
Stable-Π Partitions of Graphs

Konrad K. Dabrowskia, Vadim V. Lozinb, Juraj Stachob,∗

aSchool of Engineering and Computing Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
bDIMAP and Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

For a set of graphs Π, the STABLE-Π problem asks whether, given a graph G, we can find an independent

set S in G, such that G − S ∈ Π. For instance, if Π is the set of all bipartite graphs, STABLE-Π coincides

with VERTEX 3-COLOURABILITY, and if Π is the set of 1-regular graphs, the problem is known as EFFICIENT

EDGE DOMINATION. Numerous other examples of the STABLE-Π problem have been studied in the literature.

In the present contribution, we systematically study the STABLE-Π problem with respect to the speed (a

term meaning size) of Π. In particular, we show that for all hereditary classes Π with a subfactorial speed
of growth, STABLE-Π is solvable in polynomial time. We then explore the problem for minimal hereditary

factorial classes Π. Contrary to the conjecture proposed in [16], the complexity of STABLE-Π turns out to be
polynomial for nearly all minimal hereditary factorial classes Π. On the other hand, if we do not require Π

to be hereditary, the complexity of the problem can jump to the NP-completeness.

Key words: stable-Π partition, hereditary property, speed of graph property, factorial property,
polynomial-time, NP-complete

1. Introduction

In this paper, all graphs are undirected, with no loops or parallel edges. A graph is bipartite, co-bipartite or
split if its vertex set can be partitioned into two independent sets, two cliques or a clique and an independent

set, respectively. If X is a set of vertices in a graph G, we use G − X to denote the graph obtained from G by

deleting every vertex in X. We write G[X] for the subgraph of G induced by X, i.e. the graph G− (V(G) \X).
If G and H are graphs, then G is H-free if it does not contain an induced subgraph isomorphic to H. We use

2K2 to denote the graph consisting of two disjoint edges, and P4 denotes the chordless path on four vertices.

Let Π be a graph property (or graph class), i.e. a set of graphs closed under isomorphism. A property
Π is hereditary if it is closed under taking induced subgraphs, and it is additive if it is closed under taking

disjoint unions of graphs.
For a property Π, the STABLE-Π problem asks, given a graph G, to determine whether G has an

independent set S such that G − S ∈ Π. The family of STABLE-Π problems has been extensively studied

in the literature (see e.g. [5, 6, 7, 8, 10, 12, 13, 14, 18]) and includes many important representatives
such as VERTEX 3-COLOURABILITY, in which case Π is the set of all bipartite graphs, and EFFICIENT EDGE

DOMINATION (also known as DOMINATING INDUCED MATCHING), in which case Π is the set of all 1-regular

graphs. Both of these examples represent algorithmically hard, i.e. NP-complete, problems. The STABLE-Π
problem is also NP-complete for various other properties Π such as forests or trivially perfect graphs [5].

More generally, the problem remains NP-complete for any additive hereditary property Π other than the set
of edgeless graphs [15].

∗Corresponding author
Email addresses: konrad.dabrowski@durham.ac.uk (Konrad K. Dabrowski), v.lozin@warwick.ac.uk (Vadim V. Lozin),

j.stacho@warwick.ac.uk (Juraj Stacho)

Preprint submitted to Elsevier February 8, 2013

On the other hand, for some properties Π, the STABLE-Π problem can be solved in polynomial time. This

is the case, for instance, if Π is the class of co-bipartite graphs [5] or the class of complete bipartite graphs
[4]. The case of co-bipartite graphs was generalised independently in [2] and [9] to arbitrary hereditary

properties Π which are of bounded independence number and which can be recognised in polynomial time.
The case where Π is the class of complete bipartite graphs has also received a wide generalisation. To

describe this generalisation, let us observe that the class of complete bipartite graphs is quite small. In the

terminology of [3], it is subfactorial, i.e. for any constant c > 0, Π has less than ncn labelled graphs on n
vertices, if n is sufficiently large. Subfactorial graph properties have a simple structural characterisation (see

Theorem 1). This was used in [16] to prove that the STABLE-Π problem is polynomial-time solvable for any

subfactorial hereditary property Π of bipartite graphs.
In the present paper, we further generalise this result to arbitrary subfactorial hereditary properties Π

(not necessarily of bipartite graphs). We then switch to hereditary properties with a factorial speed of
growth, i.e. those containing at least nc1n and at most nc2n labelled graphs on n vertices for some constants

c1, c2 > 0, when n is sufficiently large. The family of factorial graph properties is much wider and contains

many classes of theoretical or practical importance. For instance the classes of threshold graphs, line graphs,
permutation graphs, and interval graphs are factorial and all classes of graphs of bounded vertex degree, of

bounded clique-width and all proper minor closed graph classes have at most factorial speed of growth.

The family of factorial hereditary classes is very rich and varied, but there are only a few such classes
for which the complexity of the STABLE-Π problem is known. It is therefore natural to focus on the simplest

classes in this family, namely those that are minimal (when ordered by set inclusion). There are exactly nine
such classes [1, 3]. Three of them are subclasses of bipartite graphs:

M1 bipartite matching graphs: graphs partitionable into two independent sets, where the edges between

them form a matching (equivalently, graphs of maximum degree one)

M2 bipartite almost complete graphs: graphs partitionable into two independent sets such that each vertex

has at most one non-neighbour in the opposite part

M3 chain graphs: bipartite 2K2-free graphs

Three other minimal factorial classes are subclasses of co-bipartite graphs: these are precisely the classes

of complements of graphs in M1, M2 and M3, which we denote by M1, M2, and M3, respectively. The
remaining three minimal factorial classes are subclasses of split graphs. They are also closely related to M1,

M2 and M3 and can be obtained from graphs in these classes by converting one of the independent sets in

the bipartition into a clique. We denote these classes as follows:

M4 split matching graphs: graphs partitionable into a clique and an independent set, where the edges

between them form a matching

M4 complements of split matching graphs: graphs partitionable into a clique and an independent set so

that each vertex has at most one non-neighbour in the opposite part

M5 threshold graphs: split P4-free graphs

It is known that STABLE-M1 is an NP-complete problem [17], while STABLE-M5 is solvable in polynomial

time [5]. For the remaining seven minimal factorial classes, the complexity of the problem was unknown
and we study it in the present paper.

