where it is observed that inO(kn) time one can find: an optimal
colouring, a maximum independent set, a maximum clique, andan optimal clique cover of ann-vertex chordal graph
G with vertex leafagek if a representation ofG (a tree model realizing vertex leafage) is given.

In [8] it is shown that path graphs can be recognized in polynomial time. Currently, the best known recognition
algorithms for path graphs run inO(nm) time [2, 18], wheren = |V(G)| andm = |E(G)|. In other words, for a
chordal graphG, testing whethervℓ(G) ≤ 2 can be performed inO(nm) time.

Some other restrictions and variations on the standard treemodel have also been studied. One such family of these
variations is captured by the[h, s, t]-graphs (introduced in [13]) defined as follows:G = (V, E) is an[h, s, t]-graph
if there is a tree model

(

T, {Tu}u∈V

)

of G such that the maximum degree ofT is at mosth, the maximum degree of
each of{Tu}u∈V is s, anduv is an edge ofG if and only if Tu andTv have at leastt vertices in common. For more
information on these graphs see [3, 10].

We summarize the results of our paper in the following theorems.

Theorem 2. For everyk ≥ 3, it is NP-complete to decide, for a split graphG whose vertex leafage is at mostk + 1,
if the vertex leafage ofG is at mostk.

Theorem 3. It is NP-complete to decide, for an integerp and a split graphG whose vertex leafage is at most 3,

(i) if there exists a tree model ofG in which all butp subtrees are paths,
(ii) if there exists a tree model ofG where the total number of leaves in all subtrees is at mostp.

Theorem 4. For everyℓ ≥ 2, there exists annO(ℓ) time algorithm that, given ann-vertex chordal graphG with
ℓ(G) ≤ ℓ, computes the vertex leafage ofG and constructs a tree model ofG that realizes the vertex leafage ofG.

Theorem 5. There exists anO(n3) time algorithm that, given ann-vertex chordal graphG = (V, E) and a tree
model(T, {Tu}u∈V) of G, computes a tree model(T∗, {T∗u}u∈V) of G such that

(i) |L (T∗u)| ≤ |L (Tu)| for all u ∈ V,
(ii) |L (T∗)| = ℓ(G).

2

Corollary 6. For every chordal graphG = (V, E), there exists a tree model(T∗, {T∗u}u∈V) such that

(i) |L (T∗u)| ≤ vℓ(G) for all u ∈ V.
(ii) |L (T∗)| = ℓ(G),

In other words, such a tree model realizes both the leafage and the vertex leafage ofG.

The paper is structured as follows. In§2 we discuss some technical details related to tree models. In §3 we present
a proof of Theorem 2 and then discuss how to modify this proof to obtain a proof of Theorem 3. In§4 we prove
Theorem 4, and in§5 we present a proof Theorem 5 and Corollary 6. We close the paper in §6 with a summary and a
discussion of possible extensions of this work.

2. Minimal Tree Models and Clique Trees

Let G = (V, E) be a chordal graph. We say that two tree modelsT = (T, {Tu}u∈V) andT ′ = (T′, {T′u}u∈V)
of G are isomorphic, and writeT ≃ T ′, if there exists an isomorphismϕ betweenT and T′ that induces an
isomorphism betweenTu andT′u for all u ∈ V, namelyϕ

(

V(Tu)
)

= V(T′u).
A tree modelT = (T, {Tu}u∈V) of G is minimal if |V(T)| is smallest possible among all tree models ofG. A

clique treeof G is a treeT whose nodes are the maximal cliques ofG such that for allC, C′ ∈ V(T), everyC′′ on
the path betweenC andC′ in T satisfiesC′′ ⊇ C ∩ C′. Every clique treeT of G definesa tree modelTT of G, where
TT = (T, {Tu}u∈V) andTu is defined asT

[

{C ∈ V(T) | u ∈ C}
]

for all u ∈ V.
Given an edgeXY of a treeT, we denote byT/XY the tree obtained bycontractingXY in T. Namely,T/XY is the

tree constructed by removingX, Y from T, adding a new vertexZ, and connecting toZ the neighbours ofX and the
neighbours ofY in T. For a tree modelT = (T, {Tu}u∈V) of G and edgeXY of T, by contractingXY in T and all
subtreesTu we mean the tree model with host treeT/XY and subtrees{Tu/XY | XY ∈ E(Tu)}∪ {Tu | XY 6∈ E(Tu)}.

A family of sets{Xi}i∈I is said to have theHelly propertyif every pairwise intersecting subfamily of{Xi}i∈I has
a common point. In other words, everyJ ⊆ I such thatXi ∩ Xj 6= ∅ for all i, j ∈ J satisfies

⋂

i∈J Xi 6= ∅. Note that
any collection of subtrees of a tree has the Helly property.

Fact 7. Let T = (T, {Tu}u∈V) be a tree model ofG. Then the following statements are equivalent.

(i) T is a minimal tree model ofG.
(ii) T ≃ TT for some clique treeT of G.
(iii) For all XY ∈ E(T), contractingXY in T and all subtreesTu containing it yields a tree model ofG′ 6= G.
(iv) The mappingψ defined forX ∈ V(T) asψ(X) = {u ∈ V | X ∈ V(Tu)} is a bijection between the vertices of

T and the maximal cliques ofG.

Proof. (i)⇒(iii) and (ii)⇔(iv) are clear, while (iii)⇒(iv)⇒(i) follow from the Helly property of subtrees.

Note that Fact 7(iv) states, in other words, that the set of all vertices ofG whose subtrees containX is a maximal
clique of G. In particular, for any tree model, the set of such vertices is always a clique ofG, but it is not always
necessarily a maximal clique. This is only true for minimal tree models.

Moreover, it follows from Fact 7(i)⇔(iii) that every tree model(T, {Tu}u∈V) of G can be transformed (by con-
tracting some edges of the host tree and the subtrees) into a minimal tree model(T′, {T′u}u∈V). Notably, as this
transformation involves only contracting edges, it follows that this does not increase the number of leaves both in the
host tree and the subtrees, namely|L (T′)| ≤ |L (T)| and|L (Tu)| ≤ |L (T′u)| for all u ∈ V.

This observation allows us to focus exclusively on minimal tree models. Namely, it shows that if there exists a
tree model with minimum number of leaves in the host tree (subtrees), then there also is a minimal tree model with
minimum number of leaves in the host tree (subtrees). Consequently, in the remainder of the paper, all tree models
are assumed to be minimal tree models unless otherwise specified.

Furthermore, using Fact 7(i)⇔(ii), we shall view minimal tree models ofG as tree models defined by clique trees
of G. We shall switch between the two viewpoints as needed.

3

3. Hardness of Vertex Leafage

In this section, we first prove Theorem 2 stating that calculating the vertex leafage of a split graph is NP-complete.
To this end, we describe a polynomial-time reduction from NOT-ALL-EQUAL- k-SAT; this problem is well-known
to be NP-complete [6] fork ≥ 3. We then use the same transformation fork = 2 to produce a polynomial-time
reduction from MAX-CUT, which will prove Theorem 3.

Proof of Theorem 2. The problem is clearly in NP as one can easily compute in polynomial time the number of
leaves in subtrees of a given tree model. To prove NP-hardness, we show a reduction from NOT-ALL-EQUAL-
k-SAT. By standard arguments [17], we may assume, without loss of generality, that the instances to this problem
contain no repeated literals and no negated variables. Thuswe can phrase the problem as follows.

