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Abstract

A graphG is amax point-tolerance (MPT)graph if each vertexv of G can be mapped to apointed-interval
(Iv, pv) whereIv is an interval ofR and pv ∈ Iv such thatuv is an edge ofG iff Iu ∩ Iv ⊇ {pu, pv}. MPT
graphs model relationships among DNA fragments in genome-wide association studies as well as basic
transmission problems in telecommunications. We formallyintroduce this graph class, characterize it,
study combinatorial optimization problems on it, and relate it to several well known graph classes. We
characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle,
rectangle, L-shape, and line segment intersection graphs.We further characterize MPT as having certain
linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by
intersecting special pairs of interval graphs. We also showthat, on MPT graphs, the maximum weight
independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the
clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph
classes; e.g., MPT graphs strictly contain interval graphsand outerplanar graphs, but are incomparable to
permutation, chordal, and planar graphs.

Keywords: tolerance graphs, interval graphs, L-graphs, rectangle intersection graphs, outerplanar graphs,
weighted independent set, coloring, clique cover.

1. Introduction

Interval graphs (namely, the intersection graphs of intervals on a line) are well-studied in computer
science and discrete mathematics (see e.g.,[14, 17]). Manycombinatorial problems which are NP-hard
in general can be solved efficiently when restricted to interval graphs. For example, the maximum clique
problem [17], the maximum weight independent set problem [16], and the coloring problem [21] can all be
solved in linear time on interval graphs. The recognition problem is also solvable in linear time [2].

Due to their theoretical and practical significance many generalizations of interval graphs have been
studied (see e.g.,[1, 8, 20, 22]). Particularly relevant tothis work aretolerance graphs, first introduced in
[22]. A graph is atolerancegraph (also known as amin tolerancegraph) when every vertexv of G can be
associated with an intervalIv (of the real number line:R) and a tolerance valuetv ∈ R such thatuv is an
edge ofG iff |Iu ∩ Iv| ≥ min{tu, tv}. Similarly, a graph is amax tolerancegraph when each vertexv of G can
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be associated with an intervalIv and tolerancetv such thatuv ∈ E(G) iff |Iu∩ Iv| ≥ max{tu, tv}. For a detailed
study of tolerance graphs see [23].

In this paper we introduce the class ofmax point-tolerance (MPT)graphs. A graphG is an MPT graph
when each vertexv of G can be represented by an intervalIv of R together with a pointpv ∈ Iv such that
two verticesu, v are adjacent iff both pu andpv belong toIu ∩ Iv; i.e., each pair of intervals can “tolerate” a
non-empty intersection (without forming an edge) as long asat least one distinguished point is not contained
in this intersection. We call such a collection{(Iv, pv)}v∈V(G) of pointed intervals an MPT representation of
G. Moreover, we also denote each (Iv, pv) by a triplet (sv, pv, ev) wheresv andev denote the start and end of
Iv respectively.

MPT graphs have a number of practical applications. They canbe used to detect loss of heterozygosity
events in the human genome; see e.g., [24, 50]. In such applications an intervalI represents the maximal
boundary on a chromosome region from an individual that may carry a deletion and the pointp represents a
site in the considered region that shows evidence for a deletion. MPT graphs also model telecommunication
networks; e.g., communication devices such that each device receives messages on a particular bandwidth
(interval) and sends messages in a sub-band (point) of that bandwidth. In this situation the edges of the
MPT graph correspond to devices with direct two-way communication.

Some classical optimization problems on MPT graphs correspond to practical problems. For example,
when modeling genome-wide association studies, finding thechromosomal region showing the highest
evidence for a massive loss of heterozygosity in a population of individuals involves solving the maximum
clique problem and partitioning all evidence-of-deletionsites into the minimal number of deletions involves
solving the minimum clique cover problem [3]. Similarly, intelecommunications, a minimum clique cover
corresponds to partitioning the devices into a minimum collection of sets of fully-communicable devices
and a maximum independent set is a largest set of non-communicable devices.

Interestingly, the maximum weight clique problem on a MPT graph was shown to be polynomially
solvable due to the fact that an MPT graph can have at mostO(n2) maximal cliques [3]. Additionally, the
minimum weight clique cover problem was shown to be NP-complete for submodular cost functions [3, 10].
The complexity of the unweighted clique cover problem on MPTgraphs remains unresolved.

Finally, closely related to MPT graphs is the class ofinterval catch digraphs. A digraphD is aninterval
catch digraphwhen each vertexvof D can be mapped to an intervalIv of R together with a pointpv ∈ Iv such
thatuv is an arc ofD iff pu ∈ Iv. Notice that MPT graphs are precisely the underlying undirected graphs of
the symmetric edges of interval catch digraphs. Interval catch digraphs have a vertex order characterization
[36], an asteroidal-triple characterization [40], and a polynomial time recognition algorithm [41]. However,
these results do not translate to MPT graphs.

Our Contributions: We provide characterizations of MPT graphs, utilize these characterizations for
combinatorial optimization problems, and relate MPT graphs to well-known graph classes.

In section 2 we characterize MPT graphs as a special case ofL-graphs(intersection graphs of L-shapes
in the plane). This will imply that MPT is also a subclass of rectangle intersection graphs (also known as
boxicity-2 graphs [43]) and of triangle intersection graphs. We also use this characterization to show that
interval graphs and 2D ray graphs are strict subclasses of MPT graphs. We further characterize MPT graphs
by certain linear vertex orders. In particular, we show thata graphG = (V,E) is MPT iff the vertices ofG
can be linearly ordered by< so that no quadrupleu, v,w, x ∈ V with u < v < w < x has the edgesuwandvx
without the edgevw. Related to this ordering condition, we also describe MPT graphs as the intersection of
two special interval graphs (see Theorem 5.5). Finally, MPTgraphs are characterized as intersection graphs
of certain line segments from cyclic line arrangements.

These characterizations are then used to study combinatorial optimization problems on MPT graphs.
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Namely, we demonstrate that theweighted independent set (WIS)problem can be solved in polynomial
time, the clique cover problem can be 2-approximated in polynomial time, and that thecoloring problem is
NP-complete but can be log(n)-approximated in polynomial time. As part of the approximations, we show
that the clique cover numberγ(G) is at most twice the independence numberα(G) and that the chromatic
numberχ(G) is at mostO(ω log(ω)) whereω is the clique number1.