The borderline between factorial and subfactorial properties was also studied in [19] for the following

problem associated with a hereditary class Π of bipartite graphs: given a bipartite graph G, find the
largest induced subgraph of G that belongs to Π. Yannakakis [19] showed that this problem is solvable

in polynomial time if Π is a subfactorial hereditary class, and is NP-hard otherwise (except for the case

when Π coincides with the class of all bipartite graphs, in which case the problem is trivial). Inspired by this
result, Lozin conjectured [16] that the STABLE-Π problem is NP-complete for all hereditary factorial classes

of bipartite graphs, including the three minimal hereditary factorial classes. Contrary to this conjecture, we
2

Π STABLE-Π STABLE-ΠS

M1 NP-C [17] NP-C [11]

M1 P Thm 6 P Thm 15
M2 P Thm 14 NP-C Thm 19

M2 P Thm 6 P Thm 15
M3 open n/a

M3 P Thm 6 n/a
M4 P Thm 7 NP-C Thm 17

M4 P Thm 8 NP-C Thm 18

M5 = M5 P [5] n/a

Table 1: Summary of complexity results.

show that STABLE-Π is solvable in polynomial time for nearly all minimal hereditary factorial classes Π (not

necessarily bipartite).

Let us emphasise that these nine minimal classes of graphs are hereditary and most of the instances of
the STABLE-Π problem that have been studied in the literature deal with hereditary properties Π. On the

other hand, some important examples of the problem appear in the context of non-hereditary properties Π.
We already mentioned EFFICIENT EDGE DOMINATION, which is equivalent to STABLE-Π when Π is the set

of 1-regular graphs. We denote the class of 1-regular graphs by MS
1
. Observe that this set is a restriction

of the class M1. More precisely, M1 is the hereditary closure of the set of 1-regular graphs (i.e. it is the
set containing all 1-regular graphs and all their induced subgraphs). In the same spirit, we define MS

2
to

be the class of graphs partitionable into two independent sets such that each vertex has exactly one non-

neighbour in the opposite part and define MS
4

to be the class of graphs partitionable into a clique and an
independent set such that every vertex in one part has exactly one neighbour in the opposite part. As before,

we write MS
1
, MS

2
and MS

4
to denote the classes of graphs whose complements are in MS

1
, MS

2
and MS

4
,

respectively.

We find that for some minimal factorial classes Π for which STABLE-Π can be solved in polynomial time,
the restriction to ΠS leads to an NP-complete problem. A summary of our results is given in Table 1.

2. Preliminaries

A graph property, or graph class is any set Π of simple graphs closed under isomorphism. The graph-
complement Π of a property Π is defined as Π =

{

G | G ∈ Π
}

. A graph property is hereditary if it is closed

under vertex removal, or equivalently, under taking induced subgraphs. A hereditary graph property Π is

factorial if there exist constants c1, c2, N such that nc1n ≤ |Πn| ≤ nc2n when n > N, where Πn denotes
the set of n-vertex labelled graphs in Π. A class is subfactorial if for every c > 0, |Πn| ≤ ncn when n is

sufficiently large.
The structure of subfactorial classes is rather simple and can be characterised as follows.

Theorem 1. [1, 3] For every subfactorial hereditary class Π, there exists a constant k (depending only on Π)

such that for every graph G ∈ Π, there exists a partition of V(G) into at most k subsets V1, . . . , Vk, where each
subset Vi is either an independent set or a clique in G, and for any two distinct subsets Vi, Vj, there are either

no edges or all possible edges between the vertices in Vi and the vertices in Vj.

3. Subfactorial properties

Theorem 2. For any subfactorial hereditary property Π, the STABLE-Π problem is solvable in polynomial time.

3

PROOF. The proof of this result is based on Theorem 1 and is similar to the proof in [16] of the case where

Π is a class of bipartite graphs. Thus we only sketch the proof.
Given a graph G = (V, E), we want to determine if there is a partition V = S ∪ R, such that S is an

independent set and G[R] ∈ Π. Let k be the constant associated with the class Π. We call any partition of R
satisfying Theorem 1 canonical and call the subsets in a canonical partition bags.

We start by picking a representative for each bag. There are O(nk) ways to do so. Once the set of

representatives is fixed, which is our current set R, the adjacencies between the bags are defined by the
adjacencies between their representatives. For each choice of at most k representatives, there are at most

2k ways to choose the type for each bag (a clique or an independent set). Without loss of generality we

may assume that for each vertex v ∈ V − R there is at most one candidate bag for the inclusion of v, since
otherwise any two “similar” bags can be replaced by a single bag containing both of them. If there is no

candidate bag for v, we move it to S.
For the vertices v not in R ∪ S we proceed as follows: if v has a conflict in S (i.e. has a neighbour in S)

we move it to the respective bag of R, and if v has a conflict in R (i.e. moving it to its candidate bag in R
makes the partition of R non-canonical) we move it to S. If no vertex outside of R ∪ S has a conflict in S or
R, then the rest of the task can be solved by a reduction to the 2SAT problem.

To this end, we associate with each vertex v 6∈ S ∪ R a Boolean variable xv. For any two vertices

u, v 6∈ S ∪ R, we create a set of clauses in the following way. If u and v cannot both appear in R (because,
for instance, they are adjacent, but their candidate bags are not) we create the clause xu ∨ xv, and if they

cannot both appear in S we create the clause xu ∨ xv. It is easy to verify that the set of clauses created in
this way is satisfiable if and only if there is a proper partition of G in which every vertex v with xv = true is

placed in S and the remaining vertices are placed in R. �

4. Minimal factorial properties

In this section, we discuss the complexity of STABLE-Π for minimal factorial hereditary classes Π. We

investigate each case as set out in the introduction.

The following cases have already been established in the literature.

Theorem 3. [17] The STABLE-M1 problem is NP-complete.

Theorem 4. [5] The STABLE-M5 problem is solvable in polynomial time.

Further results in this section are based on the notion of Sparse-Dense partitions.

Theorem 5. (Sparse-Dense Theorem) [2, 9] For all positive integers k, l, there exists a polynomial time

algorithm that, given a graph G, constructs all partitions of its vertex set into sets A, B such that G[A] contains

no independent set of size k and G[B] contains no clique of size l.

Namely, there are at most n2R(k,l)−2 such partitions of an n-vertex graph G and all can be enumerated in

time O
(

n2R(k,l)+max{k,l}
)

, where R(k, l) denotes the Ramsey number of k and l.

Theorem 6. The STABLE-M1, STABLE-M2, and STABLE-M3 problems are solvable in polynomial time.

PROOF. Let Π ∈ {M1,M2,M3}. All three problems ask to partition vertices of the input graph G into one

independent set V1, and a co-bipartite graph V′
1

(consisting of two cliques V2 and V3). By Theorem 5, there

are only polynomially many such partitions of V(G) and all of them can be found in polynomial time. For
each such partition, we test whether the co-bipartite subgraph of G induced by V′

1
is in Π. This yields a

polynomial-time algorithm. �

The following two theorems are proved in a similar way to how Theorem 4 was proved in [5].

Theorem 7. The STABLE-M4 problem is solvable in polynomial time.