NOT-ALL-EQUAL- k-SAT

InstanceI : a collectionC1, C2, . . . , Cm of k-element subsets of{v1, . . . , vn};
Solutionto I (if exists): a setS ⊆ {v1, . . . , vn} such that eachj ∈ {1, . . . , m} satisfiesCj ∩ S 6= ∅ andCj \ S 6= ∅.

In addition, we may assume the following property of any instanceI .

(⋆) There are no distinct indicesi, i+ such thatvi+ ∈ Cj whenevervi ∈ Cj.

Indeed, if there existi 6= i+ with vi+ ∈ Cj whenevervi ∈ Cj, then we replaceI by another instanceI+ constructed
from I by removingvi and all clausesCj that containvi. If there is a solution toI , thenS \ {vi} is a solution toI+.
Conversely, ifS is a solution toI+, then eitherS is a solution toI if vi+ ∈ S, orS∪ {vi} is a solution toI if vi+ 6∈ S.

Now, for the reduction, we consider an instanceI satisfying (⋆) and construct a graph, denoted byGI , as follows:

(i) the vertex set ofGI consists ofn + m + 2 vertices:V(GI) = {v1, . . . , vn, y1, . . . , ym, z1, z2},
(ii) the vertices{y1, . . . , ym} form a clique,
(iii) the vertices{v1, . . . , vn, z1, z2} form an independent set,
(iv) each vertexvi is adjacent to all verticesyj such thatvi ∈ Cj,
(v) the verticesz1, z2 are adjacent to each vertex of the clique{y1, . . . , ym}.

We observe thatGI is a split graph with partition into clique{y1, . . . , ym} and independent set{v1, . . . , vn, z1, z2}.
(See Figure 2 for an example of this construction.)

y1 y2

y3y4

v1v2

v3 v4v5

v6

z1 z2

C1 = {v1, v2, v3}
C2 = {v1, v4, v6}
C3 = {v3, v5, v6}
C4 = {v2, v4, v5}

z1y1y2y3y4

z2y1y2y3y4

v1y1y2

v2y1y4

v3y1y3

v4y2y4

v5y3y4

v6y2y3

Q1

Q2

Q3

Q4

Q5

Q6

A

B

y1 y2 y3 y4

z1, z2, v1, v2, v3, v4, v5, v6

Figure 2:a) the graphGI for example instanceI with n = 6 andm = 4, b) a clique tree ofGI , c) corresponding tree model ofGI .

We prove that the vertex leafage ofGI is:

(a) at mostk + 1, and
(b) is at mostk if and only if there is a solution toI .

To do this we analyze the cliques ofGI . This is easy, sinceGI is a split graph; all its maximal cliques are
formed by taking a vertex of the independent set with its neighbourhood. In particular, the maximal cliques ofGI are
A = {z1, y1, . . . , ym}, B = {z2, y1, . . . , ym}, andQi = {vi} ∪ {yj | vi ∈ Cj} for eachi ∈ {1, . . . , n}.

4

We first prove (a). Recall that{A, B, Q1, . . . , Qn} is the set of all maximal cliques ofGI , and hence, the vertex
set of every clique tree ofGI . Each of the verticesz1, z2, andvi, for i ∈ {1, . . . , n}, belongs to exactly one of these
cliques, namelyA, B, andQi, respectively. Also, eachyj, for j ∈ {1, . . . , m}, belongs to exactlyk + 2 cliques,
namelyA, B, and{Qi1 , . . . , Qik

} whereCj = {vi1 , . . . , vik
}. So, sincek ≥ 1, every tree spanning these cliques has

at mostk + 1 leaves. We thus conclude that in every clique tree ofGI , each subtree corresponding to a vertex ofGI
has at mostk + 1 leaves. In other words, any clique tree ofGI certifies thatvℓ(GI) ≤ k + 1 which proves (a).

We now prove (b). LetS be a solution toI . Construct a treeT with vertex set{A, B, Q1, . . . , Qn} and edge set
{AB} ∪ {AQi | vi ∈ S} ∪ {BQi | vi 6∈ S}. Let us verify thatT is a clique tree ofGI . Its vertex set is the set of all
maximal cliques ofGI . For distincti, i+ ∈ {1, . . . , n}, the path betweenQi andQi+ containsA or B or both, and no
other vertex. Note thatQi ∩ Qi+ ⊆ {y1, . . . , ym} = A ∩ B. This verifies the path betweenQi andQi+. Similarly,
the path betweenQi andA or B additionally contains onlyA or B and we haveQi ∩ A = Qi ∩ B which verifies this
path. That exhausts all paths inT and thus confirms thatT is indeed a clique tree ofGI .

Let TT =
(

T, {Tv}v∈V(GI)

)

be the tree model corresponding toT. We analyze its subtrees. First, we consider
the subtreeTvi

wherei ∈ {1, . . . , n}. As in (a), we observe that the vertexvi only belongs to one clique ofGI ,
namelyQi. Thus |V(Tvi

)| = 1 implying |L (Tvi
)| = 0 by our convention. Similarly, the verticesz1 and z2

each belong to only one clique,A and B respectively, and we have|L (Tz1)| = |L (Tz2)| = 0. It remains to
considerTy j

for j ∈ {1, . . . , m}. The vertexyj belongs to the cliquesA, B, andk distinct cliquesQi1, . . . , Qik
where

Cj = {vi1 , . . . , vik
}. The cliquesQi1 , . . . , Qik

are leaves ofTy j
as they are leaves ofT. However, neitherA nor

B is a leaf ofTy j
. Indeed, sinceS is a solution toI , there are indicesp, r ∈ {1, . . . , k} such thatvip ∈ S and

vir
6∈ S. Hence, by construction,T contains edgesAQip

and BQir
. So, Ty j

contains these edges, as well as the
edgeAB. Thus bothA andB have at least two neighbours inTy j

and are therefore not leaves ofTy j
. Consequently,

|L (Ty j
)| = |{Qi1 , . . . , Qik

}| = k which impliesvℓ(GI) ≤ k as certified by the tree modelTT.
Conversely, suppose thatvℓ(GI) ≤ k. Then there exists a clique treeT of GI such that the corresponding model

TT =
(

T, {Tv}v∈V(GI)

)

satisfies|L (Tv)| ≤ k for all v ∈ V(GI). We analyze the structure ofT. First, we observe
that AB must be an edge ofT. If otherwise, the path betweenA andB in T contains some cliqueQi, i ∈ {1, . . . , n}.
As T is a clique tree, we conclude{y1, . . . , ym} = A ∩ B ⊆ Qi = {vi} ∪ {yj | vi ∈ Cj}. But thenvi belongs to
eachCj, j ∈ {1, . . . , m}, and sincen ≥ k ≥ 2, there existsi+ ∈ {1, . . . , n} different fromi, which contradicts (⋆).
Similarly, we show that eachQi, i ∈ {1, . . . , n} is a leaf ofT. If otherwise, someQi has at least two neighbours
in T. These cannot beA, B as this would imply a triangle inT, sinceAB is an edge ofT. ThusQi is adjacent to
Qi+ for somei+ ∈ {1, . . . , n}. As T is a tree, we have that eitherQi+ lies on the path fromA to Qi, or Qi lies
on the path fromA to Qi+. By symmetry, we may assume the former. Thus, sinceT is a clique tree, we conclude
{yj | vi ∈ Cj} = A ∩ Qi ⊆ Qi+ = {vi+} ∪ {yj | vi+ ∈ Cj}. Sovi+ ∈ Cj whenevervi ∈ Cj, contradicting (⋆).