Finally, we observe some structural results and compare MPTgraphs to several well-known graph
classes. For example, we observe that outerplanar graphs are proper subclass of MPT graphs and character-
ize them by a “contact” MPT representation. We additionallyobserve infinite families of forbidden induced
subgraphs for MPT graphs which are constructed from non-interval and non-outerplanar graphs.

Related Work: While our results have been obtained independently, there are several places which
overlap with some existing papers [35, 48, 49]. We will identify each of these as they are presented. Some
of our results also appear in the Masters Thesis of our co-author Thomas Hixon [25].

Preliminaries: All graphs considered in this paper are simple, undirected,and loopless (unless other-
wise stated). For a graphG with vertex setV and edge setE, we use the following notation. The symbols
n andm denote|V| and|E| respectively. For a subsetS of V, G[S] denotes the subgraph ofG induced byS
andG \ S denotes the subgraph ofG induced byV \ S; i.e., G \ S = G[V \ S]. For a vertexv ∈ V, N(v)
denotes the neighborhood ofv (i.e., the vertices inG which are adjacent tov).

2. Geometric representations of MPT graphs

In this section we relate MPT graphs to geometric intersection graphs. Specifically, we characterize
MPT graphs as intersection graphs of axis-aligned L-shapeswhose corner points form a line with negative
slope (namely,linear L-graphsas defined below). Once we formalize this it will be easy to seethat this
implies that MPT graphs are a special subclass of boxicity-2graphs and triangle intersection graphs. This
equivalence is also observed in [48]. Later in this paper we use these characterizations to study combinato-
rial optimization problems on MPT graphs and to relate MPT graphs to classical graph classes.

An L-shapeconsists of a vertical line segment and a horizontal line segment with acorner that is the
lowest point of the vertical segment and the left-most pointof the horizontal segment. We define alinear
L-systemL to be a collection of L-shapes {L1, . . . , Ln} in the plane such that the corner points ofL1, . . . ,
Ln are distinct and form a line with negative slope. We say that agraphG is a linear L-graph if G is the
intersection graph of a linear L-systemL and we refer toL as a linear L-systemof G. We definelinear
rectangle graphsand linear right-triangle graphssimilarly (i.e., with the lower-left corners of the shapes
forming a line with negative slope; note: we always considerthe lower-left corner of each triangle to be the
right angle). In particular, it is easy to see that these three graph classes are the same; e.g., as in Figure 2.

Without loss of generality we assume that the corner points in all linear systems have the form (c,−c)
for some positive integerc. This allows us to specify each L-shapeL in a linear L-system by (tL, cL, rL)
where:−tL is the y-coordinate of the top ofL, (cL,−cL) is the corner point ofL, andrL is the x-coordinate
of the right-most point ofL. Such an L-shape is given in Figure 1.

Theorem 2.1. Max point-tolerance graphs are precisely linear L-graphs.

Proof. Let {(s1, p1, e1), . . . , (sn, pn, en)} be a MPT representation of a graphG. Consider the linear L-system
L = {L1, . . . , Ln} wheretLi = −si, cLi = pi, andrLi = ei . The theorem follows from the depiction of this
construction given in Figure 3 �

1The bound onχ(G) follows from [4] and one of our characterizations.
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Figure 1: Anatomy of an L-shape in a linear L-system. Notice that we include a “platform” corresponding to the linex+ y = 0 to
emphasize the linearity of the system.
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Figure 2: (from left-to-right) The netG, a linear L-systemL of G, the linear rectangle-system corresponding toL, and the linear
right-triangle-system corresponding toL.

3. L-systems of Interval Graphs

In this section we connect interval graphs with MPT graphs. We do this by demonstrating that every
interval representation of a graph is equivalent to ananchoredlinear L-system (see Definition 3.1 and
Lemma 3.2). Interval graphs have also been shown to be a subclass of MPT graphs in [48]. In fact, they
show that rooted path graphs (a superclass of interval graphs) are indeed a subclass of MPT graphs, but
they do not observe our characterization. We later use this characterization in our 2-approximation of clique
cover and to identify an infinite family of non-MPT graphs.

Definition 3.1. A linear L-systemL is anchoredif there existsA ∈ R such thattL ≤ A ≤ cL for every
L ∈ L. Note: we say thatL is anchoredat A and refer toA as theanchor pointof L.

Lemma 3.2. G = (V,E) is an interval graph iffG has an anchored linear L-system.

Proof. (=⇒) LetI = {I1, . . . , In} be an interval representation ofG wheresI i andeI i denote the starting and
ending points of the intervalI i (respectively) for eachi ∈ {1, . . . , n}. Furthermore, (wlog) assumesI i ≥ 0
andsI i < sI j iff i < j. Consider the linear L-systemL = {L1, . . . , Ln} such thatLi = (0, sI i , eI i ); i.e.,L is
anchored at 0. Notice that, when two intervalsI i , I j (1 ≤ i < j ≤ n) intersect, the corresponding L-shapes
Li , L j will also intersect. Specifically, the horizontal segment of Li will intersect the vertical segment ofL j

(see Figure 4 (left)). Moreover, when two intervals are disjoint the corresponding L-shapes will be disjoint
since their horizontal segments will not have any common x-coordinates (see Figure 4 (right)).

(⇐=) Let L = {L1, . . . , Ln} be an anchored linear L-system ofG. Consider the interval representation
I = {I1, . . . , In} such thatI i = (cLi , rLi ). The equivalence ofI andL follows similarly to (=⇒). �

Corollary 3.3. Interval graphs are a strict subclass of MPT graphs.

Proof. This follows from Lemma 3.2 and the fact that a the graph in Figure 2 is an MPT graph but not an
interval graph [34]. �
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Figure 3: Illustrating the equivalence between MPT representations and linear L-systems. From left-to-right: the L-shape corre-
sponding to a pointed-interval, two examples of non-adjacent vertices as pointed-intervals and the corresponding linear Ls, and one
example of adjacent vertices as pointed-intervals and the corresponding linear Ls.
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Figure 4: Illustrating the mapping between intervals and Lsfor adjacent vertices (left) and non-adjacent vertices (right).

4. Combinatorial Optimization Problems

In this section we will discuss the weighted independent set(WIS) problem, clique cover (CC) problem,
and the coloring problem on MPT graphs. In particular, we will show the WIS problem can be solved in
O(n3) time, the CC problem can be 2-approximated in quadratic time, the coloring problem is NP-complete
but can be log(n)-approximated in linear time.