4

PROOF. We rephrase the problem as: given a graph G, decide whether the vertices of G can be partitioned

into three sets V1, V2, V3 such that V3 is a clique, V1 and V2 are independent sets and every vertex in V2 has
at most one neighbour in V3 and vice-versa.

Let G be the input graph. By Theorem 5, we can find, in polynomial time, the collection P of all partitions
of the vertex set of G into a clique C and a set X such that G[X] contains no clique of size three. Note that if

G admits a STABLE-M4 partition V1, V2, V3, then the partition C = V3, X = V1 ∪ V2 is a partition in P . Thus

to solve the problem, we try all partitions C, X in P by setting V3 = C and testing whether X can be split
into V1, V2 so that V1, V2, V3 is a STABLE-M4 partition of G.

Let C, X be a partition from P . We construct the following instance I of 2SAT.

(i) Create a variable xv for every vertex v ∈ X,

(ii) for every edge uv ∈ E(G[X]), add the clauses (xu ∨ xv) and (xu ∨ xv),

(iii) for every pair of vertices u, v ∈ X with a common neighbour in C, add the clause (xu ∨ xv), and

(iv) for every vertex v ∈ X such that v has at least two neighbours in C, add the clauses (xv ∨ a) and
(xv ∨ a), where a is a new variable.

We claim that I has a satisfying assignment if and only if G admits a STABLE-M4 partition V1, V2, V3 such

that V3 = C and V1 ∪ V2 = X.
Suppose that the instance I has a satisfying truth assignment ϕ. Namely, ϕ is a mapping from the

variables of I to {true, f alse} such that in every clause Cj, there is at least one literal that ϕ evaluates to true
(where the value ϕ(z) is defined as the negation of ϕ(z), for any variable z).

Define V1 = {v | ϕ(xv) = f alse} and V2 = {v | ϕ(xv) = true}. We claim that V1, V2, V3 is a STABLE-M4

partition of G. Indeed, by (ii), V1 and V2 are independent sets; by (iii), no two vertices in V2 have a common
neighbour in V3; and by (iv), every vertex from V2 has at most one neighbour in V3.

Conversely, let V1, V2, V3 be a STABLE-M4 partition of G where V3 = C. We define a truth assignment for

I as follows. We set ϕ(xv) = f alse if v ∈ V1 and ϕ(xv) = true if v ∈ V2. For each of the new variables a
defined in (iv) above, we set ϕ(a) = true. We claim that ϕ is a satisfying truth assignment for I . Indeed, all

clauses defined in (ii) are satisfied, since V1 and V2 are independent sets. Also, all clauses defined in (iii) are

satisfied since every vertex in V3 has at most one neighbour in V2. Similarly, every vertex in V2 has at most
one neighbour in V3 implying that all clauses in (iv) are satisfied. Thus I is satisfied by ϕ. This concludes

the proof. �

A similar argument works for the complementary class and results in the following theorem.

Theorem 8. The STABLE-M4 problem is solvable in polynomial time.

PROOF. Similarly to the proof of Theorem 7, we can rephrase the problem as: given a graph G, decide

whether the vertices of G can be partitioned into three sets V1, V2, V3 such that V3 is a clique, V1 and V2 are
independent sets and every vertex in V2 has at most one non-neighbour in V3 and vice-versa.

Again, defining P as before, we solve the problem by trying all partitions C, X in P . For each such

partition we set V3 = C and test whether X can be split into V1, V2 so that V1, V2, V3 is a STABLE-M4

partition of G.

Let G′
C be the graph obtained from G by complementing (i.e. replacing edges by non-edges and vice

versa) the edges between C and X. Now G has a STABLE-M4 partition with V3 = C if and only if G′
C has a

STABLE-M4 partition with V3 = C. Indeed, if V1 ∪ V2 is a partition of X, then G[C] is a clique and G[V1],
G[V2] are independent sets if and only if G′

C[C] is a clique and G′
C[V1], G′

C[V2] are independent sets. Further,

each vertex in V2 (resp. V3) has at most one non-neighbour in V3 (resp. V2) in G if and only if it has at most
one neighbour in V3 (resp. V2) in G′

C.

We now reduce the problem to an equivalent instance of 2SAT as in the proof of Theorem 7. This
concludes the proof. �

We are left with the case of the STABLE-M2, which needs more work. We solve this in the following

section.
5

Algorithm 1: Reduction algorithm

Input: Instance (G, ℓ) where G is a graph and ℓ(v) : V(G) → 2{1,2,3}

Output: A reduced instance (G, ℓ)

1 for α ∈ {1, 2, 3} do

2 if for u ∈ Uℓ

{α}
, there exists v ∈ V(G) \ N(u) with α ∈ ℓ(v) then

remove α from ℓ(v) and goto 1

3 for (α, β) ∈
{

(2, 3), (3, 2)
}

do

4 if for u ∈ Uℓ

{α}
, there exists v ∈ N(u) ∩ Uℓ

{β}
then

for all w ∈ N(u) \ {v} with β ∈ ℓ(w), remove β from ℓ(w)
for all w ∈ N(v) \ {u} with α ∈ ℓ(w), remove α from ℓ(w)
remove u, v from G and goto 1

5 if there exists v ∈ Uℓ

{1,β} with |N(v)∩ Uℓ

{α}| ≥ 2 then

remove β from ℓ(v) and goto 1

6 if for u ∈ Uℓ

{α}
, there are v, w ∈ N(u)∩ Uℓ

{1,β}
where

(N(v) \ N(w))∩ Uℓ

{1,α}
6= ∅ then

remove β from ℓ(v) and goto 1

7 if for u ∈ Uℓ

{α}
, there are v, w ∈ N(u)∩ Uℓ

{1,β}
and x ∈ Uℓ

{1,α}
with v, w 6∈ N(x) then

remove 1 from ℓ(x) and goto 1

8 if for u ∈ V(G) with 1 ∈ ℓ(u), the set Uℓ

{1,α}
\ N(u) is not a clique then

remove 1 from ℓ(u) and goto 1

9 if for u ∈ V(G) with β ∈ ℓ(u), the subgraph G
[

N(u) ∩ Uℓ

{1,α}

]

contains

an induced 4-cycle, 2K2, or P4 then

remove β from ℓ(u) and goto 1

10 return (G, ℓ)

4.1. The STABLE-M2 problem

In this section, we prove that the STABLE-M2 problem is solvable in polynomial time. We cast the

problem for the complement and solve (in polynomial time) a more general version with lists as follows.
An instance of the problem is a pair (G, ℓ) where G is a graph and ℓ : V(G) → 2{1,2,3}. We say that ℓ(v) is

the list belonging to the vertex v. For S ⊆ {1, 2, 3}, we let Uℓ
S denote the set of vertices in G with ℓ(v) = S.