Now, we are ready to construct a setS ⊆ {v1, . . . , vn} as follows: for eachi ∈ {1, . . . , n}, we putvi in S if AQi

is an edge ofT. We show thatS is a solution toI . If not, there existsj ∈ {1, . . . , m} such that eitherS ⊇ Cj or
S ∩ Cj = ∅. We look at the subtreeTy j

corresponding to the vertexyj. Recall thatyj belongs to cliquesA, B, and
k cliquesQi1 , . . . , Qik

whereCk = {vi1 , . . . , vik
}. The cliquesQi1, . . . , Qik

are leaves ofTy j
because they are leaves

of T (as proved above). IfS ⊆ Cj, we have, by construction, thatA is the unique neighbour of each of the cliques
Qi1, . . . , Qik

in T. Consequently, none of the cliquesQi1, . . . , Qik
is adjacent toB in T. This shows thatB is only

adjacent toA in Ty j
, and hence, is a leaf inTy j

. But then|L (Ty j
)| = |{Qi1, . . . , Qik

, B}| = k + 1, contradicting our
assumption aboutT. Similarly, if S ∩ Cj = ∅, the cliquesQi1 , . . . , Qik

are only adjacent toB and not toA, in which
case,A is a leaf ofTy j

leading to the same contradiction.
Therefore,S must indeed be a solution toI and that concludes the proof.

Proof of Theorem 3. The proof follows the same steps as that of Theorem 2. To keep things simple, we only describe
here the key differences. Instead of NOT-ALL-EQUAL-k-SAT, we consider the optimization version of the problem
for k = 2, which is known as MAX-CUT; this problem is also known to be NP-hard (see [6]).

In MAX-CUT, we are given a graphH, and we seek a subsetS of vertices ofH such that the number of edges
betweenS and the rest ofH is maximized. To be able to reuse our proof of Theorem 2, we cast this problem as follows.

MAX-CUT
InstanceI : a collectionC1, C2, . . . , Cm of 2-element subsets of{v1, . . . , vn}, and an integerp
Solutionto I : a setS ⊆ {v1, . . . , vn} such thatCj ∩ S 6= ∅ andCj \ S 6= ∅ for at leastm− p indicesj ∈ {1, . . . , m}

5

As in the proof of Theorem 2, we may assume that every given instance of this problem satisfies the property (⋆).
(Note that this corresponds to removing vertices of degree zero and one in the corresponding input graph, which does
not change hardness of the problem.)

For the reduction, consider an instanceI of the above problem, namely, a collectionC1, C2, . . . , Cm of 2-element
subsets of{v1, . . . , vn} and an integerp. Let GI denote the graph constructed in the proof of Theorem 2 for the
collection{C1, . . . , Cm}. To be more specific,GI is the graph whose vertex set is{v1, . . . , vn, y1, . . . , ym, z1, z2}
where{v1, . . . , vn, z1, z2} forms an independent set,{y1, . . . , ym} forms a clique, and bothz1 andz2 are adjacent to
all of y1, . . . , ym, while vi is adjacent toyj if and only if vi ∈ Cj. Note thatGI is a split graph.

For this graphGI , repeating the arguments presented in the proof of Theorem 2, we conclude that

(a) vℓ(GI) ≤ 3, and
(b) there exists a solution toI if and only if there exists a tree model ofGI in which all butp subtrees are paths.

Moreover, we may assume that the tree model mentioned in (b) is a minimal tree model, and thus (a) implies that the
total number of leaves in this model is at mostp. This follows from the fact that each of the verticesv1, . . . , vn, z1, z2

belongs to exactly one maximal clique ofGI , and hence, the subtrees corresponding to these vertices have no leaves,
since the model is minimal. This proves both parts of Theorem3 and completes the proof.

4. Vertex Leafage in Bounded Leafage Graphs

In this section, we discuss calculating vertex leafage in chordal graphs of bounded leafage. Namely, we prove
Theorem 4, that is, for a fixedℓ, we demonstrate how to calculate the vertex leafage of ann-vertex chordal graphG
with ℓ(G) ≤ ℓ in polynomial time, namely, in timenO(ℓ). We do this by enumerating clique trees ofG with respect
to high (≥ 3) degree nodes. The enumeration is based on the observation that the number of high-degree nodes in a
tree is directly related to the number of leaves. This goes asfollows.

For a treeT, let H (T) denote the set of nodes ofT of degree at least 3, and letE (T) denote the set of edges ofT
incident to the nodes inH (T). Further, letni denote the number of nodes of degreei in T. Then

(⋆⋆)

|H (T)| = ∑
i≥3

ni ≤ ∑
i≥3

(i− 2)ni = n1 + ∑
i≥1

(i− 2)ni = n1 + 2|E(T)| − 2|V(T)| = |L (T)| − 2

|E (T)| ≤ ∑
i≥3

(i · ni) = 2 ∑
i≥3

ni + ∑
i≥3

(i− 2)ni = 2|H (T)|+ |L (T)| − 2 ≤ 3|L (T)| − 6

For the second-to-last equality in the first line, note that|V(T)| = ∑ i≥1 ni while |E(T)| = 1
2 ∑ i≥1(i · ni).

We remark that (⋆⋆), in particular, implies that if|L (T)| is bounded, then so are|H (T)| and|E (T)|. We shall
use this fact later. Moreover we shall use the following property.

Lemma 8. If T andT∗ are two clique trees ofG with E (T) = E (T∗), then|L (Tu)| = |L (T∗u)| for all u ∈ V(G)
whereTu = T

[

{C ∈ V(T) | u ∈ C}
]

andT∗u = T∗
[

{C ∈ V(T∗) | u ∈ C}
]

.

Proof. Consider a vertexu ∈ V(G). SinceE (T) = E (T∗), we concludeH (T) = H (T∗) and eachC ∈
H (T) = H (T∗) has the same neighbourhood in bothT andT∗, i.e., NT(C) = NT∗(C). Moreover, if a node has
degree at least 3 inTu, then it also has degree at least 3 inT, sinceTu is an subgraph ofT. In other words, we have
H (Tu) ⊆ H (T). In addition, we observe that eachC ∈ V(Tu) satisfiesNTu(C) = NT(C) ∩ V(Tu), sinceTu is
an induced subgraph ofT. By the same token,NT∗u (C) = NT∗(C) ∩V(T∗u) for eachC ∈ V(T∗u). Finally, note that
V(Tu) = V(T∗u), sinceV(T) = V(T∗). Thus, for eachC ∈H (Tu), we can write

NTu(C) = NT(C) ∩V(Tu) = NT∗(C) ∩V(T∗u) = NT∗u (C).

