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Abstract. We investigate graphs that can be represented as vertex in-
tersections of horizontal and vertical paths in a grid, known as B0-VPG
graphs. Recognizing these graphs is an NP-hard problem. In light of this,
we focus on their subclasses. In the paper, we describe polynomial time
algorithms for recognizing chordal B0-VPG graphs, and for recognizing
B0-VPG graphs that have a representation on a grid with 2 rows.

1 Introduction

A VPG representation† of a graphG is a collection of paths of the two-dimensional
grid where the paths represent the vertices of G in such a way that two vertices
of G are adjacent if and only if the corresponding paths share at least one vertex.
We focus on a special subclass of VPG representations.

A B0-VPG representation of G is a VPG representation in which all paths
in the collection have no bends. In other words, it is a representation of G by
the intersections of orthogonal segments of the plane. Here, we emphasize the
grid-based definition in order to focus on some properties of the underlying grid
(e.g. size). A graph is a B0-VPG graph if it has a B0-VPG representation.

Intersection representations of paths on grids arise naturally in the context of
circuit layout problems and layout optimization [18] where a layout is modeled
as paths (wires) on a grid. Often one seeks to minimize the number of times
a wire is bent [3, 17] in order to minimize the cost or difficulty of production.
Other times layouts may consist of several layers where the wires on each layer
are not allowed to intersect. This is naturally modeled as the colouring problem
on the corresponding intersection graph.

VPG graphs were defined in [1, 2] where, in particular, the subclasses with
bounded number of bends are studied. These classes are shown to have many
connections to other, more traditional graph classes such as interval graphs,
planar graphs, string graphs, segments graphs, circle graphs and circular-arc
graphs. Unfortunately, due to these connections, many natural problems for VPG
graphs are hard. For instance, colouring is NP-hard even for B0-VPG graphs,
and recognition is NP-hard for both VPG and B0-VPG graphs (for more details
about these and related results, see [2, 13, 14]).
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Thus, in the quest for polynomial algorithms, we need to restrict our attention
further to specific cases with (potentially) useful structure. In this respect, in [8],
certain subclasses of B0-VPG graphs have been characterized and shown to
admit polynomial time recognition; namely split, chordal claw-free, and chordal
bull-free B0-VPG graphs are discussed in [8].

In this paper, we continue this line of research by further investigating two
other subclasses of B0-VPG graphs. In particular, we describe a polynomial
time algorithm for recognizing chordal B0-VPG graphs, and a polynomial time
algorithm for recognizing 2-row B0-VPG graphs, i.e., B0-VPG graphs that can
be represented on a grid with just 2 rows (and arbitrary number of columns).
Note that the former generalizes [8] and one can easily verify that the underlying
grid graph induced by the paths of a chordal B0-VPG graph is, in fact, a tree.

Studying B0-VPG representation of chordal graphs is a natural choice as they
are precisely the intersection graphs of subtrees of a tree, and can be also seen
as the intersection graphs of leaf generated subtrees of a complete binary host
tree [11, 16] which by [10] has a near optimal embedding on a grid. Moreover,
the colouring problem can be solved in linear time on chordal graphs (see [7]).
Similarly, the choice of 2-row representation of B0-VPG graphs is a natural one
since when considering embeddings of graphs in grids, one objective is to utilize
as little space as possible; in this context, 2-row representations constitute the
smallest non-trivial case one can study and one that has not been considered
before this work. In the conclusion of the paper, we discuss the complexity of
the colouring problem on such representations (with bounded number of rows).

Both our recognition algorithms are based on essentially the same idea which
follows from the realization that the rows and columns of the grid induce interval
representations. That is, a graph G is a B0-VPG graph if there is a partition
of its vertex set such that each class of the partition induces in G an interval
graph and the connections between the classes follow “certain” structure. There
are two specific problems related to this approach: we need to find the partition
(it is easy to test if each class is an interval graph), and we need an efficient way
to construct a representation of the connection graph of the classes.

We deal with these questions differently in each case. In the case of chordal
B0-VPG graphs, the classes are based on an equivalence relation on the vertices.
The connection graph turns out to be a tree, and we describe an algorithm to
find a layout of this tree which yields a representation of G. In the case of 2-row
B0-VPG graphs, the classes are found by splitting bisimplicial vertices (vertices
whose neighbourhood induces two cliques with no edges between them). The
connection graph of the classes is a planar graph that can be drawn on two
layers without crossings, and this drawing satisfies additional conditions.

