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Abstract. We initiate the study of constraint satisfaction problems

(CSPs) in the presence of counting quantifiers, which may be seen as
variants of CSPs in the mould of quantified CSPs (QCSPs).

We show that a single counting quantifier strictly between ∃≥1 := ∃

and ∃≥n := ∀ (the domain being of size n) already affords the maximal
possible complexity of QCSPs (which have both ∃ and ∀), being Pspace-
complete for a suitably chosen template.

Next, we focus on the complexity of subsets of counting quantifiers
on clique and cycle templates. For cycles we give a full trichotomy – all
such problems are in L, NP-complete or Pspace-complete. For cliques we
come close to a similar trichotomy, but one class remains outstanding.

Afterwards, we consider the generalisation of CSPs in which we aug-
ment the extant quantifier ∃≥1 := ∃ with the quantifier ∃≥j (j 6= 1).
Such a CSP is already NP-hard on non-bipartite graph templates. We
explore the situation of this generalised CSP on bipartite templates, giv-
ing various conditions for both tractability and hardness – culminating
in a classification theorem for general graphs.

Finally, we use counting quantifiers to solve the complexity of a con-
crete QCSP whose complexity was previously open.

1 Introduction

The constraint satisfaction problem CSP(B), much studied in artificial intelli-
gence, is known to admit several equivalent formulations, two of the best known
of which are the query evaluation of primitive positive (pp) sentences – those
involving only existential quantification and conjunction – on B, and the homo-
morphism problem to B (see, e.g., [18]). The problem CSP(B) is NP-complete in
general, and a great deal of effort has been expended in classifying its complexity
for certain restricted cases. Notably it is conjectured [15, 6] that for all fixed B,
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the problem CSP(B) is in P or NP-complete. While this has not been settled in
general, a number of partial results are known – e.g. over structures of size at
most three [25, 5] and over smooth digraphs [16, 1].

A popular generalisation of the CSP involves considering the query evalua-
tion problem for positive Horn logic – involving only the two quantifiers, ∃ and ∀,
together with conjunction. The resulting quantified constraint satisfaction prob-
lems QCSP(B) allow for a broader class, used in artificial intelligence to capture
non-monotonic reasoning, whose complexities rise to Pspace-completeness.

In this paper, we study counting quantifiers of the form ∃≥j , which allow
one to assert the existence of at least j elements such that the ensuing property
holds. Thus on a structure B with domain of size n, the quantifiers ∃≥1 and ∃≥n

are precisely ∃ and ∀, respectively. Counting quantifiers have been extensively
studied in finite model theory (see [11, 22]), where the focus is on supplementing
the descriptive power of various logics. Of more general interest is the majority
quantifier ∃≥n/2 (on a structure of domain size n), which sits broadly midway
between ∃ and ∀. Majority quantifiers are studied across diverse fields of logic and
have various practical applications, e.g. in cognitive appraisal and voting theory
[10]. They have also been studied in computational complexity, e.g., in [19].

We study variants of CSP(B) in which the input sentence to be evaluated
on B (of size |B|) remains positive conjunctive in its quantifier-free part, but is
quantified by various counting quantifiers.

For X ⊆ {1, . . . , |B|}, X 6= ∅, the X-CSP(B) takes as input a sentence given
by a conjunction of atoms quantified by quantifiers of the form ∃≥j for j ∈ X .
It then asks whether this sentence is true on B. The idea to study {1, . . . , |B|}-
CSP(B) is originally due to Andrei Krokhin.

In Section 3, we consider the power of a single quantifier ∃≥j . We prove that
for each n ≥ 3, there is a template Bn of size n, such that ∃≥j (1 < j < n)
already has the full complexity of QCSP, i.e., {j}-CSP(Bn) is Pspace-complete.

In Section 4, we go on to study the complexity of subsets of our quantifiers
on clique and cycle templates, Kn and Cn, respectively. We derive the following
classification theorems.