This impliesC ∈ H (T∗u) anddegTu
(C) = degT∗u

(C) for all C ∈ H (Tu). Thus, we calculate by(⋆⋆).

|L (Tu)| = 2 + ∑
C∈H (Tu)

(

degTu
(C)− 2

)

≤ 2 + ∑
C∈H (T∗u)

(

degT∗u
(C)− 2

)

= |L (T∗u)|

To see that the inequality holds, also note thatdegT∗u
(C) ≥ 3 for eachC ∈ H (T∗u), by definition. This proves that

|L (Tu)| ≤ |L (T∗u)|, and a symmetric argument yields|L (Tu)| ≥ |L (T∗u)| which completes the proof.

6

Now, recall that the vertex set of every clique tree ofG is the set of all maximal cliques ofG. Notably, all clique
trees have the same vertex set. LetC (G) denote the clique graph ofG, i.e., the graph whose nodes are the maximal
cliques ofG and where two nodes are adjacent if and only if the corresponding maximal cliques intersect. It is
well-known [9, 19] that every clique tree ofG is a spanning tree ofC (G).

Our algorithm is based on the following lemma.

Lemma 9. There is anO(n3) time algorithm that, given ann-vertex chordal graphG and a setF ⊆ E(C (G)),
decides if there exists a clique treeT of G with E (T) = F and constructs such a tree if one exists.

Proof. We describe an algorithm for the problem as follows.

Algorithm 1:

Input : A chordal graphG and a setF ⊆ E(C (G)).
Output : A clique treeT of G with E (T) = F, or report that no such tree exists.

1 Construct a graphG′ as follows:
V(G′) = V(G) ∪ {ve | e ∈ F}
E(G′) = E(G) ∪ {uve | e ∈ F, e = CC′, u ∈ C ∪ C′} ∪ {veve′ | e, e′ ∈ F, e ∩ e′ 6= ∅}

2 if G′ is chordalthen
3 Construct a clique treeT′ of G′ with minimum number of leaves.
4 Construct a treeT from T′ by renaming each nodeC′ ∈ V(T′) to C′ ∩V(G)
5 if T is a clique tree ofG andE (T) = F then
6 return T

7 return “no such tree exists”

We now prove correctness of the above algorithm. For simplicity, we shall refer to any clique treeT with E (T) =
F as a “solution”. First, observe that if the algorithm returns the treeT in Line 6, then this is indeed a solution. This
proves that if there is no solution, the algorithm provides the correct answer (in Line 7).

Thus, for the rest of the proof, we may assume that a solution exists. Namely we shall assume there is a clique
treeT∗ of G satisfyingE (T∗) = F. For every maximal cliqueC of G, defineϕ(C) = C ∪ {ve | e ∈ F, C ∈ e}.

In the following claim, we discuss the properties of the graph G′ constructed in Line 1.

(1) G′ is chordal, satisfiesℓ(G′) ≤ |L (T∗)|, andϕ is a bijection between the maximal cliques ofG andG′.

To prove the claim, we construct a minimal tree model ofG′ as follows. LetTT∗ = (T∗, {T∗u}u∈V(G)) be the
minimal tree model ofG that is defined by the clique treeT∗, namelyT∗u = T[{C ∈ V(T∗) | u ∈ C}]. For each
edgee = CC′ ∈ F, defineT∗ve

= T∗[{C, C′}]. Finally, letT + = (T∗, {T∗u}u∈V(G) ∪ {T
∗
ve
}e∈F}).

It is easy to verify thatT + is a tree model ofG′. In particular, each subtree in the collection is a connected
subgraph ofT∗. This follows from the fact thatT∗ is a clique tree ofG and thatF = E (T∗) ⊆ E(T∗). Further,
for each edgee = CC′ in F, we see that the subtreeT∗ve

intersects only subtreesT∗u whereC or C′ is in V(T∗u), i.e.,
those whereu ∈ C ∪ C′. Moreover,T∗ve

only intersects subtreesT∗ve′
whereC or C′ is in V(T∗ve′

), i.e., those where

e ∩ e′ 6= ∅. This corresponds precisely to the definition ofG′.
Thus, we conclude thatG′ is indeed a chordal graph, andℓ(G′) ≤ |L (T∗)| asT + is a particular tree model of

G′ andT∗ is its host tree. Morever, we see thatT + is actually a minimal tree model ofG′. Indeed, if there were
a tree model ofG′ with less than|V(T∗)| nodes in its host tree, then by removing subtrees corresponding to the
vertices{ve | e ∈ F} we would obtain a tree model ofG whose host tree has less than|V(T∗)| nodes. But this would
contradict the minimality ofTT∗ .

This implies, by Fact 7(ii), that there exists a clique treeT+ of G′ that definesT +, i.e.,T + = TT+ . Namely,
there is an isomorphism betweenT+ and the host treeT∗ of T + where each nodeC ∈ V(T∗) corresponds to the set
of all vertices ofG′ whose subtrees containC, i.e., the set{u ∈ V(G) | C ∈ V(Tu)} ∪ {ve | e ∈ F, C ∈ V(Tve)}
which is exactlyϕ(C). In other words,V(T+) = {ϕ(C) | C ∈ V(T∗)}, and consequently,ϕ constitutes an
isomorphism betweenT∗ andT+. As one is a clique tree ofG and the other a clique tree ofG′, we conclude thatϕ
is a bijection between the maximal cliques ofG andG′. This proves (1).

7

The claim (1) shows that the test in Line 2 succeeds. Now, consider the treesT′ andT constructed in Line 3 and
Line 4, respectively. Note thatT′ is a clique tree ofG′ with |L (T′)| = ℓ(G′).

(2) T is a clique tree ofG.

Recall thatT is obtained fromT′ by renaming each nodeC′ of T′ to C′ ∩ V(G). Moreover, by (1), the mappingϕ
is a bijection between the maximal cliques ofG andG′. Namely, for eachC′ ∈ V(T′), the setC = ϕ−1(C′) is a
maximal clique ofG. Therefore, we can write

C′ ∩V(G) = ϕ(C) ∩V(G) =
(

C ∪ {ve | e ∈ F, C ∈ e}
)

∩V(G) = C = ϕ−1(C′).

This proves that the vertex set ofT is precisely the set of maximal cliques ofG, andϕ is an isomorphism between
T andT′, by the construction ofT. To see thatT is indeed a clique tree ofG, it remains to prove the “connectivity
condition” for T. Namely, consider nodesC1, C2 ∈ V(T) and a nodeC3 on the path inT betweenC1 andC2. Since
ϕ is an isomorphism betweenT andT′, we haveϕ(Ci) ∈ V(T′) for i = 1, 2, 3 and ϕ(C3) lies on the path inT′

betweenϕ(C1) andϕ(C2). Thus, we concludeϕ(C3) ⊇ ϕ(C1) ∩ ϕ(C2) becauseT′ is a clique tree. So we write
C3 = ϕ(C3) ∩V(G) ⊇ ϕ(C1) ∩ ϕ(C2) ∩V(G) = C1 ∩ C2. This proves (2).

We have proved in (2) thatT is a clique tree ofG. Notably, asT∗ is also a clique tree ofG, we conclude that both
T andT∗ have the same vertex set, i.e.,V(T) = V(T∗). We now look at the edges ofT.

(3) F ⊆ E(T)

Consider an edgee = CC′ ∈ F, and recall the definition ofϕ and the claim (1). From this it follows thatϕ(C) and
ϕ(C′) are the only maximal cliques ofG′ that containve. As ϕ(C) andϕ(C′) are also nodes ofT′ which is a clique
tree ofG′, we conclude that every maximal clique on the path inT′ betweenϕ(C) andϕ(C′) also containsve. But,
as mentioned above, the vertexve is in no other maximal clique ofG′. So this is only possible ifϕ(C) andϕ(C′) are
adjacent inT′. Consequently,C andC′ are adjacent inT, namelye ∈ E(T). This proves (3).