The two cases are discussed separately in the following sections. We mostly
follow the definitions and notation from [7] and [19]. In the interest of brevity, we
shall assume some familiarity with chordal graphs, interval graphs, clique paths
(linear orderings of maximal cliques [6]), planar drawings, and PQ-trees [4].

A vertex of G is horizontal, resp. vertical in a B0-VPG representation of G
if it is represented by a horizontal, resp. vertical path.



2 Chordal B0-VPG graphs

In this section, we describe a polynomial time algorithm for recognizing chordal
B0-VPG graph. First, we recall the following lemma from [8].

(2.1) Diamond rule. Let G be the graph with V (G) = {u, v, x, y} and E(G) =
{uv, ux, uy, vx, vy}. Then in every B0-VPG representation of G, the two paths
representing u and v use a common horizontal or a common vertical line.

This inspires the following definition.
Let G be a graph. The binary relation ∼0 on V (G) is defined as follows:

u ∼0 v ⇐⇒ uv ∈ E(G) and ∃x, y ∈ N(u) ∩N(v) with xy 6∈ E(G)

In other words, u and v are related by ∼0 if they form the diagonal of some
diamond. Let ∼ denote the transitive closure of ∼0.

(2.2) Let G be a chordal graph, S be an equivalence class of ∼, and K be a
connected component of G−S. Then (N(S)∩K)∪ (N(K)∩S) is a clique of G.

Proof (Sketch). If there are no edges between K and S we are done. Otherwise,
suppose that there is x ∈ N(K) ∩ S and y ∈ N(S) ∩K such that xy 6∈ E(G).
Since x ∈ N(K), there exists y′ ∈ K with xy′ ∈ E(G), and since y ∈ N(S), there
is x′ ∈ S where x′y ∈ E(G). Choose x, y, x′, y′ so that dS(x, x

′) + dK(y, y′) is
minimized where dS(x, x

′) is the distance between x and x′ in G[S], and dK(y, y′)
is the distance between y and y′ in G[K]. By the minimality of the choice and
chordality of G, we conclude that xx′, yy′ ∈ E(G) and x′y′ ∈ E(G). This shows
that x′ ∼ y′ which is impossible, since x′ ∈ S, y′ 6∈ S and S is an equivalence
class of ∼. So, there is no such x, y and the rest of the claim follows easily. �

The clique-class intersection graph (see Fig. 1) of G is the bipartite graph
whose vertices are the maximal cliques of G and the equivalence classes of ∼,
where a clique Q is adjacent to a class S just if they share at least one vertex.

(2.3) If G is a connected chordal B0-VPG graph, then the clique-class intersec-
tion graph of G is a tree.

(Note that the clique-class intersection graph of G is precisely the block-cutpoint
tree of the graph we obtain from G by contracting all equivalence classes of ∼.)

The proof of the following claim follows directly from (2.2).

(2.4) Let G be a chordal B0-VPG graph, and S be an equivalence class of ∼.
Then the closed neighbourhood N [S] of S induces in G an interval graph.

Consider a B0-VPG representation of G, and let Q be a maximal clique of
G. Let I denote the intersection of the paths representing the vertices in Q. By
the Helly property [2], the set I is non-empty. Let S be an equivalence class of
∼ such that Q ∩ S 6= ∅. We say that Q is an end of S in this representation, if
the vertices of S \Q are represented by paths that are either all to the right, or
all to the left, or all above, or all below all points in I.

We say that Q is a forced end of S if Q is an end of S in every B0-VPG
representation of G. We say that Q is a forced midpoint of S if there is no B0-
VPG representation of G in which Q is an end of S.
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Fig. 1. a) Example chordal graph G, b) the clique-class intersection graph H of G

(edges with * are those marked by the algorithm), c) the graph T=the union of the
clique paths PS after identifying cliques, d) the corresponding B0-VPG representation

The following two claims explain the role of forced ends and midpoints in
chordal B0-VPG graphs. They are simple consequences of (2.1), (2.2), and (2.4).

(2.5) Let G be a chordal B0-VPG graph. Let Q be a maximal clique of G, and let
S1, . . . , St be all the equivalence classes of ∼ that have non-empty intersection
with Q. Let r be the number of indices i ∈ {1 . . . t} for which Q is a forced
midpoint of Si. Let s be the number of indices i ∈ {1 . . . t} with Q ⊇ Si.

