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Abstract

Every chordal grapkr can be represented as the intersection graph of a collesfteubtrees of a host tree, a so-called
tree modebf G. This representation is not necessarily unique. The lefg@) of a chordal grapi® is the minimum
number of leaves of the host tree of a tree modé&koT he leafage is known to be polynomially computable.

In this contribution, we introduce and study thertex leafage The vertex leafage/(G) of a chordal grapltG
is the smallest numbédr such that there exists a tree model®fin which every subtree has at mdsteaves. In
particular, the casel(G) < 2 coincides with the class of path graphs (vertex interse@phs of paths in trees).

We prove for every fixe& > 3 that deciding whether the vertex leafage of a given chordslyis at mosk is
NP-complete. In particular, we show that the problem is I[dRyglete on split graphs with vertex leafage of at most
k + 1. We further prove that it is NP-hard to find for a given spliaghG (with vertex leafage at most three) a tree
model with minimum total number leaves in all subtrees, oerghmaximum number of subtrees are paths. On the
positive side, for chordal graphs of leafage at mioste show that the vertex leafage can be calculated in HHe.

Finally, we prove that every chordal graghadmits a tree model that realizes both the leafage and thexver
leafage ofG. Notably, for every path grap&, there exists a path model witG) leaves in the host tree and we
describe arD(n3) time algorithm to compute such a path model.
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1. Introduction

In the following text, a graph is always finite, simple, uretited, and loopless. A gragh= (V, E) has vertex set
V(G) and edge sef (G). We writeuv for the edge€u, v) € E(G). We useNg(v) to denote the neighbourhoodof
in G, and writeN¢ [v] = N¢(v) U {v}. The degree of in G is denoted byleg - (v) = |[Ng(v)|. Where appropriate,
we drop the inde)G, and writeN(v), N[v], anddeg(v), respectively. We us&[X] to denote the subgraph &f
induced byX C V(G), and writeG — X for the graphG[V(G) \ X]. We useG — v for G — {v}. We say thaX is a
cliqueof G if G[X] is a complete graph, ankl is anindependent seif G if G[X] has no edges.

A tree modebf a graphG = (V,E) isapair7 = (T,{T.},cv) WhereT is a tree, called host treg eachT), is
asubtreeof T, and a paiuv is in E if and only if V(T,,) N V(Ty,) # @. In other words,7 consists of a host tree and
a collection of its subtrees whose vertex intersection lyiafs.

A graph ischordalif it does not contain an induced cycle of length four or mdrés well-known [1, 7, 21] that a
graph is chordal if and only if it has a tree model. Any chogtalph admits possibly many different tree models.

For atreeT, let Z(T) denote the set of iteavesi.e., vertices of degree one. Tfconsists of a single node, we
defineZ(T) = @. In other words, we consider such a tree to have no leaves.

Theleafageof a chordal graplG, denoted by/(G), is defined as the smallest integesuch that there exists a
tree model ofG whose host tree hakleaves (see [15]). It is easy to see thaE) = 0 if and only if G is a complete
graph, and otherwis& G) > 2. Moreover the casé(G) < 2 corresponds precisely toterval graphs(intersection
graphs of intervals of the real line) [5]. In this sense, tafdge of a chordal graph measures how closg is to
being an interval graph.
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In this paper, we introduce and study a similar parameter.

Definition 1. For a chordal grapls = (V, E), thevertex leafag®f G, denoted byw/(G), is the smallest integér
such that there exists a tree mo&) {T,, },cv) of G where|.Z(T,)| < kforallu € V.

In other words, the vertex leafage Gf seeks a tree model @ where each of the subtrees (corresponding to the
vertices ofG) has at mosk leaves and the value &fis smallest possible. (See Figure 1 for illustration.)
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Figure 1:a) example graplG with £(G) = 4 andv{(G) = 3, b) example clique tre& of G, c) tree model corresponding to (defined 1)

In the subsequent text, we shall say that a tree mod@lmeflizes the vertex leafage Gfto indicate that the tree
model satisfies the conditions of Definition 1 for smallestgblek. Similarly, we shall say that a tree model Gf
realizes the leafage @ to indicate that the number of leaves in the host tree of geertmodel is smallest possible.

As in the case of leafage, the vertex leafage is a naturahpetea related to some subclasses of chordal graphs
previously studied in the literature. To see this, recadl ¢thass of vertex intersection graphs of paths in trees, also
known aspath graphgq8] (see also [2, 14, 16, 18]). Now, observe that for a chogdaphG, we havev/(G) = 0
if G is a disjoint union of complete graphs, and otherwigéG) > 2. Moreover,v/(G) < 2 ifand only if G is a
path graph. Thus, the vertex leafage of a chordal ga@an be seen as a way to measure how cl@se to being
a path graph. Another connection comes from [11] where ibseoved that ifD(kn) time one can find: an optimal
colouring, a maximum independent set, a maximum clique aanaptimal clique cover of an-vertex chordal graph
G with vertex leafagé if a representation of: (a tree model realizing vertex leafage) is given.

In [8] it is shown that path graphs can be recognized in patyiabtime. Currently, the best known recognition
algorithms for path graphs run i@(nm) time [2, 18], wheren = |V(G)| andm = |E(G)|. In other words, for a
chordal graplG, testing whetheo/(G) < 2 can be performed i@ (nm) time.

Some other restrictions and variations on the standardrtoetel have also been studied. One such family of these
variations is captured by tHé, s, t]-graphs (introduced in [13]) defined as followGs:= (V, E) is an|h, s, t]-graph
if there is a tree mode(IT, {Tu}uev) of G such that the maximum degreeBis at most:, the maximum degree of
each of{T, },cy is s, anduv is an edge of5 if and only if T, and T, have at least vertices in common. For more
information on these graphs see [3, 10].

We summarize the results of our paper in the following thewre

Theorem 2. For everyk > 3, it is NP-complete to decide, for a split graghwhose vertex leafage is at madst 1,
if the vertex leafage df is at mostk.
Theorem 3. It is NP-complete to decide, for an integeand a split graphG whose vertex leafage is at most 3,

(i) if there exists a tree model @f in which all butp subtrees are paths,
(if) if there exists a tree model & where the total number of leaves in all subtrees is at mpost

Theorem 4. For every/ > 2, there exists am©(’) time algorithm that, given am-vertex chordal graptG with
£(G) < ¢, computes the vertex leafage@fand constructs a tree model 6fthat realizes the vertex leafage Gf

Theorem 5. There exists ai®(n) time algorithm that, given an-vertex chordal graptG = (V,E) and a tree
model(T, {T, },ecv) of G, computes a tree modeT™*, {T;; } ,cv) of G such that

() |-2(T)| < |Z(Ty,)| forallu e V,

(i) [2(T)| = £(G).