Theorem 1. For n ∈ N and X ⊆ {1, . . . , n}:

(i) X-CSP(Kn) is in L if n ≤ 2 or X ∩
{
1, . . . , ⌊n/2⌋

}
= ∅.

(ii) X-CSP(Kn) is NP-complete if n > 2 and X = {1}.
(iii) X-CSP(Kn) is Pspace-complete if n > 2 and either j ∈ X for 1 < j < n/2

or {1, j} ⊆ X for j ∈
{
⌈n/2⌉, . . . , n

}
.

This is a near trichotomy – only the cases where n is even and we have the
quantifier ∃≥n/2 remain open. For cycles, however, the trichotomy is complete.

Theorem 2. For n ≥ 3 and X ⊆ {1, . . . , n}, the problem X-CSP(Cn) is either
in L, is NP-complete or is Pspace-complete. Namely:

(i) X-CSP(Cn) ∈ L if n = 4, or 1 /∈ X, or n is even and X∩
{
2, . . . , n/2

}
= ∅.

(ii) X-CSP(Cn) is NP-complete if n is odd and X = {1}.
(iii) X-CSP(Cn) is Pspace-complete in all other cases.



In Section 5, we consider {1, j}-CSP(H), for j 6= 1 on graphs. The CSP is
already NP-hard on non-bipartite graph templates. We explore the situation of
this generalised CSP on bipartite graph templates, giving various conditions for
both tractability and hardness, using and extending results of Section 4. We are
most interested here in the distinction between P and NP-hard. To understand
which of these cases are Pspace-complete would include as a subclassification
the Pspace-complete cases of QCSP(H), a question which has remained open
for five years [21]. We give a classification theorem for graphs in fragments of
the logic involving bounded use of ∃≥2 followed by unbounded use of ∃. In the
case of QCSP (∃≥n instead of ∃≥2), this is perfectly natural and is explored with
bounded alternations in, e.g., [8, 9, 17], and with bounded use of ∀ = ∃≥n in [7].
We prove that either there exists such a fragment in which the problem is NP-
hard or for all such fragments the problem is in P.

Afterwards in Section 6, we use counting quantifiers to solve the complexity
of QCSP(C∗

4), where C
∗
4 is the reflexive 4-cycle, whose complexity was previously

open. Finally, in Section 7, we give some closing remarks and open problems.

2 Preliminaries

Let B be a finite structure over a finite signature σ whose domain B is of car-
dinality |B|. For 1 ≤ j ≤ |B|, the formula ∃≥jx φ(x) with counting quantifier
should be interpreted on B as stating that there exist at least j distinct elements
b ∈ B such that B |= φ(b). Counting quantifiers generalise existential (∃ := ∃≥1),
universal (∀ := ∃≥|B|) and (weak) majority (∃≥|B|/2) quantifiers. Counting quan-
tifiers do not in general commute with themselves, viz ∃≥jx∃≥jy 6= ∃≥jy∃≥jx
(in contrast, ∃ and ∀ do commute with themselves, but not with one another).

For ∅ 6= X ⊆ {1, . . . , |B|}, the X-CSP(B) takes as input a sentence of the
form Φ := Q1x1Q2x2 . . . Qmxm φ(x1, x2, . . . , xm), where φ is a conjunction of
positive atoms of σ and each Qi is of the form ∃≥j for some j ∈ X . The set of
such sentences forms the logic X-pp (recall the pp is primitive positive). The
yes-instances are those for which B |= Φ. Note that all problems X-CSP(B) are
trivially in Pspace, by cycling through all possible evaluations for the variables.

The problem {1}-CSP(B) is better-known as just CSP(B), and {1, |B|}-
CSP(B) is better-known as QCSP(B). We will consider also the logic [2m1∗]-pp
and restricted problem [2m1∗]-CSP(B), in which the input {1, 2}-pp sentence
has prefix consisting of no more than m ∃≥2 quantifiers followed by any number
of ∃ quantifiers (and nothing else).