Throughout this section we consider an MPT graphG = (V,E) together with a linear L-systemL =
{L1, . . . , Ln} of G wherei < j iff the corner point ofLi occurs to the left ofL j . Without loss of generality
we shall assume that the corner point ofLi is (i,−i) for eachi ∈ {1, . . . , n}; i.e., pi = i in the corresponding
MPT representation andLi = (ti , i, r i).

4.1. Maximum Weight Independent Set

The IS problem, even for the unweighted case, is known to be NP-complete for: L-graphs, boxicity-2
graphs, and triangle intersection graphs since they contain the intersection graphs of vertical and horizontal
line segments (also known as 2-DIR) and the problem is NP-complete on 2-DIR [32]. Prior to [32], the IS
problem was known to be NP-complete on boxicity-2 graphs [15, 27]. However, for interval graphs, the
WIS problem is known to be solvable in linear time from a superclass (e.g.,chordalgraphs [16]) of interval
graphs. A graph ischordalwhen it has no inducedk-cycle for allk ≥ 4.

Notice that an independent set in an MPT graph corresponds toa collection of disjoint L-shapes in
a linear L-system. We use this equivalence to solve the WIS problem on a vertex-weighted MPT graph
in polynomial time algorithm via dynamic programming. Our approach is an independent rediscovery
of a known algorithm to solve WIS on generalizations of interval graphs [35]. However we believe our
presentation is much clearer for the context of MPT graphs. Also, there has been a recentO(n2) algorithm
for this problem [49], but here we believe that the simplicity of our approach helps in understanding the
structure of independent sets in MPT graphs and so we have included it.

We now discuss the key idea. LetJ be a sub-collection of disjoint L-shapes ofL. We say that an
L-shapeLi is dominantin J if it contains the right-most point among the L-shapes inJ; i.e., Li ∈ J and
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r i = maxL j∈J r j . Consider a dominantLi and someL j ∈ J such thatj > i. Notice thatL j cannot contain
any points to the right of the linex = r j (sinceLi is dominant). Moreover,L j must occur strictly below the
line y = −i (sinceL j ’s corner point is belowLi ’s corner point). Similarly, forL j′ ∈ J with j′ < i, L j′ again
cannot contain any points to the right of the linex = r j . Furthermore,L j′ is contained strictly above the line
y = −i. Thus, for an L-shapeLi, if Li is dominant in a sub-collectionJ of disjoint L-shapes ofL, then the
L-shapes which belong toJ and precedeLi can be chosen independently of the L-shapes which belong to
J and followLi.

The following notation is depicted in Figure 5. Fora, b ∈ {1, . . . , n} anda ≤ b, let L0,n+1 = L and
La,b = L0,b ∩ La,n+1 where:

• L0,b = {Li : 1 ≤ i ≤ b− 1, r i < rb, andLi ∩ Lb = ∅}; and
• La,n+1 = {Li : a+ 1 ≤ i ≤ n, r i < ra, andLi ∩ La = ∅}.

La

Lb

Figure 5: The L-shapes strictly contained in the shaded regions illustrateL0,b (left) andLa,n+1 (right).

Let opt[a, b] denote the maximum total weight of a collection of mutuallydisjoint L-shapes inLa,b.
Notice thatopt[0, n + 1] is the maximum weight of an independent set inG. Furthermore, by the above
discussion, we have the following recurrence foropt[a, b]:

opt[a, b] = max
Li∈La,b

(opt[a, i] + w(Li) + opt[i, b])

It is easy to see that the collection of sets{La,b : a, b ∈ {0, . . . , n+ 1}, a ≤ b} can be computed inO(n3)
time (since each ofLa,b can be computed inO(n) time). Moreover, the size of the tableopt is O(n2), and
the time to compute each entry isO(n). Thus, we have the following theorem.

Theorem 4.1. For a vertex weighted MPT graph with a given linear L-system,a maximum weight indepen-
dent set can be computed inO(n3) time.

4.2. Clique Cover

The CC problem is known to be NP-complete on boxicity-2 graphs (from unit square intersection graphs
[15]), and L-graphs (from circle graphs [29]). However it issolvable in polynomial time on interval graphs
and outerplanar graphs.

In this subsection we describe a polynomial time 2-approximation algorithm for the CC problem on
MPT graphs. Our approach uses ideas similar to the algorithmfor hitting set in [7]. From our algorithm
we will see that the clique cover numberγ(G) is at most twice the independence numberα(G) for any MPT
graphG. Recently it has been observed that a hitting set for a linearrectangle-system can be 2-approximated
in polynomial time [49]. Such a hitting set also provides a corresponding clique cover of the same size and
their proof implies the 2α(G) bound. However, in this case our approach is faster and simpler.
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Our algorithm begins with the linear L-systemL = {L1, ..., Ln}. Recall thatL is ordered according to
the corner points of the L-shapes. FromL we greedily select an independent setI . We then build a partial
clique cover ofG with one clique for each element ofI . Finally, we consider the graphH which remains
after removing these cliques and observe that it is an interval graph. SinceH is an interval graph we can
efficiently compute an optimal clique cover for it. This completes the overview of our algorithm. Notice
that, sinceH will be an interval graph (i.e., a perfect graph),γ(H) = α(H). Thus, the size of the clique cover
that we produce is|I | + α(H) ≤ 2α(G). We now describe our algorithm in detail.

First we construct the greedy independent set as follows. Let I1 = {L1}, and letI i = I i−1 ∪ {L j} such that
L j does not intersect any L-shape inI i−1 and j the smallest index satisfying this property. LetI = {Li1, ..., Lik}

be the maximal independent set constructed in this way such that i j < i j′ wheneverj < j′. SinceI is an
independent set inG, we can see thatk is at most the clique cover number ofG. We will construct a partial
clique cover usingI and show that the remaining graphH will be an interval graph.

To this end, consider the following disjoint sets of vertices. For eachj ∈ {1, . . . , k − 1}, let C j = {vℓ :
i j ≤ ℓ < i j+1, andrℓ ≥ i j+1}. First we claim that each suchC j is a clique, and then we claim that removing
all suchC js fromG results in an interval graphH.

Claim 1: C j is a clique.