Corollary 6. For every chordal graplG = (V, E), there exists a tree mod€T™, {T },,cv) such that
() |-2(T;)| <vl(G)forallueV.
(i) |2(T*)] = £(G),

In other words, such a tree model realizes both the leafagktla@ vertex leafage dF.

The paper is structured as follows.§2 we discuss some technical details related to tree modaei8.we present
a proof of Theorem 2 and then discuss how to modify this proadtitain a proof of Theorem 3. I§4 we prove
Theorem 4, and i§5 we present a proof Theorem 5 and Corollary 6. We close therpaf6 with a summary and a
discussion of possible extensions of this work.

2. Minimal Tree Models and Clique Trees

LetG = (V,E) be a chordal graph. We say that two tree modgls= (T, {T,},cv) and7’ = (T',{T, }.ev)
of G areisomorphi¢ and write. 7 ~ 7', if there exists an isomorphismp betweenT and T’ that induces an
isomorphism betweefi, and T}, for all u € V, namelyp(V(T,)) = V(T}).

Atree model7 = (T,{T,},ecv) of G is minimalif |V(T)| is smallest possible among all tree modelsGofA
clique treeof G is a treeT whose nodes are the maximal cliquestbéuch that for allC,C' € V(T), everyC” on
the path betwee@l andC’ in T satisfiesC"” O C N C'. Every clique tred” of G definesa tree modelZr of G, where
Ir = (T, {Tu}uev) andT, is defined a§' [{C € V(T) | u € C}| forallu € V.

Given an edge&XY of a treeT, we denote by /x the tree obtained byontractingXY in T. Namely,T/y is the
tree constructed by removing, Y from T, adding a new verteX, and connecting t@ the neighbours oK and the
neighbours oy in T. For a tree modeV” = (T, {T,},cv) of G and edgeXY of T, by contractingKY in T and all
subtreed’;, we mean the tree model with host trEg,, and subtree$T, /y | XY € E(T,)} U{T, | XY ¢ E(Tu)}.

A family of sets{ X}, is said to have thelelly propertyif every pairwise intersecting subfamily §¥;};; has
a common point. In other words, evefyC I such thatX; N X; # @ forall i, j € ] satisfieqN;c; X; # ©. Note that
any collection of subtrees of a tree has the Helly property.

Fact7. Let.7 = (T, {Tu}ucv) be atree model of. Then the following statements are equivalent.

(i) 7 is a minimal tree model of.
(i) T ~ 97 for some clique tre& of G.
(i) Forall XY € E(T), contractingXY in T and all subtree§), containing it yields a tree model 6f' # G.
(iv) The mappingp defined forX € V(T) asy(X) = {u € V| X € V(T,)} is a bijection between the vertices of
T and the maximal cliques @.

Proof. (i)=-(iii) and (ii)<(iv) are clear, while (iii}=-(iv) = (i) follow from the Helly property of subtrees. O

Note that Fact 7(iv) states, in other words, that the setlafeatices of G whose subtrees contakis a maximal
clique of G. In particular, for any tree model, the set of such verticealivays a clique oG, but it is not always
necessarily a maximal clique. This is only true for minintakt models.

Moreover, it follows from Fact 7 (i (iii) that every tree mode{T, {T, },cv) of G can be transformed (by con-
tracting some edges of the host tree and the subtrees) inioimah tree model( T/, {T,},cv). Notably, as this
transformation involves only contracting edges, it foltotiat this does not increase the number of leaves both in the
host tree and the subtrees, namel§(T')| < |.Z(T)| and| L (Ty)| < |Z(T},)|forallu € V.

This observation allows us to focus exclusively on mininmaétmodels. Namely, it shows that if there exists a
tree model with minimum number of leaves in the host treet¢egls), then there also is a minimal tree model with
minimum number of leaves in the host tree (subtrees). Caresdly, in the remainder of the paper, all tree models
are assumed to be minimal tree models unless otherwisdispeci

Furthermore, using Fact 7€) (ii), we shall view minimal tree models @ as tree models defined by clique trees
of G. We shall switch between the two viewpoints as needed.



3. Hardness of Vertex Leafage

In this section, we first prove Theorem 2 stating that catoulgthe vertex leafage of a split graph is NP-complete.
To this end, we describe a polynomial-time reduction fromMNALL-EQUAL- k-SAT,; this problem is well-known
to be NP-complete [6] fok > 3. We then use the same transformationfoe= 2 to produce a polynomial-time
reduction from MAX-CUT, which will prove Theorem 3.

Proof of Theorem 2. The problem is clearly in NP as one can easily compute in mohjal time the number of
leaves in subtrees of a given tree model. To prove NP-hasdmes show a reduction from NOT-ALL-EQUAL-
k-SAT. By standard arguments [17], we may assume, withost ddgenerality, that the instances to this problem
contain no repeated literals and no negated variables. Wawsn phrase the problem as follows.

NOT-ALL-EQUAL-k-SAT

InstanceZ: a collectionCy, Cy, ..., Cy, Of k-element subsets dfvy, ..., v, };
Solutionto Z (if exists): ase C {vy,...,v,} such thateache {1,...,m} satisfiesC; N S # @ andC; \S #Q.

In addition, we may assume the following property of anyanse?.
(*) There are no distinct indicési™ such thav;+ € C; whenevew; € C;.

Indeed, if there exist # i with v;+ € C; whenevew; € C;, then we replac& by another instanc&* constructed
fromZ by removingo; and all clause€’; that contairp;. If there is a solution t&, thenS \ {v;} is a solution taZ .
Conversely, ifS is a solution tdZ *, then eithesS is a solution tdZ if v;~ € S, orSU {v;} is a solutiontdZ if v;+ & S.
Now, for the reduction, we consider an instafcsatisfying ) and construct a graph, denoted®y, as follows:
(i) the vertex set ofG7 consists of:1 + m + 2 vertices:V(Gz) = {v1,..., 0, Y1, -, Ym, 21,22}

(ii) the vertices{ys, ..., yn} formaclique,

(iii) the vertices{vs, ..., vy, 21,22} form an independent set,

(iv) each vertew; is adjacent to all verticesg; such thaw; € C;,

(v) the verticesy, z, are adjacent to each vertex of the cliqug, . . ., ym }-
We observe that7 is a split graph with partition into cliquéy, ...,y } and independent s, ..., vy, 21,22}
(See Figure 2 for an example of this construction.)