Given an instance (G, ℓ), we seek to partition V(G) into three cliques V1, V2, V3 such that

• each vertex in V2 has at most one neighbour in V3,

• each vertex in V3 has at most one neighbour in V2, and
• for all α ∈ {1, 2, 3}, each v ∈ Vα satisfies α ∈ ℓ(v).

If such a partition exists, we call it a solution for (G, ℓ). Note that if the list of some vertex is empty, then

there is no solution for the problem instance. Thus for the rest of the proof, we assume that Uℓ
∅
= ∅.

To solve the problem, we consider several special cases and reduce the general case to these cases in

polynomial time.
First, we consider the procedure depicted in Algorithm 1. We say that an instance (G, ℓ) is reduced, if it

is the result of Algorithm 1.

We have the following claim.

Lemma 9. Let (G, ℓ) be an instance and let (G′, ℓ′) be the result of applying Algorithm 1 to (G, ℓ). Then there

exists a solution for (G, ℓ) if and only if there exists a solution for (G′, ℓ′).

6

PROOF. Note that if x ∈ Uℓ

{i} for some i ∈ {1, 2, 3}, then in any solution (V1, V2, V3) of the instance, we have

x ∈ Vi. Using this we justify the reductions rules as follows.

Line 2: Let α ∈ {1, 2, 3}. Since Vα must be a clique in any solution, if u ∈ Uℓ

{α} and u, v are not adjacent,

then v 6∈ Vα for any solution for (G, ℓ).

In the remainder of the proof, we have α = 2 and β = 3, or α = 3 and β = 2.

Line 4: If u, v are adjacent for some u ∈ Uℓ

{α} and v ∈ Uℓ

{β}, then in any valid solution, these must be

two matched vertices of V2 and V3. In this case v must be the unique neighbour of u in Vβ and u must
be the unique neighbour of v in Vα. We can therefore remove either α or β from the list of each vertex in

N(u)∪ N(v) \ {u, v}, as appropriate. We then remove u and v from G. The resulting instance has a solution
if and only if the original one does.

Line 5: In any solution, if v ∈ Vβ, then v can have at most one neighbour in Vα.

Line 6: Suppose u ∈ Uℓ

{α}
, such that v, w ∈ N(u) ∩ Uℓ

{1,β}
and z ∈ (N(v) \ N(w))∩ Uℓ

{1,α}
. If there were a

solution in which v ∈ Vβ, then since u ∈ Vα and every vertex in Vα can have at most one neighbour in Vβ

and vice versa, we must have w, z ∈ V1. But this is impossible, since w, z are not adjacent. This contradiction
implies that v cannot be in Vβ.

Line 7: Suppose u ∈ Uℓ

{α}
, x ∈ Uℓ

{1,α}
and v, w ∈ (N(u) \ N(x)) ∩ Uℓ

{1,β}
. Then in any solution we must

have u ∈ Vα. Since u can have at most one neighbour in Vβ, at least one of v, w must be in V1. But V1 is a

clique and v, w are nonadjacent to x. Thus x 6∈ V1.

Line 8: Suppose u ∈ V(G) with 1 ∈ ℓ(u) and v, w ∈ Uℓ

{1,α}
\ N(u) with v, w non-adjacent. Since for any

solution, Vi must be a clique for i ∈ {1, 2, 3}, exactly one of v, w must be in V1 and the other in Vα. But u is

non-adjacent to both v and w, so u 6∈ V1.

Line 9: Suppose β ∈ ℓ(u). In any solution, if u ∈ Vβ then N(u) ∩ V1 must be a clique and u can have at

most one neighbour in Vα. The 4-cycle, 2K2 and P4 are neither cliques, nor are they partitionable into a

clique and a single vertex. Thus if any of these three graphs is an induced subgraph of N(u) ∩ Uℓ

{1,α}, then

any solution must satisfy u 6∈ Vβ. �

Note that Algorithm 1 has polynomial running time. This allows us to assume that the instance we

consider is always reduced. (If not, we use Algorithm 1 to produce an equivalent reduced instance.)
Assuming this, we consider the some special cases of the problem, which we will later use as steps in

finding a solution for the general problem.

Lemma 10. If there exists a solution (V1, V2, V3) for the reduced instance (G, ℓ), such that there is no edge

between a vertex in V2 and a vertex in V3, it can be found in polynomial time.

PROOF. This amounts to finding a partition of G into an independent set and a complete bipartite graph, in

a way that respects the lists of the vertices. This can been solved in polynomial time [9]. �

Lemma 11. If Uℓ

{1,2,3} = Uℓ

{2,3} = ∅, and Uℓ

{1,2} = ∅ or Uℓ

{1,3} = ∅, and the instance is reduced, the problem

can be solved in polynomial time.

PROOF. We may assume by symmetry that Uℓ

{1,3} = ∅ and we reduce the problem to an instance of 2SAT

constructed as follows.

• For each vertex x ∈ Uℓ

{1,2}, introduce a new variable vx.

• For all z ∈ Uℓ

{3} and all x, y ∈ N(z)∩ Uℓ

{1,2}, add the clause (¬vx ∨ ¬vy).

• For all x, y ∈ Uℓ

{1,2} with xy 6∈ E(G), add the clauses (vx ∨ vy), (¬vx ∨ ¬vy).

Since (G, ℓ) is a reduced instance, it has a solution if and only if the above instance of 2SAT is satisfiable.
In particular, if ϕ is a satisfying assignment, the following sets (V1, V2, V3) form a solution for (G, ℓ).

V1 = Uℓ

{1} ∪ {x | ϕ(vx) = f alse} V2 = Uℓ

{2} ∪
(

Uℓ

{1,2} \ V1

)

V3 = Uℓ

{3} �

7

Lemma 12. If Uℓ

{1,2,3} = Uℓ

{2,3} = ∅ and Uℓ

{1,2}, Uℓ

{1,3} are cliques of G, and the instance is reduced, the

problem can be solved in polynomial time.

PROOF. We show that the following is a solution for (G, ℓ).

