
Polynomial-time algorithm for the leafage of

chordal graphs

Michel Habib and Juraj Stacho

LIAFA – CNRS and Université Paris Diderot – Paris VII,
Case 7014, 75205 Paris Cedex 13, France
{habib,jstacho}@liafa.jussieu.fr

Abstract. Every chordal graph G can be represented as the intersection
graph of a collection of subtrees of a host tree, the so-called tree model of
G. The leafage l(G) of a connected chordal graph G is the minimum num-
ber of leaves of the host tree of a tree model of G. This concept was first
defined by I.-J. Lin, T.A. McKee, and D.B. West in [9]. In this contribu-
tion, we present the first polynomial time algorithm for computing l(G)
for a given chordal graph G. In fact, our algorithm runs in time O(n3)
and it also constructs a tree model of G whose host tree has l(G) leaves.

1 Introduction

In this paper, graph is always simple, undirected and loopless.
A graph is chordal, if it has no induced cycles of length four or longer.

By a result of Gavril [5], a graph G is chordal if and only if G can be
represented as the intersection graph of a collection of subtrees of a host
tree, the so-called tree model of G. The leafage l(G) of a connected chordal
graph G is defined as the minimum number of leaves of the host tree of
a tree model of G. If G is an interval graph (the intersection graph of
intervals of the real line), we always have l(G) = 2. Hence, the leafage can
be seen as a measure of how far a chordal graph is from being an interval
graph. This has several algorithmic consequences. For instance, it is shown
in [7] that a chordal graph with bounded leafage always has a so-called
implicit representation which allows some problems on such graphs to be
solved more efficiently. Moreover, efficient solutions to NP -hard problems
on interval graphs naturally extend to efficient solutions on chordal graphs
whose leafage is bounded; e.g., the k-subcolouring problem [2, 12, 13].

The leafage of chordal graphs was first introduced by I.-J. Lin, T.A.
McKee, and D.B. West in [9] where the authors establish several bounds
on this parameter for special cases of chordal graphs such as block graphs,
split graphs, and k-trees. Their bounds imply polynomial time algorithms
for computing the leafage in some of these special cases; however, the gen-
eral question of complexity of computing l(G) for a given chordal graph G

is not addressed. Since their paper, this question remained unresolved [14]
except in special cases such as split graphs [8, 9] and the case of deciding
l(G) ≤ k for k ∈ {2, 3}; the case k = 2 corresponds to interval graph
recognition which is polynomial [1], and k = 3 is polynomial by [10].

In this paper, we finally resolve this question by providing a poly-
nomial time algorithm computing l(G) for any given chordal graph G.
In particular, our algorithm runs in time O(n3) where n is the number of
vertices of G and also outputs a tree model of G with l(G) leaves.

The paper is structured as follows. In Section 2, we define basic notions
such as clique tree and the reduced clique graph, and we show some of
their useful properties related to the leafage. In Section 3, we introduce
the so-called token mappings and explain their relationship to clique trees.
In Section 4, we define augmenting paths and sequences and explain how
they can be used to decrease the number of leaves in a given clique tree.
Finally, in Section 5, we describe our algorithm and analyze its complexity.

2 Basic concepts

For a graph G and a set X ⊆ V (G), we denote by G[X] the subgraph
of G induced on X, and denote by G − X the subgraph G[V (G) \ X].
A complete subgraph or clique of G is a (not necessarily maximal) set of
pairwise adjacent vertices of G. (For a complete terminology, see [15].)

Let G be a connected chordal graph. A clique tree of G is any tree
T whose vertices are the maximal cliques of G such that for every two
maximal cliques C,C ′, each clique on the path from C to C ′ in T contains
C ∩ C ′. We shall assume that every edge CC ′ of T is labeled by C ∩ C ′.
(See Figure 1 for an example of a clique tree.)