Ci = {v1,02,v3}
CZ = {01104/ 2)6}
Cs = {v3,v5,06}
Cy = {v2,04,05}

- /] e» /) el el

- 71,22,01,02,03,04,05,06

Figure 2:a) the graphG7 for example instancg with n = 6 andm = 4, b) a clique tree ofs7, ¢) corresponding tree model &f7.

We prove that the vertex leafage Gf is:
(a) at mosk + 1, and
(b) is at most if and only if there is a solution t@.

To do this we analyze the cliques @f;. This is easy, sincé&z is a split graph; all its maximal cliques are
formed by taking a vertex of the independent set with its Imeayrhood. In particular, the maximal cliques@f are
A= {21,]/1,. . .,ym}, B = {Zz,yl,. . .,ym}, andQ; = {Z)i} U {y] | v; € C]} for eachi € {1,. . .,1’1}.

4



We first prove (a). Recall thdtA, B, Qy, ..., Qx} is the set of all maximal cliques @7, and hence, the vertex
set of every clique tree afz. Each of the verticesy, z,, andv;, fori € {1,...,n}, belongs to exactly one of these
cliques, namely4, B, andQ;, respectively. Also, each;, for j € {1,...,m}, belongs to exactly + 2 cliques,
namelyA, B, and{Q;,,...,Q; } whereC; = {v; ,...,v; }. So, sincé > 1, every tree spanning these cliques has
at mostk + 1 leaves. We thus conclude that in every clique tre&pf each subtree corresponding to a vertex:of
has at most + 1 leaves. In other words, any clique tree®f certifies that/(Gz) < k + 1 which proves (a).

We now prove (b). Lef be a solution td. Construct a tred with vertex sef{ A, B, Q1, ..., Qu} and edge set
{AB} U{AQ; | v; € S} U{BQ; | v; ¢ S}. Letus verify thatT is a clique tree of57. Its vertex set is the set of all
maximal cliques of57. For distincti,i* € {1,...,n}, the path betwee@; andQ;+ containsA or B or both, and no
other vertex. Note thaD; N Q;+ C {y1,...,ym} = AN B. This verifies the path betwe&d; andQ;+. Similarly,
the path betwee@; and A or B additionally contains onlyA or B and we have); N A = Q; N B which verifies this
path. That exhausts all pathsThand thus confirms thdft is indeed a clique tree d@i;.

Let 77 = (T, {Ty}UGV(GI)) be the tree model correspondingTo We analyze its subtrees. First, we consider
the subtreel,, wherei € {1,...,n}. Asin (a), we observe that the vertexonly belongs to one clique df,
namelyQ;. Thus|V(Ty,)| = 1 implying |.Z(T,;)| = 0 by our convention. Similarly, the vertices and z;
each belong to only one cliquel and B respectively, and we have?(T,)| = |-£(T-,)| = 0. It remains to
considel‘Ty]. forje{1,...,m}. The vertexy; belongs to the cliqued, B, andk distinct cliquesQ; , ..., Q;, where
G = {vil,...,vik}. The cliquesQ;,, ..., Q;, are leaves onyj as they are leaves @. However, neithetA nor
B is a leaf ony].. Indeed, since is a solution toZ, there are indiceg,r € {1,...,k} such thatol-p € S and
v;, € S. Hence, by constructiori, contains edges{Qip andBQ; . So, Ty, contains these edges, as well as the
edgeAB. Thus bothA andB have at least two neighboursT), and are therefore not leavesTf,. Consequently,
|2 (Ty;)| = {Qiy, - -, Qi }| = k which implieso/(Gz) < k as certified by the tree modéfr.

Conversely, suppose thaf(G7) < k. Then there exists a clique tréeof Gz such that the corresponding model
Ir = (T, {Ty}UGV(GI)) satisfiegd.Z(Ty,)| < kforallv € V(Gz). We analyze the structure @t First, we observe
that AB must be an edge &. If otherwise, the path betweefiandB in T contains some cliqu@;,i € {1,...,n}.
As T is a clique tree, we concludgy, ..., ym} = ANB C Q; = {v;} U{y; | v; € C;}. But thenov; belongs to
eachC;, j € {1,...,m}, and sincer > k > 2, there exists* € {1,...,n} different fromi, which contradictsX).
Similarly, we show that eac;, i € {1,...,n} is a leaf of T. If otherwise, som&); has at least two neighbours
in T. These cannot bd, B as this would imply a triangle ifl', sinceAB is an edge off. Thus(Q; is adjacent to
Q,+ for somei™ € {1,...,n}. AsT is a tree, we have that eith€;+ lies on the path fromA to Q;, or Q; lies
on the path fromA to Q;+. By symmetry, we may assume the former. Thus, sifiée a clique tree, we conclude
{yjlvieCi} = ANQ; C Qi+ = {vi+ } U{y; | v;+ € Cj}. Sov;+ € C; whenevew; € C;, contradicting ).

Now, we are ready to construct a $e€ {vy,...,v,} as follows: for eachi € {1,...,n}, we puty; in S if AQ;
is an edge off. We show thaS is a solution taZ. If not, there existg € {1,...,m} such that eithes D C;j or
SNCj = @. We look at the subtre®,; corresponding to the vertey. Recall thaty; belongs to cliques!, B, and
k cliquesQ;,, ..., Q;, whereCy = {vil, e, vik}. The cliqueg);, ..., Q;, are leaves o‘Ty]. because they are leaves
of T (as proved above). § C C;, we have, by construction, that is the unique neighbour of each of the cliques
Qiy,---, Qi in T. Consequently, none of the cliques,, ..., Q;, is adjacent taB in T. This shows thaB is only
adjacenttod in T, and hence, is a leaf ifi,,. But then|.Z(Ty)| = [{Q,, ..., Q;,, B}| = k+ 1, contradicting our
assumption abouf. Similarly, if SN C; = @, the cliques);, ..., Q;, are only adjacent t8 and not toA, in which
caseA is a leaf ony]. leading to the same contradiction.

Therefore S must indeed be a solution and that concludes the proof. (]

Proof of Theorem 3. The proof follows the same steps as that of Theorem 2. To keegd simple, we only describe
here the key differences. Instead of NOT-ALL-EQUALSAT, we consider the optimization version of the problem
for k = 2, which is known as MAX-CUT,; this problem is also known to be-N&d (see [6]).