A homomorphism from A to B, both σ-structures, is a function h : A → B
such that (a1, . . . , ar) ∈ RA implies (h(a1), . . . , h(ar)) ∈ RB, for all relations
R of σ. A frequent role will be played by the retraction problem Ret(B) in
which one is given a structure A containing B, and one is asked if there is a
homomorphism from A to A that is the identity on B. It is well-known that
retraction problems are special instances of CSPs in which the constants of the
template are all named [12].

In line with convention we consider the notion of hardness reduction in proofs
to be polynomial many-to-one (though logspace is sufficient for our results).



2.1 Game characterisation

There is a simple game characterisation for the truth of sentences of the logic X-
pp on a structure B. Given a sentence Ψ of X-pp, and a structure B, we define
the following game G (Ψ,B). Let Ψ := Q1x1Q2x2 . . . Qmxm ψ(x1, x2, . . . , xm).
Working from the outside in, coming to a quantified variable ∃≥jx, the Prover
(female) picks a subset Bx of j elements of B as witnesses for x, and an Adversary
(male) chooses one of these, say bx, to be the value of x. Prover wins iff B |=
ψ(bx1

, bx2
, . . . , bxm

). The following comes immediately from the definitions.

Lemma 1. Prover has a winning strategy in the game G (Ψ,B) iff B |= Ψ .

We will often move seemlessly between the two characterisations of Lemma 1.
One may alternatively view the game in the language of homomorphisms. There
is an obvious bijection between σ-structures with domain {1, . . . ,m} and con-
junctions of positive atoms in variables {v1, . . . , vm}. From a structure B build
the conjunction φB listing the tuples that hold on B in which element i corre-
sponds to variable vi. Likewise, for a conjunction of positive atoms ψ, let Dψ be
the structure whose relation tuples are listed by ψ, where variable vi corresponds
to element i. The relationship of B to φB and ψ to Dψ is very similar to that
of canonical query and canonical database (see [18]), except there we consider
the conjunctions of atoms to be existentially quantified. For example, K3 on do-
main {1, 2, 3} gives rise to φK3

:= ∃v1, v2, v3 E(v1, v2) ∧ E(v2, v1) ∧ E(v2, v3)∧
E(v3, v2) ∧ E(v3, v1) ∧ E(v3, v1). The Prover-Adversary game G (Ψ,B) may be
seen as Prover giving j potential maps for element x in Dψ (ψ is quantifier-
free part of Ψ) and Adversary choosing one of them. The winning condition for
Prover is now that the map given from Dψ to B is a homomorphism.

In the case of QCSP, i.e. {1, |B|}-pp, each move of a game G (Ψ,B) is trivial
for one of the players. For ∃≥1 quantifiers, Prover gives a singleton set, so Adver-
sary’s choice is forced. In the case of ∃≥|B| quantifiers, Prover must advance all
of B. Thus, essentially, Prover alone plays ∃≥1 quantifiers and Adversary alone
plays ∃≥|B| quantifiers.

3 Complexity of a single quantifier

In this section we consider the complexity of evaluating X-pp sentences when X
is a singleton, i.e., we have at our disposal only a single quantifier.

Theorem 3.

(1) {1}-CSP(B) (i.e. CSP(B)) is in NP for all B. For each n ≥ 2, there exists
a template Bn of size n such that {1}-CSP(Bn) is NP-complete.

(2) {|B|}-CSP(B) is in L for all B.
(3) For each n ≥ 3, there exists a template Bn of size n such that {j}-CSP(Bn)

is Pspace-complete for all 1 < j < n.

Proof. Parts (1) and (2) are well-known (see [23], resp. [20]). For (3), let BNAE

be the Boolean structure on domain {0, 1} with a single ternary not-all-equal
relation RNAE := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. To show Pspace-completeness, we
reduce from QCSP(BNAE), the quantified not-all-equal-3-satisfiability (see [23]).

We distinguish two cases.