Then r + t − s ≤ 4. Moreover, if there exists i ∈ {1 . . . t} such that Q is
neither a forced end of Si nor a forced midpoint of Si, then r + t− s ≤ 3.

(2.6) Let G be a chordal B0-VPG graph. Let S be an equivalence class of ∼, and
let Q1, . . . , Qt be the maximal cliques of G with non-empty intersection with S.

Construct a graph G′ starting from G[N [S]] as follows: for each i ∈ {1 . . . t}
such that Qi is a forced end of S, add a new vertex ui and make it adjacent to
each vertex in Qi \ S. Then G′ is an interval graph.

Moreover, if for i ∈ {1 . . . t} adding to G′ a vertex ui adjacent to each vertex
in Qi \ S results in a non-interval graph, then Qi is a forced midpoint of S.

2.1 Algorithm

Now, we are ready to describe our algorithm for recognition of chordal B0-VPG
graphs. Let G be a graph given as input. We may assume that G is connected.
Otherwise, we obtain a representation of G by finding a representation for each
of its connected components, and by putting the representations side-by-side.



First, we check if G is chordal (see [7]). If not, we reject G. Otherwise, we
compute the maximal cliques of G and the equivalence classes of ∼. We test
if the closed neighbourhood of each equivalence class induces in G an interval
graph. If not, we reject G based on (2.4). Otherwise, we construct the clique-class
intersection graph H . By (2.3), the graph H is in fact a tree. The algorithm uses
dynamic programming on H to find out which cliques of G are forced ends or
forced midpoints of equivalence classes. To test this, we use (2.5) and (2.6).

We start by rooting H at an arbitrary node. The nodes of H are processed
bottom-up, processing a node only after all its descendants are processed. We
mark some edges of H in this process; initially, no edges are marked, and once
an edge becomes marked, it remains marked. The meaning of a marked edge e

between a clique Q and class S is the following. If Q is the parent of S, and e

becomes marked when processing S, then Q is a forced midpoint of S (otherwise,
Q is not is not a forced midpoint of S). Similarly, if Q is a child of S, and the
edge e becomes marked when processing Q, then Q is a forced end of S.

When processing a clique Q, we count the number of children S such that
the edge between Q and S is marked. Thus, Q is a forced midpoint in each such
S and is not a forced midpoint in all other children. If Q is the root of H , we
apply the test from (2.5). If this fails, we reject G. If Q has a parent S∗, we test
(2.5) assuming that Q is not a forced midpoint of S∗. If this fails, we reject G.
If only the second part of (2.5) fails, then Q is necessarily a forced end of S∗,
and we mark the edge between Q and S∗. Otherwise, we do not mark the edge.

Similarly, we process each class S using (2.6). First, we look at the marked
children Q of S; each such Q is a forced end of S, and we shall assume that all
other children are not. If S is the root of H , we just perform the first test from
(2.6), and if it fails, we reject G. Otherwise, if S has a parent Q∗, we use (2.6)
to determine whether or not Q∗ is a forced midpoint of S. If so, we mark the
edge between S and Q∗. If not, we conclude that Q∗ is not a forced midpoint
of S (by providing a representation), and thus we do not mark the edge.

It remains to explain how we obtain a representation of G if this process
finishes without rejecting G. For each class S, we assign to S the interval repre-
sentation of G′ guaranteed by (2.6); in this representation every forced end of S
is necessarily an end of S. If the parent of S is not a forced midpoint, we assign
to S the representation from the second part of (2.6); in this representation, the
parent of S is an end of S. From this representation, we remove the vertices that
are not in G (the vertices ui added in the process of creating G′), and consider
the resulting representation as an equivalent clique path that we denote by PS .
Observe that the cliques on this path are maximal cliques in G.

Now, consider the graph obtained by taking the disjoint union of the above
clique paths; each vertex corresponds to some maximal clique of G, and each
connected component is the path PS for some S. In this graph, for each clique Q,
we find all vertices that correspond to Q, and identify them to a single node. This
results in a graph T . We observe that T is a tree, since H is a tree. In fact, T is a
clique tree, since the paths PS are clique paths. By the choice of the paths using
(2.6) and since each clique Q satisfies (2.5), the tree T has maximum degree



four, and hence, can be drawn in the plane so that the edges are represented by
horizontal or vertical segments. In fact (by appropriately permuting neighbors),
we can draw T so that each path PS is horizontal or vertical in the drawing.
Since each vertex of G belongs to exactly one equivalence class S, we conclude
that it appears only in cliques on the path PS , and we represent it by a path
connecting all such cliques on PS . This yields a B0-VPG representation of G.