In MAX-CUT, we are given a graplif, and we seek a subsgtof vertices ofH such that the number of edges
betweert and the rest off is maximized. To be able to reuse our proof of Theorem 2, wtlesisproblem as follows.

MAX-CUT

InstanceZ: a collectionCy, Cy, ..., Gy, Of 2-element subsets dfvy, ..., v, }, and an integep

Solutionto Z: asetS C {vy,...,v,} suchthaC; NS # @ andC; \ S # @ for atleastn — p indicesj € {1,...,m}
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As in the proof of Theorem 2, we may assume that every giveariee of this problem satisfies the propesty. (
(Note that this corresponds to removing vertices of degeee and one in the corresponding input graph, which does
not change hardness of the problem.)

For the reduction, consider an instaricef the above problem, namely, a collecti@p, C, .. ., C,, of 2-element
subsets of v1,...,v,} and an integep. Let Gz denote the graph constructed in the proof of Theorem 2 for the
collection{Cy,...,Cyn}. To be more specifioi7 is the graph whose vertex set{is;, ..., vn, y1,---.,Ym, 21,22}
where{vy, ..., vy, 21,2, } forms an independent s€tyy, . ..,y } forms a clique, and bothy andz, are adjacent to
allof yy, ..., ym, while v; is adjacent tay; if and only ifv; € C;. Note thatGy is a split graph.

For this graphGz, repeating the arguments presented in the proof of Theoreve 2onclude that

(@) v/(Gz) < 3, and
(b) there exists a solution b if and only if there exists a tree model 6f in which all butp subtrees are paths.

Moreover, we may assume that the tree model mentioned i gojriinimal tree model, and thus (a) implies that the
total number of leaves in this model is at mpstThis follows from the fact that each of the vertiegs. . ., vy, z1, 22
belongs to exactly one maximal clique @f, and hence, the subtrees corresponding to these verticesmibdeaves,
since the model is minimal. This proves both parts of ThedBeand completes the proof. O

4. Vertex Leafage in Bounded Leafage Graphs

In this section, we discuss calculating vertex leafage iordal graphs of bounded leafage. Namely, we prove
Theorem 4, that is, for a fixei we demonstrate how to calculate the vertex leafage of-aertex chordal grapks
with £(G) < ¢ in polynomial time, namely, in time®("), We do this by enumerating clique trees®iwith respect
to high (> 3) degree nodes. The enumeration is based on the obsenadipimé number of high-degree nodes in a
tree is directly related to the number of leaves. This godslbmsvs.

For a tre€T, let 7#(T) denote the set of nodes Bfof degree at least 3, and I&(T) denote the set of edges Bf
incident to the nodes ig?’(T). Further, let:; denote the number of nodes of degiée T. Then

[A(T)| =) _ni <) (i=2)n;=mn+} (i—2)n =n +2[E(T)|-2|V(T)| = [£(T)|-2

i>3 i>3 i>1
“ )< Tlion) = 2 m+ Y l-2m = 26(T)| + | 2(T)] -2 < 3.2(T)—6
i>3 i>3 i>3

For the second-to-last equality in the first line, note {R&(T)| = ¥, n; while |[E(T)| = 3 ;51 - ).
We remark that£x), in particular, implies that if.#(T)| is bounded, then so afgZ’(T)| and|&'(T)|. We shall
use this fact later. Moreover we shall use the following ety

Lemma 8. If T andT* are two clique trees of with &(T) = &(T*), then|-Z(T,)| = |-ZL(T;)| for all u € V(G)
whereT, = T[{C € V(T) |u € C}] andT; = T*[{C € V(T*) | u € C}].

Proof. Consider a vertex € V(G). Since&(T) = &(T*), we conclude#’(T) = s (T*) and eachC ¢
A (T) = s(T*) has the same neighbourhood in b@tlandT*, i.e., N7(C) = Nt+(C). Moreover, if a node has
degree at least 3 i, then it also has degree at least J[insinceT), is an subgraph df. In other words, we have
H(Ty) € #(T). In addition, we observe that eache V(T,) satisfiesNr, (C) = Nt (C) N V(Ty), sinceT, is
an induced subgraph @f. By the same tokerir: (C) = Nr+(C) N V(T;;) for eachC € V(T;). Finally, note that
V(T,) = V(T}), sinceV(T) = V(T*). Thus, for eaclC € #(T,), we can write

Nr,(C) = Nr(C) N V(Tu) = N7+ (C) N V(T;) = Nr; (C).
This impliesC € #(T;;) anddegr, (C) = degy. (C) forall C € 7#(Ty). Thus, we calculate bisx).

[Z(T)| =2+ ) (degr,(C)—2) <2+ }, (degr(C)—2)=|Z(T;)

CeH(Tu) Ce(Ty)
To see that the inequality holds, also note idteg. (C) > 3 for eachC € JZ(Tj), by definition. This proves that
| (Ty)| < |Z£(T;)|, and a symmetric argument yield®’(T,,)| > |.£(T,;)| which completes the proof. O
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Now, recall that the vertex set of every clique treetis the set of all maximal cligues @. Notably, all clique
trees have the same vertex set. &iG) denote the clique graph @, i.e., the graph whose nodes are the maximal
cligues of G and where two nodes are adjacent if and only if the correspgmuiaximal cliques intersect. It is
well-known [9, 19] that every clique tree 6f is a spanning tree &f (G).

Our algorithm is based on the following lemma.

Lemma 9. There is anO(n?) time algorithm that, given an-vertex chordal graplG and a setF C E(%(G)),
decides if there exists a clique tr&eof G with £(T) = F and constructs such a tree if one exists.

Proof. We describe an algorithm for the problem as follows.

Algorithm 1:

Input: A chordal graphG and a sef C E(4(G)).
Output: A clique treeT of G with &(T) = F, or report that no such tree exists.

1 Construct a graply’ as follows:
V(G)=V(G)U{v,|e € F}
E(G") =E(G)U{uv, |e€ F,e=CC',uc CUC'}U{vevy|ee €F, ene # 0}
2 if G’ is chordathen
3 Construct a clique tre€’ of G’ with minimum number of leaves.
4 | Constructatred from T’ by renaming each nod® € V(T’) toC' N V(G)
5
6
7

if T is a clique tree oG and&'(T) = F then
| retun T
return “no such tree exists”

We now prove correctness of the above algorithm. For sintplive shall refer to any clique tréBwith &(T) =
F as a “solution”. First, observe that if the algorithm retithe tre€l in Line 6, then this is indeed a solution. This
proves that if there is no solution, the algorithm providesdorrect answer (in Line 7).