Proof. Consider two vertices inC j. Their corner points occur between the corners ofLi j andLi j+1, their top
points occur above the corner ofLi j (otherwise one of them would be chosen intoI instead ofLi j+1), and
their right points occur to the right of the corner ofLi j+1. Thus, they must intersect; i.e.,C j is a clique. �

Claim 2: H = G \ (
⋃k

j=1 C j) is an interval graph.

Proof. Considervp in H wherei j ≤ p < i j+1 and 1≤ j < k. First, due to our construction ofI , either
vp = vi j or vp is a neighbor of somevi j′

wherei j′ ≤ i j ; i.e., the vertical segment of every suchvp intersects
the liney = i j . Second, we know that the right-most point ofLp is to the left ofLi j+1 (sincevp < C j). This
implies that every neighborvq of vp in H hasi j ≤ q < i j+1. Thus,H induced on its vertices betweenvi j and
vi j+1 is an interval graph (since it has an anchored linear L-system anchored ati j) and is a disjoint union of
connected components ofH.

The same argument applies to verticesvp with ik ≤ p. This show thatH is the disjoint union of interval
graphs; i.e.,H itself is an interval graph. �

Notice that the greedy independent set as well as the cliquesC j are easily generated in linear time.
Moreover, the CC problem on interval graphs can be solved in linear time [26]. This leads to the main
theorem of this subsection.

Theorem 4.2. For an MPT graph G the clique cover number is at most twice the independence number.
Also, when a linear L-system is given as input, the clique cover G can be 2-approximated inO(n+m) time.

4.3. Coloring

The coloring problem is known to be NP-complete on L-graphs (since circle graphs, also known as
interval overlap graphs, are contained in L-graphs [1] and coloring circle graphs is NP-complete [19]), on
boxicity-2 graphs [27], and on triangle intersection graphs (since they include planar graphs [9] and coloring
is NP-complete on planar graphs [18]). On the other hand, thecoloring problem can be solved in linear time
on interval graphs [21] and outerplanar graphs [42].

In this section we will demonstrate that it is NP-complete todetermine the chromatic number for MPT
graphs, but it can be log(n)-approximated in polynomial time. We will useχ(G) to denote the chromatic
number ofG.
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Prior to proving the hardness result we observe thatχ(G) can be log(n)-approximated using known
techniques. For any boxicity-2 graphG, the relationship between theχ(G) andω(G) (the clique number)
has been well-studied. The best results regarding this relationship are given in [4]. The relevant result for
MPT graphs is as follows. For a boxicity-2 graphG with a rectangle system such that no rectangle contains
another,χ(G) isO(ω(G) log(ω(G))) and this log(n)-approximation ofχ(G) can be computed in polynomial
time. It is easy to see from our characterization of MPT graphs as linear boxicity-2 graphs, that this result
applies directly to MPT graphs. Thus, the chromatic number of MPT graphs can be log(n)-approximated in
polynomial time.

We now turn to the hardness of coloring for MPT graphs. To do this we transform the hardness of
coloring of circular-arc graphs to this class.Circular-arc graphs are the intersection graphs of arcs of a
circle. Determining a minimum coloring of a circular-arc graph is known to be NP-hard [19]; i.e., it is
NP-complete to determine whether a circular arc graph isk colorable whenk is part of the input.

Theorem 4.3. It is NP-complete to determine the chromatic number for MPT graphs.

Proof. Consider a circular-arc graphG = (V,E). We usen andm to denote|V| and |E| respectively. Now,
for any k > 2, we will construct an MPT graphG′ = (V′,E′) such that:|V′| = O(n), |E′| = O(n2), and
χ(G) ≤ k iff χ(G′) ≤ k. Moreover,G′ is easily constructed inO(n2) time. An example of this construction
is depicted in Figure 6. The basic idea is that we “cut” the circular-arc representation at an arbitrary point
p. This point corresponds to a clique and we split every vertexcrossing this point into two vertices so that
the result is an interval graph. This interval graph has an anchored linear L-system to which we add a clique
consisting ofk vertices. This clique will ensure that in any coloring of this constructed graph, the two copies
of every split vertex have the same color. We now present the formal proof.

Consider an arbitrary circular-arc representationA of G (such a representation can be constructed in
O(n +m) time [37]). Let p be a fixed point on the circle ofA and letAp = {A1, . . . ,Aℓ} be the arcs ofA
that includep. The vertices{v1, . . . , vℓ} corresponding toAp form a clique inG (since the arcs all share the
point p). Hence, if no arcs pass through the pointp, thenG is an interval graph; i.e.,G is an MPT graph and
so we can letG′ = G and we are done. Similarly, ifℓ > k, thenχ(G) > k and we are done; i.e., we simply
let G′ be a clique onℓ vertices. Thus we may assume 1≤ ℓ ≤ k.

We now form an interval graphH from G by “cutting” the circular-arc representationA at the pointp.
Formally, for some small enoughǫ > 0 and eachi ∈ {1, . . . , ℓ}, we replace the arcAi = (si , ei) with two arcs
A1

i = (si , p− ǫ), andA2
i = (p+ ǫ, ei ) and considerH as the resulting intersection graph. In particular, each

vertexvi is replaced by two verticesv1
i andv2

i corresponding to the arcsA1
i andA2

i respectively. Notice that

|V(H)| = n + ℓ and |E(H)| = m+
(

ℓ
2

)

. Since there are no arcs passing through the pointp in this circular-
arc representation ofH, the graphH is an interval graph. Thus, by Lemma 3.2,H has an anchored linear
L-system.

Finally, we add a clique of sizek to H so that the result is an MPT graphG′ and in anyk-coloring ofG′,
the verticesv1

i andv2
i must be assigned the same color. To this end, we defineG′ = (V′,E′) as follows:

V′ = V(H) ∪ {u1, . . . , uk},

E′ = E(H) ∪
{

utv
j
i : j ∈ {1, 2}, i ∈ {1, . . . , ℓ}, t ∈ {i + 1, . . . , k}

}

∪
{

uiu j : i, j ∈ {1, . . . , k}, i , j
}

.

We show thatG′ has ak-coloring iff χ(G) ≤ k.