That concludes the description of our algorithm. We now briefly analyze its
running time. Testing for chordality takes linear time (see [7]), so does computing
all maximal cliques (there is O(n) of them). Finding all diamonds and thus
computing the equivalence classes takes O(nm) time. Having done that, the
construction of the clique-class intersection graph H takes linear time. Finally,
since H has O(n) nodes, the dynamic programming takes O(nm) time.

Thus, the recognition algorithm runs in O(nm) time.

3 2-row B0-VPG graphs

A 2-row B0-VPG representation of G is a B0-VPG representation where the
underlying grid has two rows (and arbitrary number of columns). We call the
two rows layers and distinguish the top and the bottom layer. For simplicity,
any path of the representation that is a single grid-point is considered to be
horizontal. Thus, a vertical path always consists of exactly two points of the
grid (in the same column), one on the top and one on the bottom layer.

A graph is a 2-row B0-VPG graph if it has a 2-row B0-VPG representation.
In this section, we describe a polynomial time algorithm for recognizing 2-row
B0-VPG graphs. It suffices to focus on connected graphs. Also, it suffices to
consider graphs with no true twins, where u, v are true twins if N [u] = N [v].
Clearly, if u, v are true twins in G, then a representation of G can be obtained
from a representation of G− v by assigning to v the path corresponding to u.

A vertex v of G is bisimplicial if the neighbourhood of v in G induces a
disjoint union of two non-empty cliques. In other words, the set N(v) induces
in G a graph consisting of two non-empty cliques with no edges between them.
(See Fig. 2 for an illustration of this and subsequent notions.)

A B0-VPG representation of G is proper if for every path of the represen-
tation, each of its endpoints belongs to at least one other path. It suffices to
consider only proper representations. We note the following properties.

(3.1) If v is a bisimplicial vertex of G, then in every B0-VPG representation
of G, some edge of the underlying grid belongs only to the path representing v.

(3.2) In each proper 2-row B0-VPG representation of a graph G with no true
twins, every vertical vertex is a bisimplicial vertex of G.

Proof. If v is a vertical vertex, then, since the representation is proper, the
vertical path P representing v intersects both a horizontal path on the top
layer and a horizontal path on the bottom layer of the representation. Thus
the horizontal paths intersecting P on the top layer and the horizontal paths
intersecting P at the bottom layer yield the two cliques in N(v) as required. �
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Fig. 2. a) Example graph G (bisimplicial vertices shown in double circles), b) the
bisplitting ofG, c) the bicontractionH ofG, d) the graphH ′= substituting clique paths
to H , e) orthogonal drawing of H ′, f ) the corresponding 2-row B0-VPG representation

The converse of (3.2) is false, i.e., not all bisimplicial vertices are necessarily
represented by vertical paths. To find out which are, we use two auxiliary graphs.

Let G be a graph. The bisplitting (see Fig. 2) of G is the graph obtained from
G as follows. We consider each bisimplicial vertex v of G and let Q1, Q2 denote
the two cliques induced by N(v). We remove v, add new vertices v′, v′′, make v′

adjacent to each vertex in Q1, and make v′′ adjacent to each vertex in Q2.

(3.3) If G is a 2-row B0-VPG graph with no true twins, then the bisplitting of
G is an interval graph.

Proof. Consider a proper 2-row B0-VPG representation of G. By (3.1), each
bisimplicial vertex v of G has an edge e of the underlying grid that only belongs
to v’s path P . We remove e from P to obtain two subpaths P1 and P2. Since the
representation is proper, the paths representing the vertices of one of the two
cliques in N(v) intersect P1, while the paths for the other clique intersect P2.
We represent v′ by P1 and v′′ by P2. Now, by (3.2), no vertical paths remain in
the representation. Thus the result is an interval representation. �

The bicontraction (see Fig. 2) of G is the multigraph H described as follows.
The vertex set of H is the set of connected components of the bisplitting of G.
There is an edge e with label v between connected components C′, C′′ if and only



if v is a bisimplicial vertex of G that was “split” into v′ and v′′ where v′ ∈ C′

and v′′ ∈ C′′. We allow possibly C′ = C′′ in which case e is a loop.
For further use, we denote by QC

′

e the closed neighbourhood of v′ in C′ and
denote byQC

′′

e the closed neighbourhood of v′′ in C′′. Note that, by the definition
of bisplitting, QC

′

e and QC
′′

e are maximal cliques in C′ and C′′, respectively.