Thus, for the rest of the proof, we may assume that a solutitatse Namely we shall assume there is a clique
treeT* of G satisfying&'(T*) = F. For every maximal cliqu€ of G, definegp(C) = CU{v. |e € F, C € ¢}.

In the following claim, we discuss the properties of the gréj constructed in Line 1.

(1) G’ is chordal, satisfieg(G') < |-£(T*)|, andg is a bijection between the maximal cliques®andG’.

To prove the claim, we construct a minimal tree modelGSfas follows. LetJr: = (T*,{T;},cv(c)) be the
minimal tree model of that is defined by the clique tré&*, namelyT;; = T[{C € V(T*) | u € C}]. For each
edgee = CC' € F, defineT;;, = T*[{C,C'}]. Finally, let.7* = (T*, {T;; },.cv(c) U {Ts, Jeer})-

It is easy to verify that7 ™ is a tree model of5’. In particular, each subtree in the collection is a connecte
subgraph ofT*. This follows from the fact thal™* is a clique tree ofz and thatF = &(T*) C E(T*). Further,
for each edge = CC’ in F, we see that the subtr@& intersects only subtreé; whereC or C' is in V(Tj), i.e.,
those where: € C U C’. Moreover,T;; only intersects subtred@gl whereC or C’ is in V(T;‘B/), i.e., those where

eNe' # @. This corresponds precisely to the definition@f

Thus, we conclude thad’ is indeed a chordal graph, afiG’) < |.Z(T*)| as.Z* is a particular tree model of
G’ andT* is its host tree. Morever, we see that" is actually a minimal tree model @’. Indeed, if there were
a tree model ofG’ with less than/V(T*)| nodes in its host tree, then by removing subtrees correspgiad the
vertices{v, | e € F} we would obtain a tree model 6f whose host tree has less thH&(T*)| nodes. But this would
contradict the minimality of7-.

This implies, by Fact 7(ii), that there exists a clique ti&e of G’ that defines7 , i.e., 7+ = J7+. Namely,
there is an isomorphism betwe@mn and the host tre€* of .7+ where each nodé € V(T*) corresponds to the set
of all vertices ofG’ whose subtrees contaih i.e., the se{u € V(G) | C € V(T,)}U{ve |e € F, C € V(Ty,)}
which is exactlyg(C). In other words,V(Tt) = {¢(C) | C € V(T*)}, and consequentlyy constitutes an
isomorphism betweefi* andT+. As one is a clique tree af and the other a clique tree 6f, we conclude thap
is a bijection between the maximal cliques@fandG’. This proves (1).
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The claim (1) shows that the test in Line 2 succeeds. Now,identhe treed” and T constructed in Line 3 and
Line 4, respectively. Note that' is a clique tree oz’ with |.Z(T')| = £(G').

(2) T is a cligue tree ofs.

Recall thatT is obtained fronil” by renaming each nod€ of T’ to C’ N V(G). Moreover, by (1), the mapping
is a bijection between the maximal cliques@fandG’. Namely, for eactC’ € V(T’), the setC = ¢~ 1(C') is a
maximal clique ofG. Therefore, we can write

C'NV(G)=¢(C)NV(G) = (CU{ve|e€F,Cee})NV(G) =C= ¢ }C).
This proves that the vertex set Bfis precisely the set of maximal cliques Gf and¢ is an isomorphism between
T andT’, by the construction of. To see thafl is indeed a clique tree af, it remains to prove the “connectivity
condition” for T. Namely, consider node3;, C, € V(T) and a node’; on the path ifl betweenC; andC,. Since
¢ is an isomorphism betweeh andT’, we havep(C;) € V(T’) fori = 1,2,3 and¢(C3) lies on the path irl”
betweeng(Cy) and¢(C,). Thus, we conclude(Cs) 2 ¢(Cy) N ¢(C,) becausd” is a clique tree. So we write
C3=¢(C3)NV(G) 2 ¢(C1)Nep(C2) NV(G) = C; N Cy. This proves (2).

We have proved in (2) th&t is a clique tree ofz. Notably, asT* is also a clique tree df, we conclude that both
T andT* have the same vertex set, i.€(T) = V(T*). We now look at the edges df.

(3)F C E(T)

Consider an edge = CC’ € F, and recall the definition ap and the claim (1). From this it follows that(C) and
¢(C’) are the only maximal cliques @’ that contairv.. As ¢(C) andg(C’) are also nodes &’ which is a clique
tree of G/, we conclude that every maximal clique on the patff'imetweeny(C) and¢(C’) also containg,. But,

as mentioned above, the vertexis in no other maximal clique of’. So this is only possible ip(C) and¢(C’) are
adjacentinl”. Consequently; andC’ are adjacent ifT’, namelye € E(T). This proves (3).

(4)(T*) C 2 (T) and eachC € 7 (T*) satisfiesNt-(C) C N7(C).

ConsiderC € s7(T*), namelyC is a node ofT* with at least three neighbours . Then, by the definition of
&(T*), all edges incident t@ in T* belong to&'(T*). As &(T*) = F andF C E(T) by (3), the edges incident
to C in T* are also edges df. In other words, every neighbour &f in T* is a neighbour ofC in T, namely
N7(C) 2 N7«(C). ThusC has at least three neighboursiinmplying C € s#(T). This proves (4).

(5)#(T) = 2(T*) and&(T) = &(T%).
By (4), we concludex’(T) 2 57 (T*). Now, we calculate using (1), (4), arigx) as follows.

(G) < |2(T) =2+ ), (degp(C)—2) <2+ Y (degp(C)—2)=[L(T)| =G
Cest(T*) Ces(T)

Note that the second inequality follows from (4) and the fhetdeg,(C) > 3 forall C € 2#(T), while the last
equality is by/(G’) = |.£(T’)| and the fact thal' andT’ are isomorphic.

Thus the inequalities in the above formula are, in fact, étes. Therefore, using (4), we conclude thdt(T) =
2 (T*) and everyC € 7 (T*) satisfiesNr(C) = Nt+(C). To see this, recall that each € 7°(T*) contributes
to the sum on the right at least as much as to the sum on thesilete N7 (C) O Nr«(C) by (4). Further, every
C € (T) has a positive contribution to the sum on the rightlag(C) > 3 by the definition of#’(T). Thus,
since the two sums are equal, the only possibility is #&{T) = .»#°(T*) and that eaclC € . (T*) satisfies
N7(C) = N7+(C) as claimed.