=⇒ Notice that the verticesv1
1 andv2

1 are adjacent to the same clique of sizek − 1 in G′. Thus, in any
k-coloring ofG′, v1

1 andv2
1 must be assigned the same color. Inductively, it is easy to see thatv1

i andv2
i must

also receive the same color in anyk-coloring ofG′. Specifically,ui , v1
i , andv2

i will receive the same color
for everyi ∈ {1, . . . , ℓ}. Thus, anyk-coloring ofG′ provides ak-coloring ofG.
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⇐= We can extend anyk-coloring f : V(G) → {1, . . . , k} of G to ak-coloring f ′ : V(G′) → {1, . . . , k} of
G′ as follows. For everyv ∈ V(G) \ {v1, . . . , vℓ}, set f ′(v) = f (v). For eachi ∈ {1, . . . , ℓ}, set f ′(ui) =
f ′(v1

i ) = f ′(v2
i ) = f (vi), and then choosef ′(uℓ+1), . . . , f ′(uk) so that{ f ′(uℓ+1), . . . , f ′(uk)} = {1, . . . , k} \

{ f (v1), . . . , f (vℓ)}. It is easy to see thatf ′ is ak-coloring ofG′. This completes the proof of the claim.

All that remains is to show thatG′ has the appropriate size and that it is an MPT graph. Notice that
|V(G′)| = n + ℓ + k ≤ 3n and |E(G′)| = m+

(

ℓ
2

)

+
(

k
2

)

+ (k − ℓ) ∗ 2ℓ +
∑ℓ−1

t=1 2t ≤ 2n2. Thus,G′ has the
appropriate size. Furthermore, we can construct an MPT representation ofG′ by starting from an anchored
linear L-system ofH and adding L-shapes for the new clique “above” this anchoredlinear L-system (see
Figure 6). Thus,G′ is an MPT graph.

From the above construction we can see that determining the chromatic number for MPT graphs is
NP-hard, since it is NP-hard to determine the chromatic number for circular-arc graphs. �
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Figure 6: Sample construction from the proof of Theorem 4.3 where the “cut” contains 5 vertices andk = 6.

This leaves open thek-coloring problem for fixedk ≥ 3. In particular, note that in the above construction
it was necessary that the number of colorsk was part of the input, since for fixedk, thek-coloring problem
is solvable in polynomial time on circular-arc graphs [19].

5. Other Characterizations

In this section we characterize MPT graphs by linear vertex orders, the intersection of interval graphs,
and as a restricted class of segment graphs.

5.1. Vertex Ordering

Several well known graph classes have been characterized byspecial linear orders on their vertices;
e.g., interval graphs (see Definition 5.1 and Theorem 5.2), unit interval graphs [46], chordal graphs [11],
and co-comparability graphs [33]. In this section we characterize MPT graphs as graphs with MPT-orders
(see Definition 5.3 and Theorem 5.4). This ordering characterization has been independently observed [48].
We then use this ordering to show that a graph is an MPT graph iff it is the intersection of two “special”
interval graphs (see Theorem 5.5).
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Definition 5.1. An I-order of a graphG with verticesv1, . . . , vn is an orderingv1 < v2 < · · · < vn such that:
for everyu < v < w, if uw ∈ E(G), thenuv ∈ E(G).

Theorem 5.2. [39, 44, 45] G is an interval graph iffG has an I-order. Moreover for any interval represen-
tationI of a graph G, ordering the vertices of G by the left end-pointsof their intervals results in an I-order
of G.

Definition 5.3. An MPT-orderof a graphG with verticesv1, . . . , vn is an orderingv1 < v2 < · · · < vn such
that: for everyu < v < w < x, if uw, vx ∈ E(G), thenvw ∈ E(G).

Notice that MPT-order is a generalization of I-order. In particular, letσ be an I-order of a graphG. Now
suppose we haveu, v,w, x ∈ V(G) such thatu <σ v <σ w <σ x anduw, vx ∈ E(G). Sinceσ is an I-order
with v <σ w <σ x andvx ∈ E(G), the edgevw is forced. Thus,σ is an MPT-order; i.e., every I-order is also
an MPT-order. We now prove that MPT graphs are characterizedas the graphs with MPT-orders.

Theorem 5.4. G = (V,E) is an MPT graph iff G has an MPT-order (i.e., the vertices of G can be ordered
by< so that for every u, v,w, x ∈ V, if u < v < w < x and uw, vx∈ E, then vw∈ E).

Proof. (=⇒) Let {(sv, pv, ev) : v ∈ V} be an MPT representation ofG. Order the vertices ofG such
that vertexv comes before vertexu if pv ≤ pu. Now, consider any four distinct verticesu, v,w, x where
u < v < w < x anduw, vx ∈ E. Then, it is easy to realize that, due to the considered ordering, it holds that
sw ≤ pu ≤ pv andev ≥ px ≥ pw, which impliesvw ∈ E.

(⇐=) Let G = (V,E) be a graph with ordered vertex setV = {v1, . . . , vn} such that for anyi, j, k, ℓ ∈
{1, . . . , n}, if i < j < k < ℓ andvivk, v jvℓ ∈ E thenvkv j ∈ E (i.e., v1 < · · · < vn is an MPT-order). We now
construct an MPT representation ofG based on this ordering. For eachi ∈ {1, . . . , n}, let:

• si = min{i, j} where j is thesmallestindex such thatv jvi is an edge inG.
• pi = i
• ei = max{i, j} where j is thelargest index such thatviv j is an edge inG.

ClearlyI = {(si , pi , ei) : i ∈ {1, . . . , n}} is an MPT representation in which every edge ofG is captured.
Now we need to demonstrate that this representation does notinclude any edges which are not edges ofG.
Suppose that for somej, k ∈ {1, . . . , n}, j < k, v jvk < E but sk ≤ p j andej ≥ pk. Sincesk ≤ p j there must
bevi with i < j such thatvivk ∈ E. Similarly, there must bevℓ with ℓ > k such thatv jvℓ ∈ E. However, we
now havei < j < k < ℓ with vivk, v jvℓ ∈ E but v jvk < E; i.e., a contradiction to the vertex order. ThusI is
an MPT representation ofG. �

Notice that, since every I-order is an MPT-order and every graph with an MPT-order is an MPT graph,
we have an alternate proof of Corollary 3.3; i.e., that everyinterval graph is an MPT graph. Also, since the
order of vertices in an MPT-order corresponds to the order ofthe points in an MPT representation, they also
correspond to the order of the corner points in a linear L-system of an MPT graph.