(3.4) If G is a 2-row B0-VPG graph, then the bicontraction of G contains no
loops, and no two parallel edges have labels that are adjacent in G.

3.1 LL-drawings

A planar LL-drawing of a multigraph H is a planar embedding of H on two
layers. In other words, the vertices are placed on two horizontal lines such that
every edge is drawn (without crossing another edge) either between consecutive
vertices on a layer or between the two layers, and there are no parallel edges
between vertices on the same layer. A linear time algorithm for finding planar
LL-drawings is discussed in [5]. An edge of a planar LL-drawing is horizontal
(respectively vertical) if its endpoints are on one (respectively two) layers.

A vertical edge e of a planar LL-drawing E splits the drawing into two areas,
the area Le to left of e, and the area Re to the right e. For any edge e′, we write
e′ ≺E e (respectively e′ ≻E e) if the interior of e′ belongs to Le (respectively Re).
For all other pairs of edges, we derive ≺E by transitivity. Since there are no
crossings, the resulting relation ≺E is a partial order on the edges of E ; it is a
total order on the vertical edges of E . We refer to ≺E as the E-order of the edges.

Using the proof of (3.3), we now associate to each 2-row B0-VPG represen-
tation of G with no true twins a planar LL-drawing of the bicontraction of G.

We proceed as follows. Starting with a 2-row B0-VPG representation of G,
we denote by H0 the subgraph of the underlying grid obtained by taking the
union of all paths of the representation. Using the proof of (3.3), we obtain a
representation of the bisplitting G′ of G. During this process, a set F of edges
is removed from the paths of the representation. By definition, each edge in F

is also an edge of H0. Further, by the construction, each connected component
K of H0 − F corresponds to some connected component C of G′ in that K is a
horizontal path that includes all paths representing the vertices of C.

Now, label each edge e ∈ F with the bisimplicial vertex of G from whose path
we removed e. After that, consider the multigraphH obtained by contracting the
edges of H0 that are not in F (while keeping parallel edges). Notice that each
connected component of G′ shrinks to one point and F is the edge-set of H .
Thus, we conclude that H is the bicontraction of G.

Finally, note that H0 itself (as a subgraph of the underlying grid) is a planar
LL-drawing, and we obtained H by contracting horizontal edges in this drawing.
Thus, the result is a planar LL-drawing of H , the bicontraction of G, and we
associate it to the 2-row B0-VPG representation of G we started with.

Notice that this associated LL-drawing has some special properties. They are
summarized in the following definition. Again, let H be the bicontraction of G,
and let E be a planar LL-drawing of H . Let C be a vertex of H , and let e1, . . . , et
be the edges incident to C in H such that e1 ≺E . . . ≺E et.



We say that C is good in E if there exists a clique path P of C such that

(L1) for all i < j, if QC
ei

6= QC
ej
, then QC

ei
appears before QC

ej
on P ,

(L2) for all i < j, if QC
ei

= QC
ej
, then at least one of the following holds:

(L2a) i = 1, j = 2, and e1 is a horizontal edge,
(L2b) i = (t− 1), j = t, and et is a horizontal edge,
(L2c) i = 1, j = t = 3, and QC

e1
= QC

e2
= QC

e3
,

(L3) if e1 is a horizontal edge, then QC
e1

is the first clique on P , and
if et is a horizontal edge and t ≥ 2, then QC

et
is the last clique on P .

We say that E is a good LL-drawing if every vertex of H is good in E .
It is not difficult to see that the associated planar LL-drawing of a 2-row B0-

VPG representation of G is a good LL-drawing. Namely, for each vertex C, we
use the clique path P corresponding to the interval representation of C induced
by the representation ofG. Then P (or its reverse†) satisfies the above conditions.
It turns out that the converse is also true yielding the following characterization.

(3.5) A graph G has a 2-row B0-VPG representation if and only if there exists
a good LL-drawing of the bicontraction of G.