Any clique tree T can be seen as a tree model of G whose host tree
is T . It is shown in [9] that G always has a clique tree with l(G) leaves.
Hence, in the rest of the paper, we shall focus on clique trees.

d

a

c

be

f

k

h

i

j

g

a)

de

adf

acd

cdk

ag ah

abc

cj

bci

d
ad

cd

a a

ac

c

bc

b)

Fig. 1. a) Example chordal graph G, b) a clique tree T of G.

Cliques C,C ′ of G form a separating pair, if every path from a vertex
of C \ C ′ to a vertex of C ′ \ C contains a vertex of C ∩ C ′. The reduced
clique graph Cr(G) of G is a graph whose vertices are the maximal cliques
of G, and whose edges CC ′ are between cliques C,C ′ forming separating
pairs. In addition, each edge CC ′ of Cr(G) is labeled by C ∩ C ′.

The following is a fundamental result about reduced clique graphs.

Theorem 1. [4] A tree T is a clique tree of G if and only if T is a
maximum weight spanning tree of Cr(G) where the weight of each edge
CC ′ is defined as |C ∩ C ′|. Moreover, the reduced clique graph Cr(G) is
precisely the union of all clique trees of G.

de

adf

acd

cdk

ag ah

abc

cj

bci

d

d

d

ad

cd

a

a
a

a

a

ac

c

c

c

c

bc

a)

a
a

adf

acd

ag ah

abc

ad

ac

b)

H{a}

Fig. 2. a) The reduced clique graph Cr(G) of G, b) minimal separator graph H{a}

2.1 Minimal separator graphs

Let a, b be two vertices of G. A subset S of the vertices of G disconnects
a from b in G, if a and b are in different connected components of G−S.

A subset S of the vertices of G is called a minimal separator, if there
exist vertices a and b such that (i) S disconnects a from b, and (ii) no
proper subset of S disconnects a from b in G.

For each minimal separator S, let RS denote the set of all maximal
cliques C of G with S ⊆ C, and let HS denote the graph whose vertex set
is RS and whose edges are between cliques C,C ′ such that C ∩ C ′ % S.

Using the graphs HS we can characterize the structure of Cr(G).
(The proof is omitted due to the length restriction.)

Theorem 2. CC ′ is an edge of Cr(G) with label S = C ∩ C ′ if and only
if C and C ′ belong to different connected components of HS. �

Let S(G) denote the set of all minimal separators of G. Note that
chordality of G implies that for every S ∈ S(G), there exist cliques C,C ′

that form a separating pair such that C ∩C ′ = S. This implies, in partic-
ular, that every minimal separator of G appears on some edge of Cr(G).

2.2 Structure of clique trees

Let T be a clique tree of G. By Theorem 1, we have that T is charac-
terized in terms of Cr(G) as a maximum weight spanning tree of Cr(G).
Conversely, we can characterize the reduced clique graph Cr(G) in terms
of T as follows. (The proof is omitted due to the length restriction.)

Theorem 3. CC ′ is an edge of Cr(G) with label S = C ∩ C ′ if and only
if there exists an edge with label S on the path from C to C ′ in T . �

Furthermore, we can describe the structure of T in terms of the graphs HS.

Theorem 4. Let S ∈ S(G) and let kS denote the number of connected
components of HS. Then T contains exactly (kS − 1) edges with label S,
and each connected component of HS induces a connected subgraph in T .

Proof. Let C,C ′ be two vertices of HS , and let P be the path from
C to C ′ in T . Clearly, every vertex on P must belong to HS because it
contains C∩C ′ ⊇ S by the definition of clique tree. Hence, the vertices of
HS induce a connected subgraph in T . Next, suppose that C,C ′ belong
to some component K of HS . Again, it follows that every vertex of P also
belongs to K (details omitted). Hence, both the vertices of HS and of
each component of HS induce a subtree in T . The claim now follows. �

Note that T has at most n vertices by [3], and for each minimal
separator S of G, we have kS ≥ 2 since there is at least one edge with
label S in Cr(G) (see the remark above). Hence, every minimal separator
of G appears on some edge of T , and conversely, for every edge CC ′ of
T , the set C ∩C ′ is a minimal separator and C,C ′ form a separating pair
(by Theorem 1). In particular, G has at most n − 1 minimal separators.