We conclude this section by further characterizing MPT graphs as the intersection of two related interval
graphs.

Theorem 5.5. G = (V,E) is an MPT graph with MPT-orderσ = (v1 < . . . < vn) iff there are interval
graphs H1 = (V,E1) and H2 = (V,E2) such that E= E1 ∩ E2, σ is an I-order of H1, and the reverse ofσ
(i.e., vn < · · · < v1) is an I-order of H2.
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Proof. (=⇒) Letσ = v1 < · · · < vn be an MPT-order ofG, and letL be the linear L-system ofG constructed
in the proof of Theorem 5.4 using this order; i.e.,cvi < cvj iff i < j. Construct an anchored linear L-system
L1 by extending the horizontal segment of every L-shape inL to the right beyond the corner of the right-
most L-shape inL. Similarly, construct an anchored linear L-systemL2 by extending the vertical segment
of everyL in L so that it reaches above the corner of the left-most L-shape inL. By Lemma 3.2, each ofL1

andL2 corresponds to an interval representation. LetH1 = (V,E1) andH2 = (V,E2) be the interval graphs
specified byL1 andL2. Notice that, by Theorem 5.2,σ is an I-order ofH1 and the reverse ofσ is an I-order
of H2. Thus, we just need to ensure thatE1∩E2 = E. ClearlyE ⊆ E1∩E2 from our construction ofL1 and
L2. Moreover there can be no edge in bothE1 andE2 which is not inE simply due to how these “extra”
edges come into existence (see Figure 7).

Figure 7: (left)Lu, Lv such thatuv ∈ E1 \ E. (right) Lu, Lv such thatuv ∈ E2 \ E.

(⇐=) Let H1 = (V,E1) andH2 = (V,E2) such thatV = {v1, . . . vn}, σ = (v1 < · · · < vn) is an I-order of
H1, and the reverse ofσ is an I-order ofH2. We now claim thatσ is an MPT-order ofG = (V,E1 ∩ E2).
Consider 1≤ i < j < k < ℓ ≤ n wherevivk, v jvℓ ∈ E1 ∩ E2. Notice thatv jvk ∈ E1 sinceσ is an I-order
of H1 andv jvℓ ∈ E1. Similarly, v jvk ∈ E2 since the reverse ofσ is an I-order ofH2 andvivℓ ∈ E2. Thus,
v jvk ∈ E1 ∩ E2 as needed. �

5.2. Cyclic Segment Graphs

In this section we characterize MPT graphs as intersection graphs of line segments from a cyclic line
arrangement. Aline arrangementis simply a collection of lines in the plane (see [13] for moreon line
arrangements). A line arrangementA is cyclicwhen there is a convex functionf (e.g., a parabola) such that
every line inA is tangent tof . We definecyclic segment graphsas the intersection graphs of line segments
where the underlying line arrangement is cyclic with respect to some functionf and each segment contains
a point onf . In the following theorem we prove that cyclic segment graphs are precisely MPT graphs. This
follows easily from our characterization of MPT graphs via MPT-orders (see Theorem 5.4).

Theorem 5.6. MPT graphs are precisely cyclic segment graphs.

Proof. Letσ = (v1 < . . . < vn) be an MPT-order of an MPT graphG. We will construct a cyclic segment
representation ofG by mapping each vertex to a segment of a line tangential to theparabolay = x2. First,
we assign eachvi the tangent lineℓi of the parabola for the point (i, i2). Now, to choose the segment of
ℓi for the vertexvi we consider the left-most and right-most vertices, sayvimin andvimax, from N(vi) ∪ {vi}.
In particular, we let the segmentSi for vi be defined as the segment ofℓi starting fromℓimin and ending
on ℓimax. Note, if i = imin (i = imax) then we simply use the point (i, i2) as the starting (ending) point of
the segmentℓi . Clearly eachSi passes through the point (i, i2). Thus, we have constructed a valid cyclic
segment representation. Consider an edgeviv j of G with i < j. From our construction,Si passes through
the lineℓ j in order to reachSimax. Similarly, S j passes through the lineℓi in order to reachS jmin. Thus,Si

andS j intersect. Now, suppose thatSi andS j intersect (i < j), but viv j is not an edge ofG. In order for
these segments to intersect, each must need to “reach over” the other. In particular, this means that there
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is vp andvq such thatp < i < j < q, andvivq andv jvp are edges inG; i.e., this violates the MPT-order.
Therefore, every MPT graph has a cyclic segment representation.

To construct an MPT-order from a cyclic segment representation one simply uses the order of the tangent
points and the proof follows similarly to the above. �

6. Non-MPT graphs and More Subclasses of MPT graphs

In this section we observe two additional strict subclassesof MPT graphs (namely, outerplanar graphs
and 2D ray graphs). We further observe infinite families of graphs which are not MPT graphs.

6.1. Outerplanar graphs

In this section we consider outerplanar graphs as a restricted form of MPT graphs. In particular, we
consider linear L-contact-systems and demonstrate that the graphs of these contact systems are precisely
outerplanar graphs. It has been independently observed that outerplanar graphs are a subclass of MPT
graphs [48]. Their proof is completely different from ours and does not provide the characterization we
have observed.

A graph isouterplanar if it has a crossing-free embedding in the plane such that allvertices are on
the same face. Moreover, an outerplanar graph is said to be maximal when it is not a proper subgraph
of any outerplanar graph with the same number of vertices. Wewill demonstrate that outerplanar graphs
are precisely thelinear contact L-graphs(see Definition 6.1 and Theorem 6.3). For more information on
contact L-graphs see [6, 5, 30].

Definition 6.1. A graphG is a linear L contact graphwhen it has a linear L-systemL such that no two
L-shapes “cross-over” each other; i.e., for L-shapesLu = (tu, cu, ru), Lv = (tv, cv, rv), if Lu ∩ Lv , ∅ and
cu < cv, then eithercu = tv or ru = cv. Moreover, we say such an L contact system isequilateralwhen, for
each L-shape, the vertical and horizontal segments have thesame length.

We will use the following characterization of maximal outerplanar graphs related to 2-trees (which
follows easily from [38]). A2-treeis a graph that can be constructed by starting from an edge anditeratively
adding vertices with exactly two adjacent neighbors. Semi-squares will also play a role throughout this
section. Asemi-squareis a right-triangle whose vertical and horizontal sides arethe same length (i.e., the
lower-left “half” of a square). Moreover, it is known that max tolerance graphs are precisely semi-square
intersection graphs [28].