(4) H (T∗) ⊆H (T) and eachC ∈ H (T∗) satisfiesNT∗(C) ⊆ NT(C).

ConsiderC ∈ H (T∗), namelyC is a node ofT∗ with at least three neighbours inT∗. Then, by the definition of
E (T∗), all edges incident toC in T∗ belong toE (T∗). As E (T∗) = F andF ⊆ E(T) by (3), the edges incident
to C in T∗ are also edges ofT. In other words, every neighbour ofC in T∗ is a neighbour ofC in T, namely
NT(C) ⊇ NT∗(C). ThusC has at least three neighbours inT implying C ∈ H (T). This proves (4).

(5) H (T) = H (T∗) andE (T) = E (T∗).

By (4), we concludeH (T) ⊇H (T∗). Now, we calculate using (1), (4), and(⋆⋆) as follows.

ℓ(G′) ≤ |L (T∗)| = 2 + ∑
C∈H (T∗)

(

degT∗(C)− 2
)

≤ 2 + ∑
C∈H (T)

(

degT(C)− 2) = |L (T)| = ℓ(G′)

Note that the second inequality follows from (4) and the factthat degT(C) ≥ 3 for all C ∈ H (T), while the last
equality is byℓ(G′) = |L (T′)| and the fact thatT andT′ are isomorphic.

Thus the inequalities in the above formula are, in fact, equalities. Therefore, using (4), we conclude thatH (T) =
H (T∗) and everyC ∈ H (T∗) satisfiesNT(C) = NT∗(C). To see this, recall that eachC ∈ H (T∗) contributes
to the sum on the right at least as much as to the sum on the left,sinceNT(C) ⊇ NT∗(C) by (4). Further, every
C ∈ H (T) has a positive contribution to the sum on the right asdegT(C) ≥ 3 by the definition ofH (T). Thus,
since the two sums are equal, the only possibility is thatH (T) = H (T∗) and that eachC ∈ H (T∗) satisfies
NT(C) = NT∗(C) as claimed.

To conclude the proof, recall thatE (T), resp.E (T∗), is the set of edges ofT, resp.T∗, incident to the nodes in
H (T), resp.H (T∗). As H (T) = H (T∗) and eachC ∈ H (T) = H (T∗) is incident to the same set of edges in
T andT∗ for it satisfiesNT(C) = NT∗(C), we conclude thatE (T) = E (T∗). This proves (5).

Now (5) and (2) prove thatT is indeed a solution, namely thatT is a clique tree ofG with E (T) = E (T∗) = F.
Hence, the test in Line 5 succeds and the algorithm correctlyreturns a solution in Line 6.

This concludes the proof of correctness of the algorithm. Toaddress the complexity, letn = |V(G)| as usual.
First, we note that we may assume thatF contains at mostn− 1 edges as no clique tree ofG has more thann nodes.
If this is not so, we can safely report that no solution exists. Thus, asG′ has|V(G)| + |F| = O(n) vertices, we

8

conclude that step 3 takesO(n3) time using the algorithm of [12]. All other steps clearly take at mostO(n2) time.
Notably, in step 2 we use a linear time algorithm from [20].

Thus the total complexity isO(n3) as promised. That concludes the proof.

Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. Let G be a chordal graph withℓ(G) ≤ ℓ. By Corollary 6 (proven in§5), there exists a
tree model ofG that simultaneously realizes both the leafage and the vertex leafage ofG. By the remarks in§2,
there is also a clique tree ofG with this property; letT∗ denote this clique tree. In other words, the treeT∗ satisfies
|L (T∗)| = ℓ(G) and|L (T∗u)| ≤ vℓ(G) for all u ∈ V(G) whereT∗u = T∗

[

{C ∈ V(T∗) | u ∈ C}
]

.
By Lemmas 8 and 9, it suffices to know the setE (T∗) to be able, in polynomial time, to find a tree model ofG

(possibly different fromT∗) that realizes the vertex leafage ofG. This forms the basis of our algorithm as follows.

Let F ⊆ E(C (G)). If there exists a clique treeT with E (T) = F, defineαF = maxu∈V(G) |L (Tu)| where

Tu = T
[

{C ∈ V(T) | u ∈ C}
]

. If such a tree does not exist, defineαF = +∞. Note that the value ofαF is well-
defined, since by Lemma 8 it is independent of the particular choice of the clique treeT. Thus, the value ofαF can be
determined, for any givenF, in timeO(n3) using Lemma 9. In particular,αE (T∗) = vℓ(G) by the choice ofT∗.

Our algorithm tries all possible setsF ⊆ C (G) of size at most3ℓ− 6 as candidates forE (T∗) and chooses one
that that minimizesαF. If Fopt is this set, the algorithm outputs a clique treeTopt of G with E (Topt) = Fopt.

We claim that this procedure correctly finds a clique tree ofG that realizes the vertex leafage ofG. By (⋆⋆), we
observe thatE (T∗) ≤ 3|L (T∗)| − 6 ≤ 3ℓ− 6. Thus, the algorithm must, at some point, considerE (T∗) as the
setF. For this set, we haveαF = αE (T∗) = vℓ(G). By the minimality ofFopt, we concludeαFopt ≤ αE (T∗) = vℓ(G).
Hence,αFopt < ∞ and so the treeTopt exists. Moreover,αF ≥ vℓ(G) for all setsF, by the definition ofvℓ(G) and
αF. Thus, we must concludeαFopt = vℓ(G) and consequently by Lemma 8, the treeTopt is a clique tree ofG that
realizes the vertex leafage ofG. This proves the correctness of our algorithm.

Finally, let us analyze the complexity. Letn = |V(G)| as usual. Recall thatG has at mostn maximal cliques.
Thus there are at mostn2 edges inC (G), and hence, at mostn6ℓ−12 choices for the setF. For each choice ofF, we
use Lemma 9 to find a clique treeT with E (T) = F if it exists. This takesO(n3) for eachF, including the calculation
of αF. Altogether, the running time isO(n6ℓ−9) = nO(ℓ) as promised. That concludes the proof.

5. Vertex Leafage with Optimum Leafage

In this section, we prove Theorem 5 and Corollary 6. Namely, we demonstrate that the algorithm from [12],
solving the leafage problem, satisfies the claim of Theorem 5. This algorithm, given a chordal graphG, outputs a
clique tree ofG with minimum possible number of leaves. This is done by starting from an arbitrary clique treeT of
G, and iteratively decreasing the number of leaves ofT as long as possible.

We observe (and formally prove later in this section) that this process has the additional property that it never
increases the number of leaves in the subtrees of the tree model TT defined byT. In other words, ifT∗ is the clique
tree resulting from this process, thenT ∗ = TT∗ satisfies the claim of Theorem 5. This will imply that if the starting
clique treeT realizes the vertex leafage ofG, thenT ∗ = TT∗ satisfies the claim of Corollary 6.

For the proof of the above, we need to explain the inner workings of the algorithm from [12]. This algorithm, in
place of clique trees, operates on the so-called token assignments defined as follows.