3 Degrees and Tokens

A degree mapping assigns to each vertex of a graph its degree.

Theorem 5. [15] A mapping f : X → N is a degree mapping of a tree
if and only if

(i) 1 ≤ f(x) ≤ |X| − 1 for each x ∈ X, and
(ii)

∑

x∈X f(x) = 2|X| − 2.

We define a similar notion. A token mapping is a mapping τ that
assigns to each maximal clique C of G a distinct set of tokens τ(C) where

each token is labeled by some minimal separator of G. If a token t belongs
to τ(C), we also say that t is a token of τ and that t belongs to C in τ .

Let T be a clique tree of G. The extended degree mapping of T , denoted
by εT , is a token mapping that assigns to each maximal clique C a set
εT (C) of tokens corresponding to the edges incident to C in T where each
token is labeled by the label of the corresponding edge. (See Figure 3 for
an example of a clique tree T and its extended degree mapping εT .)

de

adf

acd

cdk

ag ah

abc

cj

bci

d

d

d

ad

cd

a

a
a

a

a

ac

c

c

c

c

bc

a)

a
a

d

d

ad

cd

ac

ad

cd

aa

ac

a
a

bc

c

bc

c

b)

Fig. 3. a) the graph Cr(G) with an example clique tree T , b) token mapping τ = εT .

Using Theorem 4, we now describe necessary and sufficient conditions
characterizing extended degree mappings of clique trees.

Theorem 6. A token mapping τ is an extended degree mapping of a
clique tree of G if and only if

(R1) for each maximal clique C of G, the set τ(C) is non-empty,

(R2) for each minimal separator S of G, if a token of τ with label S

belongs to τ(C) for some maximal clique C of G, then C ⊇ S,

(R3) for each minimal separator S of G, the number of tokens of τ with
label S is exactly 2kS−2 where kS is the number of components of HS,

(R4) for each minimal separator S of G and every component K of HS,
there exists a token with label S in τ(C) for some vertex C of K.

Proof. The forward direction follows directly from Theorem 4. For the
backward direction, let τ be a token mapping satisfying (R1-R4). We
construct a subgraph T of Cr(G) as follows. The vertices of T are the
maximal cliques of G, and initially T has no edges.

We consider every minimal separator S of G one by one as follows. We
let K1, . . . ,KkS

be the connected components of HS, and we let a1, . . . , akS

denote the number of tokens of τ with label S in K1, . . . ,KkS
, respectively.

By (R4), ai ≥ 1 for each 1 ≤ i ≤ kS , and by (R2) and (R3), we have

∑kS

i=1 ai = 2kS − 2. Hence, by Theorem 5, there exists a tree T whose
vertices are K1, . . .KS such that the degree of Ki in T is exactly ai.

Now, for each 1 ≤ i ≤ kS , we let ti1, . . . , t
i
ai

be the tokens of τ on the
vertices of Ki and let Ci

1, . . . , C
i
ai

be the vertices of Ki that contain tokens
ti1, . . . , t

i
ai

, respectively. (Possibly, Ci
j = Ci

j′ for some j 6= j′.) Also, we let

ei
1, . . . , e

i
ai

be a fixed ordering of edges of T incident to Ki. Finally, for

each edge e = KiKi′ of T , we have j, j′ such that e = ei
j = ei′

j′ by the above

definition, and we add the edge Ci
jC

i′

j′ to T . (See example in Figure 4.)