Theorem 6.2. Let G be a maximal outerplanar graph. For any edge v1v2 of the outerface of G, the vertices
of G can be ordered v1, . . . , vn such that vi (2 < i ≤ n) has exactly two neighbors, u and v, in Gi−1 =

G[{v1, . . . , vi−1] and uv is and edge of G. We refer to such an order as anouterplanar-order.

Theorem 6.3. Every maximal outerplanar graph G is a linear equilateral-Lcontact graph.

Proof. Consider an outerplanar orderv1, v2, . . . , vn of G. We iteratively build the linear equilateral-L contact
system as follows. LetLv1 = (−1, 0, 1) andLv2 = (0, 1, 2) be the L-shapes forv1 andv2 respectively. Clearly
Lv1 and Lv2 contact each other at the point (1, 0), both terminate at this point, are equilateral, and their
corner points lie on the liney = −x. Moreover, the semi-square defined by the points (0, 0), (1, 0), (1,−1) is:
empty, its diagonal is a segment of the liney = −x, and the point (1, 0) is the point of contact betweenLv1

andLv2. Now assume that we have a linear equilateral-L contact systemLi−1 for v1, . . . , vi−1 such that every
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edgeuv on the outerface ofGi−1 corresponds to an empty semi-square as in the base case. We extend this
representation to a representation ofGi as follows. From the outerplanar ordering, the vertexvi is adjacent
in Gi−1 to precisely some pairu, v such thatuv is an edge on the outerface ofGi−1. Thus, we have an empty
semi-square (x,−x), (x+d,−x), (x+d,−x−d) where the point (x+d,−x) corresponds is the contact point of
Lu andLv. ConsiderLi = Li−1∪{Lvi } whereLvi = (x, x+d/2, x+d). Without loss of generalityLvi contacts
Lu at the point (x+ d/2,−x) andLv at the point (x+ d,−x− d/2). Moreover, these new contact points form
the appropriate empty and disjoint semi-squares as needed.Finally, since the semi-square corresponding
to uv was empty before insertingLvi , the L-shapeLvi does not intersect any other L-shapes. Thus,Li is a
linear equilateral L contact system as needed. �

Similarly to how linear L-graphs are equivalent to linear boxicity-2 graphs and linear right-triangle
graphs, we have the following corollary regarding linear contact graphs.

Corollary 6.4. The following graph classes are equivalent: outerplanar, linear L contact, linear equilateral-
L contact, linear semi-square contact, linear square contact.

Proof. Since maximal outerplanar graphs are linear equilateral Lcontact graphs (by Theorem 6.3), all
outerplanar graphs are linear equilateral L contact graphs. In particular, one may simply adjust an equilateral
L a by small amount to remove any individual contact with another L such that no other contact is altered.

Moreover, given any of the contact representations listed,one can easily construct an outerplanar draw-
ing of the graph. In particular, each vertexv is located at its corresponding corner point on the liney = −x
and the edgesuv are drawn by tracingLu andLv to the corresponding contact point. Clearly all vertices lie
on the outside of such a drawing and this can be done so that no edges intersect. �

6.2. 2D Ray Graphs

A graph is a2D raygraph when it is an intersection graph of rays in the plane where the rays have at most
two directions and parallel rays do not intersect (i.e., this is a bipartite graph class). For more information
on this graph class see [31, 47]. We observe that 2D ray graphsform a strict subclass of bipartite MPT
graphs and that they play an interesting role in the structure of neighborhoods of vertices of MPT graphs.

Proposition 6.5. 2D ray graphs are a strict subclass of bipartite MPT graphs.

Proof. Notice that, without loss of generality, we may assume thatany 2D ray representation of a graph
G only uses↓ and← as the two directions its rays follow. With this in mind it is easy to see that this
representation is in fact a linear L-system. In particular,we can imagine a line with negative slope that
intersects all the rays and occurs “below” and to the “left” of any point of intersection between two rays.
Thus, by stopping all rays on this line we have a linear L-system ofG. Additionally, this inclusion is strict
since a 6-cycle is not a 2D ray graph [31], but it is easily constructed as a linear L-graph. �

Recall that MPT graphs have been shown to haveO(n2) maximal cliques [3]. Moreover, every complete
bipartite graph is a 2D ray graph. Thus,O(n2) is a tight bound (up to a multiplicative constant) on the
number of maximal cliques in MPT graphs.

We now consider the neighborhood of a single vertex and observe the following connection to 2D ray
graphs and interval graphs.

Proposition 6.6. If G is an MPT graph and v is a vertex of G, then the neighborhoodof v can be partitioned
into VL and VR such that:
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• G[VL] and G[VR] are interval graphs; and
• the bipartite graph induced by the edges connecting vertices from VL to VR is a 2D ray graph.

Proof. LetL be a linear L-system ofG. We setVL as the neighbors ofv whose corner points occur prior
to v’s corner point and defineVR to be the remaining neighbors ofv. Notice that the corner points of
vertices inVR will occur afterv in L. The L-shapes ofVL clearly form an anchored linear L-system and
as such correspond to an interval representation. Thus, by Lemma 3.2,G[VL] and (similarly)G[VR] are
interval graphs. Moreover, by consideringL, one can easily see that the bipartite graph induced by the
edges connecting vertices fromVL to VR is a 2D ray graph. In particular, the horizontal segments ofVL

correspond to← rays and the vertical segments ofVR correspond to↓ rays. �

6.3. Non-MPT graphs

In this section we observe some structural properties of MPTgraphs that allow us to identify infinite
families of non-MPT graphs. These non-MPT graphs will allowus to compare MPT graphs to planar and
permutation graphs.

Proposition 6.7. If G is an MPT graph with non-adjacent vertices u and v, then G[N(u) ∩ N(v)] is an
interval graph.

Proof. Consider the relative position ofu andv in the linear L-system ofG. Without loss of generality they
must occur as in Figure 8. In each possibility the corner point of any common neighbour ofu andv occurs
in the shaded region; i.e., in every linear L-system ofG, the L-shapes corresponding toN(u) ∩ N(v) form
an anchored linear L-system (anchored tov’s L-shape). Therefore, by Lemma 3.2,G[N(u) ∩ N(v)] is an
interval graph.

u

v

u

v

v

u

Figure 8: The three ways to represent two non-adjacent verticesu, v in a linearL-model. Notice that any common neighbor ofu
andv must have its corner point in the shaded region.