V1 = Uℓ

{1} ∪ Uℓ

{1,2} ∪
⋃

u∈Uℓ

{2}

|N(u)∩ Uℓ

{1,3}
|≥2

(

N(u)∩ Uℓ

{1,3}

)

V2 = Uℓ

{2} V3 = Uℓ

{3} ∪
(

Uℓ

{1,3} \ V1

)

Indeed, note that the instance (G, ℓ) is reduced. By Line 2 of Algorithm 1 and the fact that Uℓ

{1,3}
is a

clique, we conclude that V2 and V3 must be cliques. By Line 4 of Algorithm 1 and the definition of V1 and
V3, every vertex in V2 has at most one neighbour in V3. By Lines 4 and 5 of Algorithm 1, each vertex of V3

has at most one neighbour in V2. By Line 2 of Algorithm 1 and since Uℓ

{1,2}, Uℓ

{1,3} are cliques, we need only

verify that every vertex in V1 ∩ Uℓ

{1,2} is adjacent to every vertex in V1 ∩ Uℓ

{1,3}. We therefore assume that

these sets are not empty. Let u ∈ Uℓ

{2} and v, w ∈ N(u) ∩ Uℓ

{1,3}. By Line 7 of Algorithm 1, any vertex in

Uℓ

{1,2} must be adjacent to at least one of v or w. But by Line 6 of Algorithm 1, the vertices v, w have the

same neighbourhood in Uℓ

{1,2}. Thus every vertex of Uℓ

{1,2} must be adjacent to every vertex of V1 ∩ Uℓ

{1,3}.

We therefore conclude that V1 is indeed a clique. �

We can now generalise Lemmas 11 and 12 as follows.

Lemma 13. If Uℓ

{1,2,3} = Uℓ

{2,3} = ∅, and the problem instance is reduced, the problem can be solved in

polynomial time.

PROOF. Assume that Uℓ

{1,2,3} = Uℓ

{2,3} = ∅, but Lemma 11 does not apply. Thus Uℓ

{1,2} 6= ∅ and Uℓ

{1,3} 6= ∅.

We fix any u ∈ Uℓ

{1,2}. Then we either do nothing, or choose w ∈ N(u) ∩ Uℓ

{1,3} and set ℓ(w) = {3}.

After that, we remove 3 from ℓ(v) for each v ∈ N(u) that belongs to a non-trivial (≥ 2 vertices) connected
component of G

[

Uℓ

{1,3}

]

unless that component contains w (if w exists). We then apply Algorithm 1 to

ensure that we have a reduced instance.

If after these modifications Uℓ

{1,3}
is still non-empty, we similarly fix u′ ∈ Uℓ

{1,3}
, do nothing or set

ℓ(w′) = {2} for some w′ ∈ N(u′) ∩ Uℓ

{1,2}
, and then remove 2 from ℓ(v) for each v ∈ N(u′) ∩ Uℓ

{1,2}
in a

non-trivial component of G
[

Uℓ

{1,2}

]

unless that component contains w′ (if w′ exists). Afterwards, we again

apply Algorithm 1 to ensure that we have a reduced instance.

We try all possible choices for w and w′, creating O(n2) instances. It follows that the initial instance has

a solution if and only if one of these O(n2) instances has.
Consider the O(n2) instances produced in this way from the initial instance (G, ℓ). First, we show that

(G, ℓ) has a solution if and only if (at least) one of the O(n2) instances has a solution.
Clearly, if one of the O(n2) instances has a solution, then this is also a solution for (G, ℓ), since during

the construction of the instances, we only remove elements from lists.

Conversely, let V1, V2, V3 be a solution for (G, ℓ). Let H = G[Uℓ

{1,3}], i.e. H denotes the subgraph of G

induced by Uℓ

{1,3}, and consider the vertex u ∈ Uℓ

{1,2} that we fix.

Case(i): Suppose that u ∈ V1. There are two possibilities to consider. First, suppose that there exists a

neighbour of u that is in V3 and also in some non-trivial connected component of H. Consider the instance
where we choose w to be this neighbour. (We shall henceforth refer to it as the “modified” instance.) In this

instance, we remove 3 from each neighbour of u in V(H) = Uℓ

{1,3}
that belongs to a non-trivial connected

component of H unless that component contains w.

We claim that each such neighbour v belongs to V1. Suppose otherwise. Then v belongs to V3, since
ℓ(v) = {1, 3}. Recall that v is in a non-trivial connected component of H. Thus it has a neighbour z in H.

We conclude that z is non-adjacent to v in H, and hence, in G. If z is also non-adjacent to u, then z can
8

be neither in V1 nor in V3, as these are both cliques. But then V1, V2, V3 cannot be a solution for (G, ℓ) as

ℓ(z) = {1, 3}. So, we conclude that z is adjacent to u.
Now, recall that w is also in a non-trivial connected component of H. So, w has a neighbour x in this

component, and we conclude that xw 6∈ E(G). This implies ux ∈ E(G) as otherwise V1, V2, V3 is not a
solution. But now x, z, w, v induce a 4-cycle in the neighbourhood of u, which is impossible by Line 9 of

Algorithm 1. (For this, recall that (G, ℓ) is a reduced instance and that the connected component of H
containing w and x is different from the one containing v and z.)

This proves that V1, V2, V3 is also a solution to the modified instance. As this is one of the O(n2) instances,

we are done.

So, we may assume that each neighbour of u in V3 ∩ V(H) is itself a connected component (isolated
vertex) of H. In this case, we consider the instance where we do not choose w (referred to as the “modified”

instance). In this instance, we remove 3 from each neighbour of u in V(H) that belongs to a non-trivial
connected component of H. By our assumption, this does not modify the lists of those neighbours of u that

are in V3 ∩ V(H). Thus V1, V2, V3 is a solution to the modified instance, and we are done.

Case(ii): Suppose that u ∈ V2. If u has a neighbour in V3 ∩ V(H), consider the instance where w is chosen
to be this neighbour (referred to as the “modified” instance). In this instance, we remove 3 from each

neighbour of u in a non-trivial connected component of H unless that component contains w. Clearly, any

such vertex v cannot belong to V3, since then u would have two neighbours in V3, which is impossible. Thus
V1, V2, V3 is also a solution to the modified instance, and we are done.

Finally, suppose that u has no neighbour in V3 ∩ V(H), and consider the instance where we do not

choose w. Again, we remove 3 from every neighbour of u in a non-trivial component of H, and conclude
that V1, V2, V3 is a solution to this modified instance, since we assume that N(u) ∩ V(H) ∩ V3 = ∅. This

completes all cases.

This proves that one of the choices for w must succeed if (G, ℓ) has a solution. By a symmetric argument,
it follows that, for an appropriate choice of w, one of the choices for w′ (if at all we consider w′) must also

succeed. This concludes the first argument.

For the second argument, consider one of the O(n2) instances (G+, ℓ+). We constructed this instance
from the initial instance (G, ℓ), by fixing a vertex u and choosing w (or not), and then fixing a vertex u′ (if

possible) and choosing w′ (or not). We also reduced this instance using Algorithm 1.

We now prove that Uℓ+

{1,2} and Uℓ+

{1,3} are both cliques of G, i.e. that Lemma 12 can be applied. Suppose

otherwise, and assume first that Uℓ+

{1,3} contains non-adjacent vertices v, v′. As ℓ+ is a reduction of ℓ and

since Uℓ

{1,2,3} = ∅, we conclude that v, v′ are also vertices in Uℓ

{1,3}. Again, let H denote the graph G[Uℓ

{1,3}].