Case I: j ≤ ⌊n/2⌋. Define Bn on domain {0, . . . , n − 1} with a single unary
relation U and a single ternary relation R. Set U := {0, . . . , j − 1} and set

R := {0, . . . , n− 1}3 \ {(a, b, c) : a, b, c either all odd or all even}.

The even numbers will play the role of false 0 and odd numbers the role of true 1.

Case II: j > ⌊n/2⌋. Define Bn on domain {0, . . . , n − 1} with a single unary
relation U and a single ternary relation R. Set U := {0, . . . , j − 1} and set

R := {0, . . . , n− 1}3 \ {(a, b, c) : a, b, c ≤ n− j and either all odd or all even}.

In this case even numbers ≤ n − j play the role of false 0 and odd numbers
≤ n − j play the role of true 1. The j − 1 numbers n − j + 1, . . . , n − 1 are
somehow universal and will always satisfy any R relation.

The reduction we use is the same for Cases I and II. We reduce QCSP(BNAE)
to {j}-CSP(Bn). Given an input Ψ := Q1x1Q2x2 . . .Qmxm ψ(x1, x2, . . . , xm) to
the former (i.e. each Qi is ∃ or ∀) we build an instance Ψ ′ for the latter. From
the outside in, we convert quantifiers ∃x to ∃≥jx. For quantifiers ∀x, we convert
also to ∃≥jx, but we add the conjunct U(x) to the quantifier-free part ψ.

We claim BNAE |= Ψ iff Bn |= Ψ ′. For the ∃ variables of Ψ , we can see that
any j witnesses from the domain Bn for ∃≥j must include some element playing
the role of either false 0 or true 1 (and the other j − 1 may always be found
somewhere). For the ∀ variables of Ψ , U forces us to choose both 0 and 1 among
the ∃≥j (and the other j − 2 will come from 2, . . . , j − 1). The result follows. �

4 Counting quantifiers on cliques and cycles

4.1 Cliques: proof of Theorem 1

Recall that Kn is the complete irreflexive graph on n vertices.

. . . . . . • • . . . • •
x1 x2 xj y1 y2 yj

z1
z2 zj w

Fig. 1. The gadget Gj .

Proposition 1. If 1 < j, then {j}-CSP(K2j+1) is Pspace-complete.

Proof. By reduction from QCSP
(
K(2j+1

j )
)
, quantified

(
2j+1
j

)
-colouring, which is

Pspace-complete by [4]. The key part of our proof involves the gadget Gj , in Fig-
ure 1, having vertices x1, . . . , xj , y1, . . . , yj, z1, . . . , zj, w and all possible edges be-
tween {x1, . . . , xj} and {z1, . . . , zj}, and between w and {y1, . . . , yj , z1, . . . , zj}.
The left 2j vertices represent free variables x1, . . . , xj , y1, . . . , yj. Observe that
∃≥jz1, . . . , zj , w φGj

is true on K2j+1 iff |{x1, . . . , xj} ∩ {y1, . . . , yj}| < j. If
|{x1, . . . , xj}| = |{y1, . . . , yj}| = j, this is equivalent to {x1 . . . xj} 6= {y1 . . . yj}.
Thus this gadget will help us to encode the edge relation on K(2j+1

j ) where we

represent vertices by sets {a1, . . . , aj} ⊂ {1, . . . , 2j + 1} with |{a1, . . . , aj}| = j.



Consider an instance Ψ of QCSP
(
K(2j+1

j )
)
. We construct the instance Ψ ′ of

{j}-CSP(K2j+1) as follows. From the graph Dψ, build Dψ′ by transforming each
vertex v into an independent set of j vertices {v1, . . . , vj}, and each edge uv of
Dψ to an instance of the gadget Gj in which the 2j free variables correspond to
u1, . . . , uj , v1, . . . , vj . The other variables of the gadget {z1, . . . , zj, w} are unique
to each edge and are quantified innermost in Ψ ′ in the order z1, . . . , zj , w.