•

• •

•

•

C1
1

C2
1

C2
2

C3

1

C4

1
=C4

2

K1

K2

K3

K4

a)

K1

K2

K3

K4

e
2

2

e
1

1

e
2

1

e
4

1

e
3

1

e
4

2b)

•

• •

•

•

C1
1

C2
1

C2
2

C3

1

C4

1
=C4

2

c)

Fig. 4. a) Components of HS and tokens with label S, b) The tree T with orderings
of incident edges, c) edges added to T

We now show that T is a clique tree of G. First, we observe that T is
a subgraph of Cr(G) by Theorem 2, and it contains exactly kS − 1 edges
with label S for every minimal separator S of G by our construction.
By Theorem 4, every clique tree of G also has this property. Therefore,
the weight of T is the same as the weight of any clique tree of G. By
Theorem 1, it now suffices to show that T is connected. This can be
proved by showing that T [RS] is connected for each S ∈ S(G) which
follows by induction on n − |S|. (We omit further details.) �

We say that a token mapping τ is realizable, if it satisfies the conditions
(R1-R4). In light of the above theorem, we define the degree of C in τ ,
denoted by degτ (C), to be the value degτ (C) = |τ(C)|. If degτ (C) = 1,
we call C a leaf of τ . We denote by #leaves(τ) the number of leaves of τ .

4 Alternation and augmentation

In this section, we show how to obtain from a realizable token map-
ping τ another realizable token mapping τ ′ with less number of leaves (if
possible). We do this by moving tokens along certain paths on the maxi-
mal cliques; these paths are obtained by exploring an auxiliary graph Dτ

(described below). In particular, this process will resemble the classical
maximum matching algorithm. For this reason, we shall use “alternating”
and “augmenting” to describe similar notions in our algorithm.

Let D(G) denote the multidigraph1 on the maximal cliques of G with
labeled arcs such that e = CC ′ is an arc of D(G) labeled with S if and
only if C,C ′ belong to RS where S is a minimal separator of G.

Let e = CC ′ be an arc of D(G) with label S and τ be a token mapping
such that τ(C) contains a token t labeled with S. We write τ ÷ e for the
token mapping obtained from τ by removing the token t from τ(C) and
adding t to τ(C ′).

4.1 Realizable arcs

Let τ be a realizable token mapping, and let Dτ denote the digraph on
the maximal cliques of G with arcs e for which τ ÷ e is realizable.

1

2

3

1

1 1

4

1

2

d

d

a

a

a
a

c

c

c

a)

d

a

ad

cd

ac

ad

cd

d

aa

ac

a

bc

c

bc

c

b)

Fig. 5. a) the digraph Dτ with an augmenting path P = e1, e2, b) the token mapping
τ ′ = τ ÷ e1 ÷ e2 and the corresponding clique tree.

We characterize the digraph Dτ as follows.

Proposition 7. An arc e = CC ′ with label S belongs to Dτ if and only if

(i) C and C ′ are both vertices of HS,
(ii) τ(C) contains a token with label S,
(iii) degτ (C) ≥ 2, and
(iv) if K is the connected component of HS that contains C, then

(a) either C ′ belongs to K,
(b) or C ′ does not belong to K and there exists C ′′ 6= C in K such

that τ(C ′′) contain a token with label S.

Proof. The claim follows directly from (R1-R4). �

1 digraph with multiple arcs between any two points allowed

4.2 Sequences

Again, let τ be a realizable token mapping.
We say that a sequence of arcs e1, . . . , ek of D(G) is a τ -sequence, if

there exists a sequence of token mappings τ0, τ1, . . . , τk where τ0 = τ such
that for each i ∈ {1 . . . k}, the arc ei = CiC

′

i satisfies

(S1) ei is an arc of Dτi−1
,

(S2) τi = τi−1 ÷ ei,
(S3) degτi−1

(Ci) ≥ 3, and
(S4) if i < k then degτi−1

(C ′

i) ≥ 2.

In addition, a τ -sequence e1, . . . , ek is an alternating τ -sequence, if

(S5) no arc among e1, . . . , ek−1 is incident to C ′

k, and
(S6) degτk−1

(C ′

k) ≤ 2,

and an alternating τ -sequence e1, . . . , ek is an augmenting τ -sequence if

(S7) degτk−1
(C ′

k) = 1.