To conclude the proof, recall th&t(T), resp.&(T*), is the set of edges dF, resp.T*, incident to the nodes in
H(T), resp.s#(T*). As#(T) = #(T*) and eaclC € »#(T) = 2 (T*) is incident to the same set of edges in
T andT* for it satisfiesN7(C) = N7« (C), we conclude that' (T) = &(T*). This proves (5).

Now (5) and (2) prove thaf is indeed a solution, namely thdtis a clique tree oz with &(T) = &(T*) = F.
Hence, the test in Line 5 succeds and the algorithm correstilyns a solution in Line 6.

This concludes the proof of correctness of the algorithmaddress the complexity, let = |V(G)| as usual.
First, we note that we may assume thatontains at most — 1 edges as no clique tree 6fhas more than nodes.
If this is not so, we can safely report that no solution existhus, asG’ has|V(G)| + |F| = O(n) vertices, we
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conclude that step 3 také¥(n®) time using the algorithm of [12]. All other steps clearly éa&t mosiO(n?) time.
Notably, in step 2 we use a linear time algorithm from [20].
Thus the total complexity i (n>) as promised. That concludes the proof. O

Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. Let G be a chordal graph witli(G) < ¢. By Corollary 6 (proven irg5), there exists a
tree model ofG that simultaneously realizes both the leafage and the wéstdage ofG. By the remarks ir§2,
there is also a clique tree 6f with this property; letl'™* denote this clique tree. In other words, the ti€esatisfies
|-Z(T*)| = £(G) and|.Z(T;;)| < vl(G) forallu € V(G) whereT;; = T*[{C € V(T*) | u € C}].

By Lemmas 8 and 9, it suffices to know the g&tI'*) to be able, in polynomial time, to find a tree model®f
(possibly different froni*) that realizes the vertex leafage@f This forms the basis of our algorithm as follows.

Let F C E(%(G)). If there exists a clique tre€ with &(T) = F, definear = max,cy ) |-Z(Tu)| where
T, = T[{C € V(T) | u € C}]. If such a tree does not exist, defime = +oc0. Note that the value aff is well-
defined, since by Lemma 8 it is independent of the particiiarae of the clique tre&. Thus, the value ofr can be
determined, for any giveR, in ime O(n®) using Lemma 9. In particulako(r+) = v£(G) by the choice of ™.

Our algorithm tries all possible sefsC ¢'(G) of size at mosB/¢ — 6 as candidates fof (T*) and chooses one
that that minimizesr. If Fyp; is this set, the algorithm outputs a clique tf&g; of G with & (Topt) = Fopt-

We claim that this procedure correctly finds a clique tre€&dhat realizes the vertex leafage ®f By (xx), we
observe that(T*) < 3|.£(T*)| — 6 < 3¢ — 6. Thus, the algorithm must, at some point, consi§é€T™*) as the
setF. For this set, we haver = ag(+) = v{(G). By the minimality ofF,,, we concludexg, , < ag(r+) = v{(G).
Henceap,, < oo and so the tred,; exists. Moreoveryr > v/(G) for all setsF, by the definition ofo/(G) and
arp. Thus, we must concludepopt = v/(G) and consequently by Lemma 8, the tiEg; is a clique tree o that
realizes the vertex leafage Gf This proves the correctness of our algorithm.

Finally, let us analyze the complexity. Let= |V(G)| as usual. Recall thak has at mostz maximal cliques.
Thus there are at most edges i (G), and hence, at mogf!~12 choices for the sef. For each choice of, we
use Lemma 9 to find a clique trewith & (T) = F if it exists. This take® (%) for eachF, including the calculation
of ar. Altogether, the running time i9(1n%/~%) = n°(") as promised. That concludes the proof. O

5. Vertex Leafage with Optimum Leafage

In this section, we prove Theorem 5 and Corollary 6. Namely,demonstrate that the algorithm from [12],
solving the leafage problem, satisfies the claim of Theoreriiltis algorithm, given a chordal gragh outputs a
cligue tree ofG with minimum possible number of leaves. This is done by stgifrom an arbitrary clique tre€ of
G, and iteratively decreasing the number of leave$ af long as possible.

We observe (and formally prove later in this section) th#& firocess has the additional property that it never
increases the number of leaves in the subtrees of the treelmgdiefined byT. In other words, ifT* is the clique
tree resulting from this process, thén* = 77« satisfies the claim of Theorem 5. This will imply that if tharing
clique treeT realizes the vertex leafage 6f then* = 77« satisfies the claim of Corollary 6.

For the proof of the above, we need to explain the inner waikiof the algorithm from [12]. This algorithm, in
place of clique trees, operates on the so-called tokenrassigts defined as follows.

For a chordal grapls, atoken assignmerdf G is a functiont that assigns to every maximal cliqaeof G, a
multisett (C) of subsets o€. We use the wortbkenfor the members of (C). Note that the same subset may appear
in T(C) many times. We focus on special token assignment that adsedlique trees.

The token assignmeuefinedby a clique tre€l’ of G, and denoted by, assigns to every maximal cligue of
G, the multiseer(C) = {CNC' | CC' € E(T)}. In other wordsgr(C) consists of the intersections 6fwith its
neighbours irll. A token assignment is realizableif there is a clique tre& of G such thatr = er.

(See Figure 3 for an illustration of these concepts.)

Notice that the token assignment= e1 contains all the information needed to determine the nurobleaves in
T and also the number of leaves in the subtrees of the corrdsmpmodel.7;. We summarize this as follows.
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Figure 3:a) Example chordal grapty, b) clique treeT of G, c) token assignment = e7.

Lemma 10. Let G be a chordal graph, lef be a clique tree o, and let.7r = (T, {Tu}uev(c)) denote the tree
model ofG defined byl'. Lett = e, and definer, (C) = {S | S € T(C),u € S} for eachu € V(G). Then

e deg(C) =|7(C)|forall C € V(T), and
o degy (C) = |t(C)|forallu € V(G) andallC € V(Ty).

Consequently? (T) = {C ‘ IT(C)| = 1} and.Z(T,) = {C |t (C)| = 1} forallu € V(G).

In particular, while there can be multiple clique trees defirthe same token assignment, these clique trees will have
the same sets of leaves and consequently we do not needitmdish them from one another. In other words, it
suffices to maintain that the token assignment we consideesimonds to some clique tree Gf This can be tested
easily by applying four particular conditions as describefll2]. As we do not use this test here directly, we omit
further details. (For more, see [12, Theorem 6].)