It remains to explain the quantification of the variables of the form v1, . . . , vj .
We follow the quantifier order of Ψ . Existentially quantified variables ∃v of Ψ
are quantified as ∃≥jv1, . . . , vj in Ψ ′. Universally quantified variables ∀v of Ψ
are also quantified ∃≥jv1, . . . , vj in Ψ ′, but we introduce additional variables
v1,1, . . . , v1,j+1, . . . , vj,1, . . . , vj,j+1 before v1, . . . , vj in the quantifier order of
Ψ ′, and for each i ∈ {1, . . . , j}, we join vi,1, . . . , vi,j+1 into a clique with vi.

It is now not difficult to verify that K(2j+1

j ) |= Ψ iff K2j+1 |= Ψ ′. �

Corollary 1. If 1 < j < n/2, then {j}-CSP(Kn) is Pspace-complete.

Proof. We reduce from {j}-CSP(K2j+1) and appeal to Proposition 1. Given
an input Ψ for {j}-CSP(K2j+1), we build an instance Ψ ′ for {j}-CSP(Kn) by
adding an (n− 2j − 1)-clique on new variables, quantified outermost in Ψ ′, and
link by an edge each variable of this clique to every other variable. Adversary
chooses n − 2j − 1 elements of the domain for this clique, effectively reducing
the domain size to 2j + 1 for the rest. Thus Kn |= Ψ ′ iff K2j+1 |= Ψ follows. �

Proposition 2. If 1 < j ≤ n, then {1, j}-CSP(Kn) is Pspace-complete.

Proof. By reduction from QCSP(Kn). We simulate existential quantification ∃v
by itself, and universal quantification ∀v by the introduction of (n− j + 1) new
variables v1, . . . , vn−j , joined in a clique with v, and quantified by ∃≥j before v
(which is also quantified by ∃≥j). The argument follows as in Proposition 1. �

Define the n-star K1,n to be the graph on vertices {0, 1, . . . , n} with edges
{(0, j), (j, 0) : j ≥ 1} where 0 is called the centre and the remainder are leaves.

Proposition 3. If X ∩ {1, . . . , ⌊n/2⌋} = ∅, then X-CSP(Kn) is in L.

Proof. Instance Ψ of X-CSP(Kn) of the form ∃≥λ1x1 . . . ∃≥λmxm ψ(x1, . . . , xm)
induces the graph Dψ , which we may consider totally ordered (the order is given
left-to-right ascending by the quantifiers). We claim that Kn |= Ψ iff Dψ does
not contain as a subgraph (not necessarily induced) a (n− λi +1)-star in which
the n− λi + 1 leaves all come before the centre xi in the ordering.

(⇒) If Dψ contains such a star, then Ψ is a no-instance, as we may give a
winning strategy for Adversary in the game G (Ψ,Kn). Adversary should choose
distinct values for the variables associated with the n− λi + 1 leaves of the star
(can always be done as each of the possible quantifiers assert existence of > n/2
elements and n − λi < n/2), whereupon there is no possibility for Prover to
choose λi witnesses to the variable xi associated with the centre.

(⇐) If Dψ does not contain such a star, then we give the following winning
strategy for Prover in the game G (Ψ,Kn). Whenever a new variable comes up, its
corresponding vertex in Dψ has l < n−λi+1 adjacent predecessors, which were



answered with b1, . . . , bl. Prover suggests any set of size λi from B \ {b1, . . . , bl}
(which always exists) and the result follows. �

Proof of Theorem 1. For n ≤ 2 see [21], and for (ii) see [16]. The remainder
of (i) is proved as Proposition 3 while Corollary 1 and Proposition 2 give (iii). �

4.2 Cycles: proof of Theorem 2

Recall that Cn denotes the irreflexive symmetric cycle on n vertices. We consider
Cn to have vertices {0, 1, . . . , n− 1} and edges

{
(i, j) : |i− j| ∈ {1, n− 1}

}
.