This definition immediately implies the following statement.

Observation 8. If e1, . . . , ek is an augmenting τ -sequence, then for τ ′ =
τ ÷ e1 ÷ e2 ÷ . . . ÷ ek, we have #leaves(τ) > #leaves(τ ′). �

Also, we have the following useful observation which we shall need
later. (The proof is omitted due to the length restriction.)

Proposition 9. If a τ -sequence e1, . . . , ek satisfies (S7), then e1, . . . , ek

is an augmenting τ -sequence. �

We now prove the following theorem which is the first of the two
ingredients in our polynomial time algorithm for the leafage.

Theorem 10. Let T and T ∗ be two clique trees of G such that T has
more leaves than T ∗. Then there exists an augmenting εT -sequence.

Proof. We define the distance from T to T ∗ to be the value

dist(T, T ∗) =
∑

CC′∈E(T)

(

dT ∗(C,C ′) − 1
)

where dT ∗(C,C ′) denotes the distance between C and C ′ in T ∗.
The proof is by induction on dist(T, T ∗). Since T has more leaves than

T ∗ and both have the same number of edges, there must exist C such that
the degree of C in T is at least three and is strictly larger than the degree
of C in T ∗. This implies that if T1, . . . , Tk are the components of T − C,

there exists i such that no vertex of Ti is adjacent to C in T ∗. Let C ′ be
the vertex of Ti that is adjacent to C in T . Let A and B be the vertices
of the two connected components we obtain by removing the edge CC ′

from T ; we can assume C ∈ A and C ′ ∈ B. Let P be the path from C to
C ′ in T ∗. Since C ∈ A and C ′ ∈ B, there exists an edge C∗C∗∗ of P such
that C∗ ∈ A and C∗∗ ∈ B. By the definition of Ti, we have C∗ 6= C. Let
S = C ∩C ′ and S∗ = C∗ ∩C∗∗. Since C∗C∗∗ is on the path from C to C ′

in T ∗, we have S ⊆ S∗. Also, CC ′ is on the path from C∗ to C∗∗ in T ,
since C∗ ∈ A and C∗∗ ∈ B. Hence, S∗ ⊆ S and consequently S = S∗. We
observe that C∗ ∩ C ′ ⊆ C∗ ∩ C∗∗ = S, since the edge C∗C∗∗ lies on the
path from C∗ to C ′. Hence, C∗ ∩C ′ = S, since C∗ ⊇ S∗ = S and C ′ ⊇ S.
Finally, by Theorem 3, we have that C∗C ′ is an edge of Cr(G).

Next, let T ′ denote the tree we obtain by removing the edge CC ′

from T and adding the edge C∗C ′. By Theorem 1, T ′ is a clique tree of
G, since T is. This implies that e = CC∗ is an arc of DεT

with label S,
since εT ′ = εT ÷ e. Recall that degεT

(C) ≥ 3 by the choice of C. If in
addition degεT

(C∗) = 1, then e is an augmenting εT -sequence, and we are
done. Therefore, we can assume that degεT

(C∗) ≥ 2. We now observe that
dist(T ′, T ∗) < dist(T, T ∗), since dist(T ′, T ∗)− dist(T, T ∗) = dT ∗(C∗, C ′)−
dT ∗(C,C ′) < 0 because C∗ 6= C and C∗ is on the path from C to C ′ in T ∗.
Hence, by induction, there exists an augmenting εT ′-sequence e1, . . . , ek

which implies that e, e1, . . . , ek is an augmenting εT -sequence. �

4.3 Paths

A directed path C1, C2, . . . , Ck in Dτ is an alternating path of Dτ , if

(i) degτ (C1) ≥ 3, and
(ii) degτ (Cj) ≥ 2 for each 2 ≤ j ≤ k − 1.