For a chordal graphG, a token assignmentof G is a functionτ that assigns to every maximal cliqueC of G, a
multisetτ(C) of subsets ofC. We use the wordtokenfor the members ofτ(C). Note that the same subset may appear
in τ(C) many times. We focus on special token assignment that arise from clique trees.

The token assignmentdefinedby a clique treeT of G, and denoted byεT, assigns to every maximal cliqueC of
G, the multisetεT(C) = {C ∩ C′ | CC′ ∈ E(T)}. In other words,εT(C) consists of the intersections ofC with its
neighbours inT. A token assignmentτ is realizableif there is a clique treeT of G such thatτ = εT.

(See Figure 3 for an illustration of these concepts.)

Notice that the token assignmentτ = εT contains all the information needed to determine the numberof leaves in
T and also the number of leaves in the subtrees of the corresponding modelTT. We summarize this as follows.

9

d

a

c

be

f

k

h

i

j

g

a)

de

ad f

acd

cdk

ag ah

abc

cj

bci

b)

d

d

ad

cd

ac
ad

cd

aa

ac

aa

bc

c

bc

c

c)

Figure 3:a) Example chordal graphG, b) clique treeT of G, c) token assignmentτ = εT.

Lemma 10. Let G be a chordal graph, letT be a clique tree ofG, and letTT =
(

T, {Tu}u∈V(G)

)

denote the tree
model ofG defined byT. Letτ = εT, and defineτu(C) = {S | S ∈ τ(C), u ∈ S} for eachu ∈ V(G). Then

• degT(C) = |τ(C)| for all C ∈ V(T), and
• degTu

(C) = |τu(C)| for all u ∈ V(G) and all C ∈ V(Tu).

Consequently,L (T) =
{

C
∣

∣

∣
|τ(C)| = 1

}

andL (Tu) =
{

C
∣

∣

∣
|τu(C)| = 1

}

for all u ∈ V(G).

In particular, while there can be multiple clique trees defining the same token assignment, these clique trees will have
the same sets of leaves and consequently we do not need to distinguish them from one another. In other words, it
suffices to maintain that the token assignment we consider corresponds to some clique tree ofG. This can be tested
easily by applying four particular conditions as describedin [12]. As we do not use this test here directly, we omit
further details. (For more, see [12, Theorem 6].)

Now, we are finally ready to explain the main steps of the algorithm from [12]. The algorithm is given a chordal
graphG and a clique treeT of G. It starts by constructing the token assignmentτ = εT. Then it proceeds iteratively.
During each iteration step, a current token assignmentτ is examined to determine if there exists a different token
assignment corresponding to a clique tree with fewer leaves. This is done by checking for anaugmenting pathin τ,
which is a specific sequence oftoken moves(see definitions below). If an augmenting path exists, we pick the shortest
such path and exchange tokens along the path. This results ina new token assignmentτ that corresponds to a clique
tree with fewer leaves. If no augmenting path exists, we arrive at an optimal solution (i.e., a token assignment whose
corresponding clique trees all haveℓ(G) leaves) and we output this solution. We summarize the above procedure as
Algorithm 2. Below we provide the missing definitions.

Let G be a chordal graph andτ be a token assignment ofG. A token moveis an ordered triple (C1, C2, S) where
C1, C2 are maximal cliques ofG andS ∈ τ(C1). For a token move(C1, C2, S), we writeτ÷ (C1, C2, S) to denote the
token assignmentτ′ that is the result of movingS from τ(C1) to τ(C2). Namely1, we haveτ′(C1) = τ(C1) \ {S}
andτ′(C2) = τ(C2) ∪ {S}, while τ′(C) = τ(C) for all otherC 6∈ {C1, C2}.

A sequence of token moves(C1, C2, S1), (C2, C3, S2), . . ., (Ck−1, Ck, Sk−1) wherek > 1 is anaugmenting path
of τ if |τ(Ck)| = 1 and eachj ∈ {1, . . . , k− 1} satisfies

(i) τ ÷ (Cj, Cj+1, Sj) is a realizable token assignment2, and (ii) |τ(Cj)| =

{

≥ 3 if j = 1
2 otherwise

See Figure 4 for an example of an augmenting path of a token assignmentτ and its application toτ.
It is easy to see that the application of an augmenting path decreases the number of leaves in the resulting to-

ken assignment. This, however, does not guarantee that the resulting assignment corresponds to a clique tree ofG.
Fortunately, it can be proved that a shortest augmenting path has this property, and moreover, there always exists an
augmenting path unlessτ corresponds to an optimal clique tree. The details can be found in [12]. We only remark the
following invariant which is maintaned throughout the algorithm.

1Note that as bothτ(C1) andτ′(C1) are multisets, to obtainτ′(C1) we only remove one instance ofS from τ(C1) in caseS appears inτ(C1)
several times. This is consistent with the semantics of the set difference for multisets.

2i.e., it corresponds to a clique tree ofG.

10

d

d

ad

cd

ac
ad

cd

aa

ac

aa

bc

c

bc

c

a)

d

d

ad

cd

ac
ad

cd

aa

ac

aa

bc

c

bc

c

a

d

b)

d

a

ad

cd

ac
ad

cd

d

aa

ac

a

bc

c

bc

c

c)

Figure 4:a) token assignmentτ (see Figure 3),b) augmenting path(abc, ad f , a), (ad f , cdk, d) – directed edges,c) τ after applying the path.

Algorithm 2: Leafage(G,T)

Input : A chordal graphG, and a clique treeT of G.
Output : A clique treeT∗ of G with |L (T∗)| = ℓ(G).

1 Initialize τ ← εT /* initialize the token assignment with the given clique tree. */
2 while there exists an augmenting path ofτ do
3 Let (C1, C2, S1), . . . , (Ck−1, Ck, Sk−1) be a shortest augmenting path ofτ

4 for all i from 1 to k− 1 do
5 τ ← τ ÷ (Ci, Ci+1, Si)
6 return T∗ whereεT∗ = τ.

Lemma 11. [12] In Line 2 of Algorithm 2, the variableτ is a realizable token assignment.

After this introduction, we are ready to prove Theorem 5.

Proof of Theorem 5. We prove the theorem by showing that each application of an augmenting path in Algorithm 2
does not increase the number of leaves in the subtrees of the corresponding tree model.

In other words, letτ be the token assignment considered at the start of some iteration (Lines 2-5) of Algorithm 2,
and let(C1, C2, S1), . . ., (Ck−1, Ck, Sk−1) be the shortest augmenting path ofτ considered in this iteration (Line 3).
Let τ′ denote the value ofτ after applying the token moves of this path (Lines 4-5).

By Lemma 11, bothτ andτ′ are realizable token assignments ofG. In other words, there exist clique treesT
andT′ of G such thatτ = εT andτ′ = εT′ . Let TT =

(

T, {Tu}u∈V(G)

)

andTT′ =
(

T′, {T′u}u∈V(G)

)

be the

corresponding tree models ofG. In other words, for eachu ∈ V(G), we haveTu = T
[

{C ∈ V(T) | u ∈ C}
]

and
T′u = T′

[

{C ∈ V(T′) | u ∈ C}
]

. In addition, for eachu ∈ V(G) and each maximal cliqueC of G, define the
multisetsτu(C) = {S | S ∈ τ(C), u ∈ S} andτ′u(C) = {S | S ∈ τ′(C), u ∈ S}.