First, we observe that u is adjacent to at least one of v, v′. Indeed, if u is non-adjacent to both v and v′,
then 1 was removed from ℓ(u) in Line 8 of Algorithm 1 (recall that (G, ℓ) is a reduced instance). This is
impossible as ℓ(u) = {1, 2}. By symmetry, we shall assume that u is adjacent to v.

Now, if w was not chosen when constructing (G+, ℓ+), then 3 was removed from all neighbours of u in

non-trivial connected components of H. One of these components contains both v and v′ as they are non-
adjacent, and so 3 was removed from ℓ(v) when constructing ℓ+ (recall that we assume that u is adjacent

to v). However, this is impossible, since ℓ+(v) = {1, 3}. We similarly arrive at a contradiction when w is

chosen, but it is not a vertex of the connected component of H containing v. So we conclude that w was
chosen from the connected component of H containing v. But now, we have that either v = w, or, since

(G+, ℓ+) is reduced, 1 or 3 was removed from ℓ(v) in Line 2 at some point when running Algorithm 1 to
produce the instance (G+, ℓ+). This is, of course, impossible as ℓ(w) = {3} and ℓ+(v) = {1, 3}. This

concludes the argument for Uℓ+

{1,3}.

The argument for Uℓ+

{1,2} is similar, using u′ and w′. Finally, note that if u′ (and hence w′) cannot be

chosen because the first modification of lists removed all candidates, then the Lemma 11 can be applied. �

We are ready to discuss the general case and prove the main theorem of this section.

Theorem 14. The STABLE-M2 problem is solvable in polynomial time.

9

PROOF. First, we test whether or not we are in the situation of Lemma 10. If so, we find a solution for

(G, ℓ) using [9]. If not, we conclude that if there is a solution (V1, V2, V3) for (G, ℓ), then there must exist
u ∈ V2 and v ∈ V3 with uv ∈ E(G). We try all possible choices for such a pair u, v. This reduces the problem

to solving O(n2) separate instances. For each such choice u, v, we set ℓ(u) = {2}, ℓ(v) = {3}, and run
Algorithm 1. If the list of some vertex becomes empty, we reject this choice of u, v. Otherwise, we observe

that the resulting reduced instance (G′, ℓ′) satisfies Uℓ′

{1,2,3} = Uℓ′

{2,3} = ∅. So we can apply Lemma 13 to

(G′, ℓ′), which determines in polynomial time if there is a solution for (G, ℓ). This concludes the proof. �

5. Restricted Minimal Factorial Properties

First, we briefly examine the polynomial-time cases. Using essentially the same arguments as in the proof

of Theorem 6, we obtain the following theorem.

Theorem 15. The STABLE-MS
1

and STABLE-MS
2

problems are solvable in polynomial time.

All the remaining cases are hard. We discuss them in separate claims. All the subsequent proofs will be
essentially along the same lines and based on the following useful lemma.

Lemma 16. Any non-empty instance of ONE-IN-THREE-3SAT can be transformed in polynomial time to an

equivalent instance of ONE-IN-THREE-3SAT such that

(i) There is no clause of the form (X ∨ X ∨Y) or (X ∨ X ∨Y) where X, Y are (not necessarily distinct) literals.
(ii) If X appears in some clause, then X also appears in some clause.

(iii) Every literal appears at least twice in the instance.

(iv) There are at least 4 clauses and at least 4 variables in the instance.

PROOF. Apply the following steps in order. First, for each clause of the form (X ∨ X ∨ Y), replace it by

the clauses (u ∨ v ∨ X), (u ∨ v ∨ X), (w ∨ z ∨ Y), (w ∨ z ∨ Y), where u, v, w, z are new variables. Next,
for each clause of the form (X ∨ X ∨ Y), replace it by the clauses (u ∨ v ∨ Y), (u ∨ v ∨ Y), where u, v are

new variables. Then, for each literal X, add the clauses (u ∨ v ∨ X), (u ∨ w ∨ X), (v ∨ w ∨ z), (v ∨ w ∨ z),
(v ∨ w ∨ z), where u, v, w, z are new variables. Note that since the original instance was non-empty, the new
instance must now have at least 4 clauses and at least 4 variables. Finally, make a copy of each clause, i.e.

make each clause appear twice in the instance.

It is easy to see that the instance produced in this way is equivalent to the original instance and satisfies
all the conditions of the lemma. �

Theorem 17. The STABLE-MS
4

problem is NP-complete.

PROOF. We can rephrase the problem as follows: given a graph G, decide whether the vertices of G can
be partitioned into 3 sets V1, V2, V3 such that V3 is a clique, V1 and V2 are independent sets and the edges

between V2 and V3 form a perfect matching.
The proof proceeds by reduction from ONE-IN-THREE-3SAT. Consider an instance I of the problem,

namely the instance consists of m clauses C1, . . . , Cm containing variables v1, . . . , vn. We may assume it

satisfies the properties listed in Lemma 16. Let Ji denote the set of indices j such that vi appears in Cj. Let

Ji denote the indices j such that vi appears in Cj.
For the instance I , we construct the graph GI as follows. First, we create a complete graph on vertices

y1, . . . , ym. Then for every occurrence of a variable vi (resp. vi) in a clause Cj, we add a new vertex xi,j

(resp. xi,j) and we add an edge between yj and xi,j (resp. xi,j). Finally, we add an edge between xi,j and xi,ℓ

for all i ∈ {1, . . . , n}, all j ∈ Ji and all ℓ ∈ Ji.
We prove that GI admits a STABLE-MS

4
partition if and only if I has a satisfying truth assignment (as an

instance of ONE-IN-THREE-3SAT).

Suppose that the instance I has a satisfying truth assignment ϕ. In other words, ϕ is a mapping from
{v1, . . . , vn} to {true, f alse} such that for every clause Cj, ϕ evaluates exactly one of the literals in Cj to true,
where ϕ(vi) is defined as the negation of ϕ(vi). Let us define a partition of V(GI) as follows:

10

V1 =
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = f alse

}

∪
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = true

}

,

V2 =
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = true

}

∪
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = f alse

}

,

V3 =
{

yj

∣

∣

∣
j ∈ {1, . . . , m}

}

.

It is not difficult to verify that V1 and V2 are independent sets of GI , that V3 is a clique, and that the

edges between V2 and V3 form a perfect matching. Indeed, each vertex yj in V3 is adjacent to a unique

vertex xi,j or xi,j in V2, namely the one for which vi, resp. vi is the literal of Cj that ϕ evaluates to true. Thus

GI admits a STABLE-MS
4

partition as required.