An alternating path C1, C2, . . . , Ck of Dτ is an augmenting path of Dτ , if

(iii) degτ (Ck) = 1.

In what follows, we present the second of the two main ingredients
we need for our algorithm for the leafage. In particular, we show that
whenever an augmenting τ -sequence exists (for instance, by Theorem 10),
we can find a directed path in Dτ starting from a vertex of degree at least
three to a leaf of τ , i.e., an augmenting path, and conversely, whenever
such a path P in Dτ exists, we can use it to obtain a τ -sequence starting
and ending at the same vertices as P , i.e., an augmenting τ -sequence.
In both cases, we construct the sequence (path) by incrementally adding
edges one by one; we show that whenever we get stuck, there will be a

“shortcut” in the sequence (path) which will allow us to continue this
process until a desired path (sequence) is obtained.

Finally, we note that this property (combined with Theorem 10) re-
duces the problem of leafage to the problem of finding a directed path
in a digraph which is what allows us to solve the problem in polynomial
time (for the details of the algorithm, see the next section).

Theorem 11. There exists an augmenting path in Dτ if and only if there
exists an augmenting τ -sequence.

Proof. For the forward direction, let P = C1, C2, . . . , Ck be an augment-
ing path of Dτ . Let F denote the subgraph of Dτ induced on C1, . . . , Ck,
and let P ′ be a shortest directed path in F from C1 to Ck. It is easy to
verify that P ′ is also an augmenting path of Dτ . (Possibly P ′ = P .)

Let e1, . . . , ek′ be the arcs of P ′ in the order they appear on P ′. That
is, e1 is incident to C1, and for each 1 ≤ i < k′, the arcs ei and ei+1

share an end-point. Now, using Proposition 7 and the minimality of P ′,
it follows that e1, . . . , ek′ is an augmenting τ -sequence (details omitted).

For the backward direction, we need the following stronger claim (∗).

If e1, . . . , ek is a alternating τ -sequence, then there exists an alter-
nating path of Dτ that ends in C ′

k where ek = CkC
′

k such that each
vertex of this path is incident to some arc among e1, . . . , ek.

(∗)

This claim can be proved by induction on k. (We omit further details
of this proof due to the length restriction.)

Finally, let e1, . . . , ek be an augmenting τ -sequence where e1 = C1C
′

1,
. . . , ek = CkC

′

k, and τ0, . . . , τk are token mappings such that τ0 = τ and
τi = τi−1 ÷ ei for each 1 ≤ i ≤ k. From (S5-S7), we have degτk−1

(C ′

k) = 1
and no arc among e1, . . . , ek−1 is incident to C ′

k. This yields degτ (C
′

k) =
degτ0

(C ′

k) = 1. Now, by (∗), there exists an alternating path P of Dτ that
ends in C ′

k, and since degτ (C
′

k) = 1, the path P is also an augmenting
path of Dτ . That concludes the proof. �

5 Algorithm

Now, we are finally ready to prove the main theorem of this paper.

Theorem 12. There exists an O(n3) time algorithm that, given a chordal
graph G, computes l(G) and a tree model of G with l(G) leaves.

Proof. The algorithm goes as follows.

(1) Start by computing some clique tree T of G. Then construct the
extended degree mapping εT of T , and let τ = εT .

(2) Construct the digraph Dτ .
(3) Search in Dτ for a shortest directed path P from a vertex of degree

at least three in τ to a leaf of τ .
(4) If such path P is found, then consider the arcs of P one by one, and

for each arc e = CC ′ of P , if S is the label of e, remove a token with
label S from τ(C) and add it to τ(C ′). Then go back to step (2).

(5) If such directed path P is not found, then construct a clique tree T

corresponding to τ , that is, a tree T with τ = εT . Then output T and
the number of leaves of T .

The correctness of this algorithm follows from Theorems 10, and 11,
and the observation that the path P in step (4) is neccessarily an aug-
menting path of Dτ , and therefore, Observation 8 implies that the new
mapping τ has less leaves. We now discuss the complexity.