�

Notice that Proposition 6.7 is tight. In particular, if one adds a independent setI to an interval graphG
such that every element ofI is adjacent to every vertex inG, then the resulting graphG′ is an MPT graph.
Specifically, by Lemma 3.2,G has an anchored linear L-systemL. We form a linear L-system forG′ as
follows. Starting fromL, one simply adds a set of|I | horizontal segments such that the first one occurs
“just below” the anchor point ofL, and each subsequent segment occurs “just below” the previous segment.
Each such segment will intersect every L-shape of inL (since they are anchored) and they are disjoint from
each other. Thus, this is a linear L-system ofG′; i.e., G′ is an MPT graph. This leads to the following
observation regarding minimal forbidden induced subgraphs for MPT graphs. The set of minimal forbidden
induced subgraphs of interval graphs is known [34] and is infinite.
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Observation 6.8. If H is a minimal forbidden induced subgraph for interval graphs and G is obtained
from H by adding two non-adjacent universal vertices x and y to H; i.e., V(G) = V(H) ∪ {x, y} and E(G) =
E(H)∪ {zu : z ∈ {x, y} and u∈ V(H)}, then either G, G\ {x}, or H is a minimal forbidden induced subgraph
of MPT graphs.

By Proposition 6.7 we see thatK2,2,2, the graph formed by taking a 4-cycle together with two non-
adjacent vertices adjacent to each vertex of the cycle, is not an MPT graph. However, it is easy to see that
this graph is a permutation graph as well as a planar graph (see Figure 9). Moreover, non planar graphs
(e.g., the 5-clique) and non permutation graphs (e.g., the graph in Figure 2) are both MPT graphs. Thus we
have the following observation.

Figure 9: A planar drawing of the non-MPT graphK2,2,2 together with a permutation representation of it.

Observation 6.9. The MPT graph class is incomparable with both planar graphs and permutation graphs.

The minimal forbidden induced subgraphs of MPT graphs include many more graphs than those built
from the graphs non-interval graphs. For example, we will show that the full subdivision of any non-
outerplanar graph is also not an MPT graph. Thefull subdivision Gof a graphH is the graph obtained
from H by subdividing every edge ofG. It is known that any string representationS of the full-subdivision
H of a planar graphG is combinatorially equivalent to some planar embedding ofG [12]. In particular,
in S, each edgee of G corresponds to a stringSe which connects exactly the two strings corresponding
to vertices incident withe andSe does not intersect any other strings. From this it is easy to see that the
full-subdivision of any non-planar graph is not a string graph [12].

A graphG is anouter-stringgraph when it has a string representation such that, for a fixed circle C,
every string is contained withinC and exactly one endpoint of each string belongs toC. It is easy to see
that outer-string graphs are a superclass of MPT graphs; i.e., we can easily replicate a linear L-system
with an outer-string representation. Moreover, in Lemma 6.10, we observe that the full-subdivision of a
non-outerplanar graph is not an outer-string graph and, consequently, not an MPT graph.

Lemma 6.10. If H is a non-outerplanar graph and G is the graph obtained from H by subdividing every
edge of H, then G is not an outer-string graph (i.e., G is not anMPT graph).

Proof. SinceG is not outerplanar, any string representationS of H necessarily contains a stringSv such
thatSv is contained in a region enclosed by the strings of a setX of non-neighbors ofv. In particular, it is not
possible to draw a circle ontoS so that bothSv and every string of the vertices inX satisfy the outer-string
property. �

Even with the set of forbidden graphs we have observed, thereare yet many more which are not cap-
tured (e.g., the complement of a 7-cycle). Thus, a complete description of the minimal forbidden induced
subgraphs for MPT graphs remains an open problem.
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7. Concluding Remarks

In this paper we have introduced max point-tolerance graphs. We have characterized this class and
demonstrated inclusions with respect to well-known graph classes. Our results are summarized in Theo-
rems 7.2 and 7.3 below. We also solved the WIS problem in polynomial time, 2-approximated the clique
cover problem in polynomial time, showed the NP-completeness of the coloring problem, and log(n)-
approximated the coloring problem in polynomial time.

Interesting open problems remain for this graph class. Perhaps the most interesting is that of recognition.
Our characterizations of this graph class provide a varietyof ways to approach this problem. Several
combinatorial optimization problems remain open for this graph class. Two particularly interesting ones
are: k-coloring (for fixedk) and unweighted clique cover. Additionally, one may be interested to further
study the relationships with existing graph classes.

Another direction of research would be to studymin point-tolerance graphs. In particular, just as there
are min tolerance graphs and max tolerance graphs one can considermin point-tolerance (mPT)graphs.

Definition 7.1. A graphG = (V,E) is a min point-tolerance (mPT)graph if each vertexv of G can be
mapped to apointed-interval(Iv, pv) whereIv is an interval ofR andpv ∈ Iv such thatuv is an edge ofG iff
eitherpu ∈ Iv or pv ∈ Iu.

It should be noted that there already exists a directed graphclass utilizing this definition, namely, the
interval catch digraphs [40, 41] mentioned in the introduction. The min point-tolerance graphs are pre-
cisely the undirected graphs underlying interval catch digraphs. In contrast, max point-tolerance graphs are
precisely the undirected graphs underlying the bi-directed edges of interval catch digraphs.

Theorem 7.2. The max point-tolerance graph class strictly includes interval graphs, outerplanar graphs,
and 2D ray graphs.

Theorem 7.3. For a graph G= (V,E), the following are equivalent:

• G is a max point-tolerance graph.
• G is a linear L-graph (equivalently, a linear rectangle-graph or a linear right-triangle-graph).
• The vertices of G can be ordered by< so that for every u, v,w, x ∈ V(G), if u < v < w < x and

uw, vx ∈ E(G), then vw is an edge of G.
• There are two interval graphs H1 = (V,E1) and H2 = (V,E2) such that E= E1 ∩ E2 and the vertices

of G can be ordered by< so that for every u< v < w if uw ∈ E1 then uv∈ E1 and if uw∈ E2 then
wv∈ E2.

• G is a cyclic segment graph.
• There is an interval catch digraph D= (V,A) such that the bi-directed arcs of D are precisely the

edges of G.
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