Conversely, suppose that GI admits a STABLE-MS
4

partition. In other words, there exists a partition of

V(GI) into three sets V1, V2, V3 such that V1, V2 are independent sets, V3 is a clique, and the edges between
V2 and V3 form a perfect matching.

First, we show that we must have V3 = {yj | j ∈ {1, . . . , m}}. By Lemma 16, there are at least four yj’s.

Thus, since V1 and V2 are independent sets, V3 must contain at least two yj’s. This implies that V3 contains
no xi,j or xi,j, since each has at most one neighbour in {y1, . . . , ym} and V3 is a clique. It also implies that

if yj ∈ V2 for some j, then yj has at least 2 neighbours in V3, which is a contradiction. Finally, suppose that
yj ∈ V1 for some j. Consider a neighbour z 6∈ {y1, . . . , ym} of yj. (Note that z is xi,j or xi,j for some i and

there are exactly three such vertices). Then z is not in V3, since V3 contains no xi,j or xi,j. Also, z cannot be

in V1, since V1 is independent. Thus z must be in V2. But z has a unique neighbour in {y1, . . . , ym}, namely
yj, and hence, z does not have a neighbour in V3, a contradiction. This proves that V3 = {y1, . . . , ym}.

Now, we define the following truth assignment ϕ : {v1, . . . , vn} → {true, f alse}. For each i ∈ {1, . . . , n},

we set ϕ(vi) = true if xi,j ∈ V2 for some j, and set ϕ(vi) = f alse otherwise. We prove that ϕ is a satisfying
truth assignment for the instance I , which will conclude the proof.

Using the assignment ϕ, we prove that

V1 =
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = f alse

}

∪
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = true},

V2 =
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = true

}

∪
{

xi,j

∣

∣

∣
j ∈ Ji ∧ ϕ(vi) = f alse

}

.

To show this, recall that for each i ∈ {1, . . . , n}, every xi,j is adjacent to every xi,ℓ where j ∈ Ji and

ℓ ∈ Ji. Thus if ϕ(vi) = true, then xi,j ∈ V2 for some j which implies xi,ℓ ∈ V1 for all ℓ ∈ Ji, since V2 is an

independent set. Therefore, xi,j ∈ V2 for all j ∈ Ji, since V1 is an independent set. Similarly, if ϕ(vi) = f alse,

then xi,j ∈ V1 for all j ∈ Ji, and hence, xi,ℓ ∈ V2 for all ℓ ∈ Ji.
Now, consider a clause Cj. Recall that yj ∈ V3, and hence, it has exactly one neighbour xi,j or xi,j in

V2 corresponding to the literal vi, resp. vi in Cj, which ϕ evaluates to true by the above. So, all other

neighbours xi′,j or xi′,j of yj belong to V1 and thus correspond to literals vi′ , resp. vi′ which ϕ evaluates to
f alse. This proves that Cj is satisfied by ϕ, and thus, proves that ϕ is a satisfying truth assignment.

This concludes the proof. �

Similar constructions also work for the following two cases.

Theorem 18. The STABLE-MS
4

problem is NP-complete.

PROOF. Again, we rephrase the problem as: given a graph G, decide whether the vertices of G can be

partitioned into 3 sets V1, V2, V3 such that V3 is a clique, V1 and V2 are independent sets and the edges

between V2 and V3 form the complement of a perfect matching.
The proof will now follow essentially the same steps as the proof of Theorem 17. We proceed by reduction

from ONE-IN-THREE-3SAT.

Consider an instance I of the problem, namely the instance consists of m clauses C1, . . . , Cm containing
variables v1, . . . , vn. Again, we may assume it satisfies the properties listed in Lemma 16. We define Ji to be

the set of indices j such that vi appears in Cj, and define Ji to be the set of indices j such that vi appears in Cj.

11

For the instance I , consider the graph GI constructed in the proof of Theorem 17. Let G+
I be the graph

constructed from GI by complementing the edges between {y1, . . . , ym} and the rest of the graph. Namely,
for each i ∈ {1, . . . , m}, the vertex yi is adjacent to z 6∈ {y1, . . . , ym} in G+

I if and only if yi is not adjacent to

z in GI . All other edges remain the same.

We prove that G+
I admits a STABLE-MS

4
partition if and only if I has a satisfying truth assignment (as an

instance of ONE-IN-THREE-3SAT).
For the forward direction, we note that, by the proof of Theorem 17, if GI admits a STABLE-MS

4
partition

V1, V2, V3, then V3 = {y1, . . . , ym}. Thus, this is also a STABLE-MS
4

partition of G+
I . This proves that if I has

a satisfying truth assignment, then G+
I admits a STABLE-MS

4
partition.

Conversely, suppose that G+
I admits a STABLE-MS

4
partition. Namely, let V1, V2, V3 be a partition of

V(GI) such that V1, V2 are independent sets, V3 is a clique, and the edges between V2 and V3 form the

complement of a perfect matching.
We shall prove that V3 = {y1, . . . , ym}. By the construction of G+

I , this will imply that V1, V2, V3 is also a

STABLE-MS
4

partition of GI . Thus, by the proof of Theorem 17, this will allow us to conclude that I has a
satisfying truth assignment.

Consider a vertex yj. By Lemma 16, there is a variable vi such that neither vi nor vi appears in the

clause Cj. Moreover, vi appears as a literal in at least two clauses, say Cj1 and Cj2 , and vi appears in two

other clauses, say Cj3 and Cj4 . This implies that G+
I contains vertices xi,j1 , xi,j2 , xi,j3, xi,j4 which induce a

4-cycle and are all adjacent to yj. Suppose that yj ∈ V1. Since V1 is an independent set, we conclude

that xi,j1 , xi,j2, xi,j3 , xi,j4 ∈ V2 ∪ V3. However, this contradicts the fact that G+
I [V2 ∪ V3] is a split graph.

Thus yj 6∈ V1. By the same argument, yj 6∈ V2. This proves that V3 ⊇ {y1, . . . , ym}. Furthermore, note
that V3 contains no xi,j or xi,j, since each has a non-neighbour in {y1, . . . , ym} and V3 is a clique. So

V3 = {y1, . . . , ym} as promised.

This concludes the proof. �

Theorem 19. The STABLE-MS
2

problem is NP-complete.

PROOF. Once again we rephrase the problem as: given a graph G, decide if we can partition its vertex set

into 3 independent sets V1, V2, V3, such that the edges between V2 and V3 form the complement of a perfect
matching. As before, we reduce from ONE-IN-THREE-3SAT.

Consider an instance I of the problem, namely the instance consists of m clauses C1, . . . , Cm containing
variables v1, . . . , vn. Again, we may assume it satisfies the properties listed in Lemma 16. We define Ji to be

the set of indices j such that vi appears in Cj, and define Ji to be the set of indices j such that vi appears in Cj.