Recall that G contains at most n maximal cliques. By [6], we can con-
struct a clique tree T of G and the mapping εT in time O(n2). To simplify
processing during the algorithm, we precompute the connected compo-
nents of HS for each minimal separator S. This can be accomplished
directly in time O(n3), since G has O(n) minimal separators.

Next, we observe that there are precisely 2n − 2 tokens of τ and at
most n−1 ways to move each of them. Hence, Dτ contains O(n2) arcs. In
fact, for a token with label S belonging to a clique C, we can find all arcs
with label S going out of C in Dτ by exploring HS and testing conditions
of Proposition 7. This can be easily accomplished in time O(n) using
the precomputed connected components of HS. Altogether, constructing
Dτ takes O(n2) time. The next step, finding the path P in Dτ , can be
accomplished using a breadth-first search of Dτ in time O(n2). If P is
found, we can construct the new mapping τ directly in time O(n).

We repeat the above steps at most n times since T has at most n

leaves, and therefore, O(n3) time altogether.
Finally, if P is not found, we construct a tree T with εT = τ using

the proof of Theorem 6 in time O(n2). This follows from the fact that G

has O(n) minimal separators and from an observation that constructing
a tree from a degree mapping (see Theorem 5) takes O(n) time. �

6 Conclusions

We have presented the first polynomial time algorithm for the problem of
computing the leafage of a chordal graph. We showed that the algorithm

runs in time O(n3), however, our complexity analysis was not very tight.
Therefore, it seems likely that a more efficient, perhaps O(n2) or linear
time implementation can be found. Furthermore, the algorithm provides
no certificate for the minimality of the output. We believe that because of
the min-max character of the problem it should be possible to characterize
the dual of the problem which in turn can be used for certification. Lastly,
we remark that our algorithm shows that computing a minimum leaf
maximum weight spanning tree is polynomial time solvable for the class
of reduced clique graphs whereas this problem is NP -hard in general [11]
because the case of at most two leaves is the Hamiltonian path problem.

References

1. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13

(1976) 335–379
2. Broersma, H., Fomin, F.V., Nešetřil, J., Woeginger, G.J.: More about subcolorings.

Computing 69 (2002) 187–203
3. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific

Journal of Mathematics 15 (1965) 835–855
4. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In:

Graph-Theoretic Concepts in Computer Science (WG’95), Lecture Notes in Com-
puter Science 1017, Springer-Verlag (1995) 358–371

5. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory B 16 (1974) 47–56

6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

7. Habib, M., Stacho, J.: Linear algorithms for chordal graphs of bounded directed
vertex leafage. In: DIMAP Workshop on Algorithmic Graph Theory, Electronic
Notes in Discrete Mathematics 32 (2009) 99–108

8. Kloks, T., Kratsch, D., Müller, H.: Asteroidal sets in graphs. In: Graph-Theoretic
Concepts in Computer Science (WG’97), Lecture Notes in Computer Science 1335,
Springer Berlin/Heidelberg (1997) 229–241

9. Lin, I.J., McKee, T.A., West, D.B.: The leafage of a chordal graph. Discussiones
Mathematicae Graph Theory 18 (1998) 23–48

10. Prisner, E.: Representing triangulated graphs in stars. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg 62 (1992) 29–41

11. Rahman, M.S., Kaykobad, M.: Complexities of some interesting problems on span-
ning trees. Information Processing Letters 94 (2005) 93–97

12. Stacho, J.: On 2-subcolourings of chordal graphs. In: LATIN 2008: Theoretical
Informatics, Lecture Notes in Computer Science 4957. (2008) 520–530

13. Stacho, J.: Complexity of subcolourings of chordal graphs. (2009) manuscript.
14. West, D.B. personal communication (2008)
15. West, D.B.: Introduction to Graph Theory (Second edition). Prentice Hall (2001)