Now, we are finally ready to explain the main steps of the atlgaorfrom [12]. The algorithm is given a chordal
graphG and a clique tred of G. It starts by constructing the token assignment er. Then it proceeds iteratively.
During each iteration step, a current token assignmeistexamined to determine if there exists a different token
assignment corresponding to a clique tree with fewer leaVhis is done by checking for eaugmenting patin ,
which is a specific sequencetoken moveésee definitions below). If an augmenting path exists, wk fhie shortest
such path and exchange tokens along the path. This resaltséw token assignmemtthat corresponds to a clique
tree with fewer leaves. If no augmenting path exists, wevaiat an optimal solution (i.e., a token assignment whose
corresponding clique trees all ha#G) leaves) and we output this solution. We summarize the abmeepure as
Algorithm 2. Below we provide the missing definitions.

Let G be a chordal graph andbe a token assignment 6f. A token movés an ordered triple@;, C,, S) where
Cy, C; are maximal cliques af: andS € 7(C;). For atoken movéCy, C, S), we writet = (Cy, Cy, S) to denote the
token assignment’ that is the result of moving from 7(C;) to 7(C,). Namely', we haver’(C;) = t(Cy) \ {S}
andt’(Cy) = ©(C) U {S}, while T/(C) = t(C) for all otherC ¢ {Cy,Co}.

A sequence of token mové€y, Cy, S1), (Cp, C3,52), -+ ., (Cx_1, Ck, Sk_1) wherek > 1 is anaugmenting path
of Tif |[7(C¢)| =1and each € {1,...,k — 1} satisfies

() T+ (Cj,Cj41,S;) is arealizable token assignménand (i) IT(Cj)| = { = g gt{ne_rv}/ise
See Figure 4 for an example of an augmenting path of a tokégnmssntr and its application ta.

It is easy to see that the application of an augmenting pathedses the number of leaves in the resulting to-
ken assignment. This, however, does not guarantee thaés$iiing assignment corresponds to a clique tre€.of
Fortunately, it can be proved that a shortest augmentirtyhued this property, and moreover, there always exists an
augmenting path unlesscorresponds to an optimal clique tree. The details can bedfou[12]. We only remark the
following invariant which is maintaned throughout the aitfam.

INote that as bothr(C;) andt’(C;) are multisets, to obtain’ (C;) we only remove one instance §ffrom 7(Cy) in caseS appears inc(Cy)
several times. This is consistent with the semantics of¢heifference for multisets.
2j.e., it corresponds to a clique tree Gf
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Figure 4:a) token assignment (see Figure 3)p) augmenting patfiabe, adf, a), (adf, cdk,d) — directed edges) T after applying the path.

Algorithm 2: LeafageG,T)

Input: A chordal graphG, and a clique tre& of G.
Output: A clique treeT* of G with |.£(T*)| = ((G).
1 Initialize T < e /* initialize the token assignment with the given cliquestr&/
2 while there exists an augmenting pathroflo
3 Let(Cy,Cy,51), .., (Ck_1,Cx, Sk_1) be a shortest augmenting pathrof
4 for alli from1tok —1do
5 | T < T+(Ci,ci+1,5i)
6 return T* whereer+ = T.

Lemma 11. [12] In Line 2 of Algorithm 2, the variable is a realizable token assignment.

After this introduction, we are ready to prove Theorem 5.

Proof of Theorem 5. We prove the theorem by showing that each application of gmauting path in Algorithm 2
does not increase the number of leaves in the subtrees obtresponding tree model.

In other words, letr be the token assignment considered at the start of som#adte(aines 2-5) of Algorithm 2,
and let(Cy1, Co,51), - - -, (Cr_1, Ck, Sk_1) be the shortest augmenting pathmofonsidered in this iteration (Line 3).
Let v’ denote the value of after applying the token moves of this path (Lines 4-5).

By Lemma 11, bothr andt’ are realizable token assignments@f In other words, there exist clique tre€s
andT’ of G such thatt = er and7’ = epr. Let 71 = (T,{Tu}tyuev(c)) and I = (T, {T,}.ev(c)) be the
corresponding tree models 6. In other words, for each € V(G), we haveT, = T[{C € V(T) | u € C}] and
T, = T'[{C € V(T") | u € C}]. In addition, for each: € V(G) and each maximal cliqu€ of G, define the
multisetst, (C) = {S | S € 7(C),u € S} and7,,(C) = {S | S € T/(C),u € S}.

Now, to prove the theorem, it suffices to demonstrate thatT, )| > |-Z(T),)| for everyu € V(G). Consider
u € V(G) and define two sequences of mtegefs .,ar andby, ..., b Whereal = |t (C;)| andb; = |7, (C;)|
foralli € {1 ,k}. Note thatr, (C) = 1 (C) for aII C¢ {Cl,...,Ck}, and by Lemma 10, we hav#(T,) =
{C||w(C)|= 1} and.Z(T,) = {C | |t/,(C)| = 1}. This implies the following.

2Tl = 12 (T = [{c | Imel = 1}| = [{ci | Imueol = 1}| = [{i 1 =1} = |{i 1o = 1}

In other words, the proof boils down to showing tHat b; = 1} does not have more elements tHan a; = 1}.
Recall that, by the definition of the augmenting pdt(,Cx)| = 1 and|t(C;)| = 2 foralli € {2,...,k—1}.
Notably, since the path is shortesd, ..., C; are distinct maximal cliques ofs. Thus, ast,(C) C 7(C) for
all C, we conclude that, < 1anda; < 2foralli € {2,...,k—1}. Further, note thaft’(Cr)| = 2 while
IT'(C;)| = |t(C;)| =2foralli € {2,...,k—1}. In other words, we have < 2foralli € {2,...,k}.
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We shall use the following two claims to show thét | b; = 1}| < |{i | a; = 1}
(6) If b; =1, thena; > 1.
Consideri € {1,...,k} such thath; = 1, and assume for contradiction that= 0. Sinceb; = 1, we have by
Lemma 10 thal = b; = |7;(C;)| = degq (C;). In other words(; is a leaf of T;, and thusT;, contains at least
two vertices. Recall tha¥(T,) = V(Ty,), and note thab = a; = |7,(C;)| = degy (C;) by Lemma 10. This
means thatC; is a vertex ofT,, with no neighbour inT,,. This is clearly impossible, sincg, is connected and
|V(Ty)| = |V(T},)| > 2. Thus we must conclude that > 1. This proves (6).