Proof. The forward direction is discussed above the claim. For the backward
direction, we consider a good LL-drawing of the bicontraction H of G. In the
drawing, we replace each vertex C by the clique path P of C satisfying (L1)-(L3).
We arrange the vertices of P from left to right in the order given† by P . For each
edge e incident to C, we reattach e from C to QC

e (which is one of the vertices
on P). From (L1)-(L3) we conclude that the result of this process is a planar
LL-drawing of a graph H ′. In particular, the vertices of H ′ correspond precisely
to the maximal cliques of G. By (possibly) adding gaps between consecutive
vertices on layers, we modify the drawing so that every vertical edge of the
drawing is drawn as a vertical segment, and vertices are on integer coordinates.
Finally, we assign to each vertex v of G the path in the drawing connecting all
cliques of G that contain v. This yields a 2-row B0-VPG representation of G. �

3.2 PQ-trees

To find a good LL-drawing of the bicontraction of G, we use the well-known
concept of a PQ-tree [4]. We briefly review some key properties of such trees.

A PQ-tree is a rooted ordered tree (children of each node are totally ordered)
where each internal node is either a P-node or a Q-node, and whose leaf order is
defined as the ordering of leaves in the traversal that visits the children of each
node in the given total order. Two PQ-trees are equivalent if one can be obtained
from the other by possibly permuting the children of some P-nodes and reversing
the order of children of some Q-nodes. A permutation π of a set is consistent
with a PQ-tree if there exists an equivalent PQ-tree whose leaf order is π.

If T , T ′ are PQ-trees with the same leaf-set, then the intersection of T and
T ′ is the PQ-tree whose consistent permutations are precisely those that are
consistent with both T and T ′. If no such permutations exist, the intersection is
the null tree. The intersection takes linear time to construct (for instance, see [9]).

† if C belongs to only one horizontal edge, we may need to reverse P



3.3 Algorithm

Now, we are ready to describe our recognition algorithm for 2-row B0-VPG
graphs. By (3.5), it suffices for the algorithm to find a good LL-drawing of the bi-
contraction of the given graph G. This, up to minor technical details, boils down
to the following problem: given a multigraph H with a collection of PQ-trees
{Tv}v∈V (H), find a planar LL-drawing of H such that the clockwise ordering of
edges around each v ∈ V (H) is consistent with Tv. Our algorithm follows this
idea. We assign to each vertex C of the bicontraction H of G a PQ-tree TC built
as follows. Starting with the PQ-tree representing the clique paths of C, we re-
place the clique QC

e by e for each edge e incident to C in H (in case two such
cliques coincide we introduce a P-node). We further reduce this tree to account
for blocks and parallel edges in H (for brevity, we omit these technical details).

First, suppose that H is a 2-connected simple graph. Then, by [5], H has
a planar LL-drawing if and only if H is an outerplanar graph and in every
outerplanar embedding of H the bounded faces form a path in the dual graph.
As a planar LL-drawing, we notice that every face has exactly two vertical edges.
Further, every edge that belongs to two faces is vertical. This fixes the drawing
of every inner face on the path of the dual. For the end-faces, we try all possible
choices for the vertical edges. This results in O(|V (H)|2) choices that completely
cover all possible drawings. For each such choice, we use the PQ-trees TC to test
whether or not it corresponds to a good LL-drawing of H .

Next, if H is a simple graph but not 2-connected, we use dynamic program-
ming to process the blocks of H . For this, similarly to [5], we distinguish special
blocks in H . Let C be a vertex of H , and let K be a connected component of
H − C. Let {e1, . . . , et} be the edges of H between C and its neighbours in K.

We say that K is a fan of H attached to C if QC
e1
,. . . , QC

et
are distinct cliques,

and the subgraph of G corresponding to the union of C′ ∈ K is an interval graph.
A fan K is a tail of H if the subgraph of G corresponding to the union of C and
all C′ ∈ K is an interval graph. A fan is a proper fan if it is not a tail.

To illustrate these concepts, note that in Fig. 2 for C = ijmqr, the connected
component K = {klmn, nopq} of H − C is a fan attached to C but it is not a
tail, since G[{i, . . . , r}] is not an interval graph while G[{k, . . . , q}] is.

(3.6) Let K be a fan of H. If H has a good LL-drawing E, then there is a good
LL-drawing E ′ of H in which all vertices of K are on the same layer.