For the instance I , consider the graph G+
I constructed in the proof of Theorem 18. Construct the graph

G∗
I from G+

I by removing all edges of the form yiyj where i, j ∈ {1, . . . , m} (effectively replacing the clique
on {y1, . . . , ym} by an independent set). All other edges remain the same.

We claim that G∗
I has a STABLE-MS

2
partition if and only if I has a satisfying truth assignment (as an

instance of ONE-IN-THREE-3SAT).

For the forward direction, we note that, by the proof of Theorem 18, if G+
I admits a STABLE-MS

4
partition

V1, V2, V3, then V3 = {y1, . . . , ym}. Thus, this is also a STABLE-MS
2

partition of G∗
I . This proves that if I has

a satisfying truth assignment, then G∗
I admits a STABLE-MS

2
partition.

Now suppose, conversely, that G∗
I admits a STABLE-MS

2
partition. In other words, V(G∗

I) can be

partitioned into three independent sets V1, V2, V3, such that the edges between V2 and V3 form the
complement of a perfect matching.

First, observe that if three vertices a, b, c ∈ V2 ∪ V3 form an independent set then either all of them must

be contained in V2 or all of them must be contained in V3. Indeed, suppose, without loss of generality that,
a, b ∈ V2 and c ∈ V3, then c would have two non-neighbours in V2, contradicting the fact that the edges

between V2 and V3 form the complement of a perfect matching.

Next, we show that yj ∈ V2 for all j ∈ {1, . . . , m} or yj ∈ V3 for all j ∈ {1, . . . , m}. By the above
observation and Lemma 16, we need only show that yj 6∈ V1. Suppose, for contradiction, that yj ∈ V1. By

12

Lemma 16, there must be vertices xi1,j1 , xi2,j2 , xi3,j3 and xi1,j4 (with i1, i2, i3 pairwise distinct), none of which

correspond to literals in the clause Cj (i.e. j 6∈ {j1, j2, j3, j4}). Since they do not correspond to these literals,
yj must be adjacent to all of these vertices, so xi1,j1 , xi2,j2 , xi3,j3 , xi1,j4 ∈ V2 ∪ V3. But xi1,j1 , xi2,j2 , xi3,j3 and

xi2,j2 , xi3,j3 , xi1,j4 are both independent sets of size 3. Thus all four of these vertices must be members of the
same set Vi where i ∈ {2, 3}. But xi1,j1 and xi1,j4 are adjacent, contradicting the fact that V2 and V3 are

independent sets.

Hence, we may conclude, without loss of generality, that {y1, . . . , ym} ⊆ V3. Notice that, since each
vertex xi,j or xi,j corresponds to a unique occurrence of a literal in a unique clause in I , every vertex not of

the form yj has a neighbour in V3. Thus, since V3 is an independent set, V3 = {y1, . . . , ym}. Finally, note

that since V1, V2, V3 is a STABLE-MS
2

partition for G∗
I and V3 = {y1, . . . , ym}, then by the construction of G∗

I ,

it follows that V1, V2, V3 must also be a STABLE-MS
4
-partition of G+

I . Thus, by the proof of Theorem 18, the
instance I has a satisfying assignment.

This concludes the proof. �

6. Conclusion

We proved that the STABLE-Π problem is polynomial-time solvable for all subfactorial hereditary

properties Π and for seven of the nine minimal factorial hereditary properties. For Π = M1, the problem
is known to be NP-complete. This leaves one final open case, namely where Π is the class of chain graphs

M3. Clarifying the complexity status of this exception is a challenging research problem.

Acknowledgements

Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), which is

partially funded by EPSRC award EP/D063191/1. The second and third author also acknowledge support

from EPSRC award EP/I01795X/1.

References

[1] V. Alekseev, On lower layers of a lattice of hereditary classes of graphs (in russian), Diskretny̆ı Analiz i Issledovanie Operatsĭı,
Ser. 1 4 (1997) 3–12.

[2] V. Alekseev, A. Farrugia, V. Lozin, New results on generalized graph coloring, Discrete Mathematics and Theoretical Computer
Science 6 (2004) 215–222.

[3] J. Balogh, B. Bollobás, D. Weinreich, The speed of hereditary properties of graphs, Journal of Combinatorial Theory, Series B 79
(2000) 131–156.

[4] A. Brandstädt, P. Hammer, V. Le, V. Lozin, Bisplit graphs, Discrete Mathematics 299 (2005) 11–32.
[5] A. Brandstädt, V. Le, T. Szymczak, The complexity of some problems related to graph 3-colorability, Discrete Applied Mathematics

89 (1998) 59–73.
[6] L. Cai, D. Corneil, A generalization of perfect graphs–i-perfect graphs, Journal of Graph Theory 23 (1996) 87–103.
[7] M. Demange, T. Ekim, D. de Werra, Partitioning cographs into cliques and stable sets, Discrete Optimization 2 (2005) 145–153.
[8] T. Ekim, J. Gimbel, Partitioning graphs into complete and empty graphs, Discrete Mathematics 309 (2009) 5849–5856.
[9] T. Feder, P. Hell, S. Klein, R. Motwani, List partitions, SIAM Journal on Discrete Mathematics 16 (2003) 449–478.

[10] M. Garey, D. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science 1 (1976)
237–267.

[11] D. Grinstead, P. Slater, N. Sherwani, N. Holmes, Efficient edge domination problems in graphs, Information Processing Letters 48
(1993) 221–228.

[12] P. Hell, S. Klein, L. Nogueira, F. Protti, Partitioning chordal graphs into independent sets and cliques, Discrete Applied
Mathematics 141 (2004) 185–194.

[13] C. Hoàng, V. Le, On P4-transversals of perfect graphs, Discrete Mathematics 216 (2000) 195–210.
[14] Y. Huang, Y. Chu, A note on the computational complexity of graph vertex partition, Discrete Applied Mathematics 155 (2007)

405–409.
[15] J. Kratochvil, I. Schiermeyer, On the computational complexity of (O, P)-partition problems, Discussiones Mathematicae Graph

Theory 17 (1997) 253–258.
[16] V. Lozin, Between 2- and 3-colorability, Information Processing Letters 94 (2005) 179–182.
[17] N. Mahadev, U. Peled, Threshold graphs and related topics, in: Threshold Graphs and Related Topics, volume 56 of Annals of

Discrete Mathematics, Elsevier, 1995, p. 543.
[18] J. Stacho, On P4-transversals of chordal graphs, Discrete Mathematics 308 (2008) 5548–5554.
[19] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM Journal on Computing 10 (1981) 310–327.

13