(7) If b; = 1 anda; > 2, then there exists > i such thataj =1, b]- =2,anda, = b, forallre {i+1,...,j—1}.

To see this, first recall the constructiondffrom T by moving the tokens§;, ..., S;_; as follows.

T(Ci) \ {Si} ifi=1
T(C) =1 (TS} Ulsia}  ifl<i<k
7(C;) U{Si_1} ifi=k

Also recall thatr; = |7,(C;)| = |{S | S € ©(Ci),u € S}| andb; = |7,,(C;)| = |[{S|S € T/(C;),u € S}|.
From these two facts we conclude the following relationgl@pveen the values af andb; (1 < i < k).

a; ifue§ NS,

fap—1 ifues ) oa—-1 ifuesS;\Si1 e +1 ifueS;_q

(oxx) bl_{al ifugs YT g+1 ifueSi 1\S; be=19 4 ifu & Sp_q
a; ifugsS;_1US;

Now, for the proof of (7), considere {1,...,k} such thab; = 1 anda; > 2. By (xx*), we havelb; —a;| <1
and thusz; = 2. Further,i < k sinceb, > a; by (xx%), buth; = 1 < 2 = a;. Moreover,u € S; by (xx%), since
i < kandb; = a; — 1. We letj be the largestifi +1,...,k+ 1} such that, = b, foreachr € {i+1,...,j —1}.

First, we observe that € S, for eachr € {i,...,j —2}. Indeed, if otherwise, we letbe the smallest index in
{i,...,j—2} withu ¢ S,. As we just argued, we havec S;, and sor > i. Thereforeu € S,_; by the minimality
of r. But thenb, = a, + 1 by (xx%), sincel <i <r < j—1 <k, a contradiction.

This also implies that < k. Indeed, ifj = k+ 1, theni < j—2 =k —1sincei < k. Thusu € S;_» = S§p 4
which yieldsby = ay + 1 by (x*x*). Howeverk € {i+1,...,j — 1} and sob; = a; by the choice of.

We can now conclude thate S; ;. Indeed, ifi = j — 1, then we use the fact thate S;. Otherwisej < j—2
in which case: € S;_» as argued above, and thuse S; 1 by (xxx), sincea; 1 =b;_jandl <i<j—1<k.

Finally, we consider the value gf First, suppose thgt= k. Thenb, = a; + 1, sinceu € S; 1 = §;_1. We
recall thata, < 1 and sob; € {1,2}. If by = 1, we haveq, > 1 by (6), but thera > by = ap +1 > g, a
contradiction. So, we must conclutle = 2 anda; = 1. Thus, ag = k, we havebj =2, aj = 1, anda, = b, for
allr € {i+1,...,j— 1} as required. Thus we may assume that k. By the maximality ofj, we haves; # b;.
Also,u € S; 1 andl <i < j <k. So by g*x) we conclude thab; = a; + 1. We recall thab; < 2 asj > 1. Thus
b € {1,2} asa; > 0. Again, if b; = 1, we concludes; > 1 by (6) in which case; > b; > a;, a contradiction. Thus
b]- =2, aj = 1,anda, = b, forallr € {i+1,...,j — 1}, as required. This proves (7).

We are now ready to conclude the proof. Dendte- {i | a; = 1} andB = {i | b; = 1}. We show tha}{B| < |A]|
which will imply the present theorem as argued above therc(é).

For eachi € B, if a; = 1, defineg(i) = i. Otherwise, defingp(i) = j wherej is the index obtained by
applying (7) fori. Note thatz; = 1 andb; = 2. It follows thatg is a mapping fronB to A.

We show thatyp is, in fact, an injective mapping. Suppose otherwise, ahd,fé be distinct elements oB
such thatp(i) = ¢(i*). Recall thath; = b;+ = 1 and note that < ¢(i) andit < ¢(it). If i = ¢(i), then
it <o(@it) =) =iimplyingit < ¢(i*) asi andi™ are distinct. S@;+ # 1 by the definition ofp, and hence
b¢(i+> = 2 as¢(i™) was obtained by applying (7) fér. But thenl = b; = b([,(i) = b¢(i+> = 2, a contradiction.
Thus we must conclude that< ¢(i) and, by symmetry, also™ < ¢(i*). Now, without loss of generality, assume
i < it. Sincei™ < ¢(i™), we must have,+ # 1 by the definition ofp. Howeverb,- = 1 asi*™ € B, and hence,
a;+ # b;+. Recall that the choice af(i) using (7) fori guarantees that, = b, forallr € {i+1,...,¢(i) — 1}.
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In particular,i < it < ¢(it) = ¢(i) and soa;+ = b;+ which is a contradition. This verifies thatis indeed an
injective mapping fronB to A, which yields|B| < |A|.
This completes the proof of Theorem 5. O

6. Concluding Remarks

In this paper we have studied the vertex leafage of chora@edhyg. Specifically, a chordal graph= (V, E) has
vertex leafagé when it has a tree modélr, {Tu}uev) such that each subtrdg has at mosk leaves.

We have shown that, for every fixdd> 3, it is NP-complete to decide if a split graghhas vertex leafage at
mostk, even wherG is known to have vertex leafage at mast 1. Moreover, we have proved that it is NP-hard to
find a tree model oGz with as few leaves in subtrees in total as possible, and i@ MP-hard to find a clique tree
where as many subtrees as possible are paths, e@isi& split graph of vertex leafage 3. Interestingly, this sk
the polynomial-time recognition of path graphs [2, 8, 1&] tnly tractable unparameterized case of this problem.

On the positive side, we have demonstratedi@ff) algorithm to compute the vertex leafage of a chordal graph
whose leafage is bounded ByThis puts vertex leafage in the class XP when the leafagkentas the parameter.

Finally, we have shown that every chordal graplinas a tree model which simultaneously realizés leafage
and vertex leafage. In proving this result we have also shixat) for every path grap, there exists a path model
with £(G) leaves in the host tree and such a path model can be computa ) time.

The following questions remain open.

(A) for parametewp (integer) is any of the following problems in XP:
— given a chordal grap@ is there a tree model @ where at mosp subtrees are paths?
— given achordal grap@ is there a tree model @ where the total number of leaves in all subtrees is at p®@st
(B) if the answer to (A) is affirmative, is the problem in questin FPT or is it WE]-hard for some (all}?
(C) is the vertex leafage FPT with respect to leafage?
(D) is the vertex leafage FPT with respect to some other gpaphmeter?
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