Let H ′ be obtained from H by removing all fans of H . We say that a block
of H is a proper block of H if it is also a block of H ′. A cutpoint C of H is a
proper cutpoint of H if it belongs to two proper blocks of H , or some component
of H − C is a proper fan, or if at least three components of H − C are tails.

For blocks B,B′, we write B ≺E B′ if e ≺E e′ for all e ∈ E(B), e′ ∈ E(B′).

(3.7) The proper blocks and proper cutpoints induce a path in the block-cutpoint
tree of H. If B1, . . . , Bk are the proper blocks on this path in this order, then
either B1 ≺E . . . ≺E Bk or Bk ≺E . . . ≺E B1 for every good LL-drawing E of H.

We process the proper blocks and cutpoints of H in the order B1, . . . , Bk

given by the above claim. For each proper block Bi, we consider Bi together with



all tails attached to it via non-proper cutpoints. We try all possible arrangements.
It can be shown that this results in a polynomial number of choices, and we test
each of them using the PQ-trees TC , and discard those that fail the test.

Next, we test consecutive blocks Bi, Bi+1; let C be the cutpoint they share.
We consider all possible good LL-drawings Ei of Bi and Ei+1 of Bi+1 that are
compatible (i.e., C is on the same layer in both drawings and is the rightmost,
resp. leftmost in Ei, resp. Ei+1). We try all such feasible drawings together with
all attached fans and tails. In this case, we do not try all possibilities directly
(since there may be exponentially many of them), but instead use the PQ-tree TC

to try them indirectly using an intersection with another PQ-tree representing
our choices. As discussed earlier, this can be done in linear time. In a similar
fashion, we deal with proper cutpoints that are not between proper blocks.

Finally, we deal with parallel edges which is done by incorporating additional
tests that do not increase the complexity by more than a constant factor.

Now, to obtain a good LL-drawing of H , we combine good LL-drawings
of compatible pairs of proper blocks and cutpoints (if possible). Since there are
polynomially many choices for each block, the resulting algorithm is polynomial.
We remark that the number of choices for each block can be further reduced to
a constant by additional tests. This produces a procedure whose complexity is
linear in the size of G. (For complete details, see the full version of the paper.)

We conclude by analyzing the total complexity of our algorithm. First, find-
ing all bisimplicial vertices of G can be done in O(nm) time by examining the
neighbourhood of each vertex in G. From this, the bisplitting and the bicon-
traction H of G can be constructed in linear time. Also, checking for true twins
in G and for loops in H is a linear time procedure, and so is [4] the intervality
test on H . Similarly, constructing the PQ-trees for all vertices of H takes linear
time [4], and so do all other necessary operations on these PQ-trees. Finally, our
dynamic programming as described above can be also implemented to run in
linear time. Hence, the overall complexity of the algorithm is O(nm).

4 Conclusion

We studied recognition algorithms for special cases of Bk-VPG graphs, namely
chordalB0-VPG and 2-rowB0-VPG graphs. For both cases, we describedO(nm)
time algorithms for recognition. The interest in these types of representations
comes from applications in VLSI where they can be used to model some aspects
of electrical circuits. In particular, solving the colouring problem is of interest
but is unfortunately NP-complete [2] on Bk-VPG graphs for every fixed k ≥ 0.
It turns out that the problem is NP-complete already on ℓ-row B0-VPG graphs
(B0-VPG graphs that have a representation with ℓ rows) for every fixed ℓ ≥ 2. In
contrast, one can decide in linear time if an ℓ-row B0-VPG graph can be properly
coloured with t colours, when t is fixed, since in this case all yes-instances have
bounded pathwidth, while the problem is NP-complete on B0-VPG graphs for
every fixed t ≥ 3. In a similar vein, the independent set problem is NP-complete
on B0-VPG graphs [15] but can be solved in polynomial time on ℓ-row Bk-VPG
graphs for all fixed k, ℓ. Detailed proofs are in the full version of this paper.



As a continuation of this work, it may be interesting to look at other cases
where representation has bounded number of rows (three or more) or other
structural restriction in order to overcome hardness of optimization problems on
these representations. It should be noted that the recognition of Bk-VPG graphs
for every k was recently proved to be NP-complete [12]. In that respect, it seems
natural to study as well special cases of these graphs, where for instance one only
allows certain types of paths in the representation. Specifically the case k = 1 is
already of interest and is currently a subject of our ongoing research.
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