Now, to prove the theorem, it suffices to demonstrate that|L (Tu)| ≥ |L (T′u)| for everyu ∈ V(G). Consider
u ∈ V(G) and define two sequences of integersa1, . . . , ak andb1, . . . , bk whereai = |τu(Ci)| andbi = |τ

′
u(Ci)|

for all i ∈ {1, . . . , k}. Note thatτu(C) = τ′u(C) for all C 6∈ {C1, . . . , Ck}, and by Lemma 10, we haveL (Tu) =
{

C
∣

∣ |τu(C)| = 1
}

andL (T′u) =
{

C
∣

∣ |τ′u(C)| = 1
}

. This implies the following.

|L (Tu)| − |L (T′u)| =
∣

∣

∣

{

Ci

∣

∣

∣
|τu(Ci)| = 1

}∣

∣

∣
−

∣

∣

∣

{

Ci

∣

∣

∣
|τ′u(Ci)| = 1

}∣

∣

∣
=

∣

∣

∣
{i | ai = 1}

∣

∣

∣
−

∣

∣

∣
{i | bi = 1}

∣

∣

∣

In other words, the proof boils down to showing that{i | bi = 1} does not have more elements than{i | ai = 1}.
Recall that, by the definition of the augmenting path,|τ(Ck)| = 1 and|τ(Ci)| = 2 for all i ∈ {2, . . . , k− 1}.

Notably, since the path is shortest,C1, . . . , Ck are distinct maximal cliques ofG. Thus, asτu(C) ⊆ τ(C) for
all C, we conclude thatak ≤ 1 and ai ≤ 2 for all i ∈ {2, . . . , k − 1}. Further, note that|τ′(Ck)| = 2 while
|τ′(Ci)| = |τ(Ci)| = 2 for all i ∈ {2, . . . , k− 1}. In other words, we havebi ≤ 2 for all i ∈ {2, . . . , k}.

11

We shall use the following two claims to show that
∣

∣{i | bi = 1}
∣

∣ ≤
∣

∣{i | ai = 1}
∣

∣.

(6) If bi = 1, thenai ≥ 1.

Consideri ∈ {1, . . . , k} such thatbi = 1, and assume for contradiction thatai = 0. Sincebi = 1, we have by
Lemma 10 that1 = bi = |τ

′
u(Ci)| = degT′u

(Ci). In other words,Ci is a leaf ofT′u, and thusT′u contains at least
two vertices. Recall thatV(Tu) = V(T′u), and note that0 = ai = |τu(Ci)| = degTu

(Ci) by Lemma 10. This
means thatCi is a vertex ofTu with no neighbour inTu. This is clearly impossible, sinceTu is connected and
|V(Tu)| = |V(T′u)| ≥ 2. Thus we must conclude thatai ≥ 1. This proves (6).

(7) If bi = 1 andai ≥ 2, then there existsj > i such thataj = 1, bj = 2, andar = br for all r ∈ {i + 1, . . . , j− 1}.

To see this, first recall the construction ofτ′ from τ by moving the tokensS1, . . . , Sk−1 as follows.

τ′(Ci) =

τ(Ci) \ {Si} if i = 1
(

τ(Ci) \ {Si}
)

∪ {Si−1} if 1 < i < k

τ(Ci) ∪ {Si−1} if i = k

Also recall thatai =
∣

∣τu(Ci)
∣

∣ =
∣

∣

{

S | S ∈ τ(Ci), u ∈ S
}
∣

∣ andbi =
∣

∣τ′u(Ci)
∣

∣ =
∣

∣

{

S | S ∈ τ′(Ci), u ∈ S
}
∣

∣.
From these two facts we conclude the following relationshipbetween the values ofai andbi (1 < i < k).

(⋆⋆⋆) b1 =

{

a1 − 1 if u ∈ S1

a1 if u 6∈ S1
bi =

ai if u ∈ Si ∩ Si−1

ai − 1 if u ∈ Si \ Si−1

ai + 1 if u ∈ Si−1 \ Si

ai if u 6∈ Si−1 ∪ Si

bk =

{

ak + 1 if u ∈ Sk−1

ak if u 6∈ Sk−1

Now, for the proof of (7), consideri ∈ {1, . . . , k} such thatbi = 1 andai ≥ 2. By (⋆⋆⋆), we have|bi − ai| ≤ 1
and thusai = 2. Further,i < k sincebk ≥ ak by (⋆⋆⋆), but bi = 1 < 2 = ai. Moreover,u ∈ Si by (⋆⋆⋆), since
i < k andbi = ai − 1. We let j be the largest in{i + 1, . . . , k + 1} such thatar = br for eachr ∈ {i + 1, . . . , j− 1}.

First, we observe thatu ∈ Sr for eachr ∈ {i, . . . , j− 2}. Indeed, if otherwise, we letr be the smallest index in
{i, . . . , j− 2} with u 6∈ Sr. As we just argued, we haveu ∈ Si, and sor > i. Therefore,u ∈ Sr−1 by the minimality
of r. But thenbr = ar + 1 by (⋆⋆⋆), since1 ≤ i < r < j− 1 ≤ k, a contradiction.

This also implies thatj ≤ k. Indeed, ifj = k + 1, theni ≤ j− 2 = k− 1 sincei < k. Thusu ∈ Sj−2 = Sk−1

which yieldsbk = ak + 1 by (⋆⋆⋆). However,k ∈ {i + 1, . . . , j− 1} and sobk = ak by the choice ofj.
We can now conclude thatu ∈ Sj−1. Indeed, ifi = j− 1, then we use the fact thatu ∈ Si. Otherwise,i ≤ j− 2

in which caseu ∈ Sj−2 as argued above, and thusu ∈ Sj−1 by (⋆⋆⋆), sinceaj−1 = bj−1 and1 ≤ i < j− 1 < k.
Finally, we consider the value ofj. First, suppose thatj = k. Thenbk = ak + 1, sinceu ∈ Sj−1 = Sk−1. We

recall thatak ≤ 1 and sobk ∈ {1, 2}. If bk = 1, we haveak ≥ 1 by (6), but thenak ≥ bk = ak + 1 > ak, a
contradiction. So, we must concludebk = 2 andak = 1. Thus, asj = k, we havebj = 2, aj = 1, andar = br for
all r ∈ {i + 1, . . . , j− 1} as required. Thus we may assume thatj < k. By the maximality ofj, we haveaj 6= bj.
Also, u ∈ Sj−1 and1 ≤ i < j < k. So by (⋆⋆⋆) we conclude thatbj = aj + 1. We recall thatbj ≤ 2 asj > 1. Thus
bj ∈ {1, 2} asaj ≥ 0. Again, if bj = 1, we concludeaj ≥ 1 by (6) in which caseaj ≥ bj > aj, a contradiction. Thus
bj = 2, aj = 1, andar = br for all r ∈ {i + 1, . . . , j− 1}, as required. This proves (7).

We are now ready to conclude the proof. DenoteA = {i | ai = 1} andB = {i | bi = 1}. We show that|B| ≤ |A|
which will imply the present theorem as argued above the claim (6).

For eachi ∈ B, if ai = 1, defineϕ(i) = i. Otherwise, defineϕ(i) = j where j is the index obtained by
applying (7) fori. Note thataj = 1 andbj = 2. It follows thatϕ is a mapping fromB to A.

We show thatϕ is, in fact, an injective mapping. Suppose otherwise, and let i, i+ be distinct elements ofB
such thatϕ(i) = ϕ(i+). Recall thatbi = bi+ = 1 and note thati ≤ ϕ(i) and i+ ≤ ϕ(i+). If i = ϕ(i), then
i+ ≤ ϕ(i+) = ϕ(i) = i implying i+ < ϕ(i+) asi andi+ are distinct. Soai+ 6= 1 by the definition ofϕ, and hence
bϕ(i+) = 2 as ϕ(i+) was obtained by applying (7) fori+. But then1 = bi = bϕ(i) = bϕ(i+) = 2, a contradiction.
Thus we must conclude thati < ϕ(i) and, by symmetry, alsoi+ < ϕ(i+). Now, without loss of generality, assume
i < i+. Sincei+ < ϕ(i+), we must haveai+ 6= 1 by the definition ofϕ. However,bi+ = 1 asi+ ∈ B, and hence,
ai+ 6= bi+ . Recall that the choice ofϕ(i) using (7) fori guarantees thatar = br for all r ∈ {i + 1, . . . , ϕ(i)− 1}.

12

In particular,i < i+ < ϕ(i+) = ϕ(i) and soai+ = bi+ which is a contradition. This verifies thatϕ is indeed an
injective mapping fromB to A, which yields|B| ≤ |A|.

This completes the proof of Theorem 5.

6. Concluding Remarks

In this paper we have studied the vertex leafage of chordal graphs. Specifically, a chordal graphG = (V, E) has
vertex leafagek when it has a tree model

(

T, {Tu}u∈V

)

such that each subtreeTu has at mostk leaves.
We have shown that, for every fixedk ≥ 3, it is NP-complete to decide if a split graphG has vertex leafage at

mostk, even whenG is known to have vertex leafage at mostk + 1. Moreover, we have proved that it is NP-hard to
find a tree model ofG with as few leaves in subtrees in total as possible, and it is also NP-hard to find a clique tree
where as many subtrees as possible are paths, even ifG is a split graph of vertex leafage 3. Interestingly, this makes
the polynomial-time recognition of path graphs [2, 8, 18] the only tractable unparameterized case of this problem.

On the positive side, we have demonstrated annO(ℓ) algorithm to compute the vertex leafage of a chordal graph
whose leafage is bounded byℓ. This puts vertex leafage in the class XP when the leafage is taken as the parameter.

Finally, we have shown that every chordal graphG has a tree model which simultaneously realizesG’s leafage
and vertex leafage. In proving this result we have also shownthat, for every path graphG, there exists a path model
with ℓ(G) leaves in the host tree and such a path model can be computed inO(n3) time.

The following questions remain open.

(A) for parameterp (integer) is any of the following problems in XP:
– given a chordal graphG is there a tree model ofG where at mostp subtrees are paths?
– given a chordal graphG is there a tree model ofG where the total number of leaves in all subtrees is at mostp?

(B) if the answer to (A) is affirmative, is the problem in question in FPT or is it W[t]-hard for some (all)t?
(C) is the vertex leafage FPT with respect to leafage?
(D) is the vertex leafage FPT with respect to some other graphparameter?

Acknowledgement

We would like to thank anonymous referees for thoroughly reading the manuscript and for providing helpful
comments. We would also like to acknowledge Marisa Gutierrez and Pablo de Caria whose work [4] and later
discussions inspired the proofs of Theorems 3 and 4.

The initial work on this project was done during the second author’s visit at the University of Toronto in 2009 and
later during the first author’s visit at the Caesarea Rothschild Institute of the University of Haifa in 2011. Both trips
were made possible by a generous support of Prof. Derek Corneil of the University of Toronto via his NSERC grant.
The second author also gratefully acknowledges support from EPSRC, award EP/I01795X/1.

References

[1] BUNEMAN , P. A characterization of rigid circuit graphs.Discrete Mathematics 9(1974), 205–212.
[2] CHAPLICK , S. Path Graphs and PR-trees. PhD thesis, University of Toronto, 2012.
[3] COHEN, E., GOLUMBIC , M., L IPSHTEYN, M., AND STERN, M. What is between chordal and weakly chordal graphs? InGraph-Theoretic

Concepts in Computer Science (WG 2008), Lecture Notes in Computer Science 5344(2008), pp. 275–286.
[4] DE CARIA , P., AND GUTIERREZ, M. Determining possible sets of leaves for spanning trees of dually chordal graphs. InMACI 2009:

Congreso de Matemática Aplicada, Computacional e Industrial (2009), pp. 153–156.
[5] FULKERSON, D. R.,AND GROSS, O. A. Incidence matrices and interval graphs.Pacific Journal of Mathematics 15(1965), 835–855.
[6] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,

New York, NY, USA, 1979.
[7] GAVRIL , F. The intersection graphs of subtrees of trees are exactlythe chordal graphs.Journal of Combinatorial Theory Series B 16(1974),

47–56.
[8] GAVRIL , F. A recognition algorithm for the intersection graphs of paths in trees.Discrete Mathematics 23(1978), 211–227.
[9] GAVRIL , F. Generating the maximum spanning trees of a weighted graph. Journal of Algorithms 8(1987), 592–597.

[10] GOLUMBIC , M. C., LIPSHTEYN, M., AND STERN, M. Equivalences and the complete hierarchy of intersection graphs of paths in a tree.
Discrete Applied Mathematics 156(2008), 3203–3215.

13

[11] HABIB , M., AND STACHO, J. Linear algorithms for chordal graphs of bounded directed vertex leafage.Electronic Notes in Discrete
Mathematics 32(2009), 99–108.

[12] HABIB , M., AND STACHO, J. Polynomial-time algorithm for the leafage of chordal graphs. InAlgorithms - ESA 2009, Lecture Notes in
Computer Science 5757(2009), pp. 290–300.

[13] JAMISON, R. E., AND MULDER, H. M. Constant tolerance intersection graphs of subtrees of a tree. Discrete Mathematics 290(2005),
27–46.

[14] L ÉVÊQUE, B., MAFFRAY, F.,AND PREISSMANN, M. Characterizing path graphs by forbidden induced subgraphs.Journal of Graph Theory
62 (2009), 369–384.

[15] L IN , I. J., MCKEE, T. A., AND WEST, D. B. The leafage of a chordal graph.Discuss. Math. Graph Theory 18(1998), 23–48.
[16] MONMA , C. L., AND WEI, V. K.-W. Intersection graphs of paths in a tree.Jounal of Combinatorial Theory B 41(1986), 141–181.
[17] SCHAEFER, T. J. The complexity of satisfiability problems. InSTOC(1978), pp. 216–226.
[18] SCHÄFFER, A. A. A faster algorithm to recognize undirected path graphs. Discrete Applied Mathematics 43(1993), 261–295.
[19] SHIBATA , Y. On the tree representation of chordal graphs.Journal of Graph Theory 12(1988), 421–428.
[20] TARJAN, R. E. Depth first search and linear graph algorithms.SIAM Journal on Computing 1(1972), 146–160.
[21] WALTER, J. R. Representations of chordal graphs as subtrees of a tree. Journal of Graph Theory 2(1978), 265–267.

14