In the forthcoming proof, we use the following elementary observation from
additive combinatorics. Let n ≥ 2, j ≥ 1, and A,B be sets of integers. Define:

• A+nB =
{
(a+ b) mod n

∣
∣ a ∈ A, b ∈ B

}
• j×nA = A+n . . .+n A

︸ ︷︷ ︸

j timesLemma 2. Let n ≥ 3 and 2 ≤ j < n. Then
∣
∣
∣ j ×n {−1,+1}

∣
∣
∣ =

{
j + 1 n is odd
min

{
j + 1, n/2

}
n is even

∣
∣
∣n×n {−1,+1}

∣
∣
∣ =

∣
∣
∣n×n {−2, 0,+2}

∣
∣
∣ =

{
n n is odd
n/2 n is even

Proposition 4. If n ≥ 3, then X-CSP(Cn) is in L if n = 4, or 1 6∈ X, or n is
even and X ∩ {2, 3 . . . , n/2} = ∅,

Proof. Let Ψ be an instance of X-CSP(Cn). Recall that Dψ is the graph corre-
sponding to the quantifier-free part of Ψ . We write x ≺ y if x, y are vertices of
Dψ (i.e., variables of ψ) such that x is quantified before y in Ψ . For an edge xy of
Dψ where x ≺ y, we say that x is a predecessor of y. Note that a vertex can have
several predecessors. The following restricts the yes-instances of X-CSP(Cn).

Let x be a vertex of Dψ quantified in Ψ by ∃≥j for some j. If Cn |= Ψ then
(1a) if j ≥ 3, then x has no predecessors,
(1b) if n is even and j > n/2, then x is the first vertex (w.r.t. ≺) of some

connected component of Dψ, and
(1c) if n 6= 4 and j = 2, then all predecessors of x except for its first predecessor

(w.r.t. ≺) are quantified by ∃≥1.

Using these we prove the proposition. First, we consider the case n = 4. We show
that {1, 2, 3, 4}-CSP(C4) is in L. This will imply that X-CSP(C4) is in L for every
X . Observe that if Dψ contains a vertex x quantified by ∃≥3 or ∃≥4, then by (1b)
this vertex is the first in its component (if Ψ is not a trivial no-instance). Thus
by symmetry replacing its quantification by ∃≥1 does not change the truth of Ψ .
So we may assume that Ψ is an instance of {1, 2}-CSP(C4). We now claim that
C4 |= Ψ if and only if Dψ is bipartite. Clearly, if Dψ is not bipartite, it has no
homomorphism to C4 and hence C4 6|= Ψ . Conversely, assume that Dψ is bipartite
with bipartition (A,B). Our strategy for Prover offers the set {0, 2} or its subsets
for the vertices in A and offers {1, 3} or its subsets for every vertex in B. It is easy
to verify that this is a winning strategy for Prover. Thus C4 |= Ψ . The complexity
now follows as checking (1b) and checking if a graph is bipartite is in L by [24].

Now, we may assume n 6= 4, and next we consider the case 1 6∈ X . If also
2 6∈ X , then by (1a) the graph Dψ contains no edges (otherwise Ψ is a trivial



no-instance). This is clearly easy to check in L. Thus 2 ∈ X . We claim that if we
satisfy (1a) and (1c), then Cn |= Ψ . We provide a winning strategy for Prover.
Namely, for a vertex x, if x has no predecessors, offer any set for x. If x has a
unique predecessor y for which the value i was chosen, then x is quantified by
∃≥2 (or ∃) by (1a) and we offer {i− 1, i+1} (mod n) for x . There are no other
cases by (1a) and (1c). It follows that Prover always wins with this strategy. In
terms of complexity, it suffices to check (1a) and (1c) which is in L.

Finally, suppose that n is even and X ∩ {2 . . . n/2} = ∅. Note that every
vertex of Dψ is either quantified by ∃≥1 or by ∃≥j where j > n/2. Thus, using
(1b), unless Ψ is a trivial no-instance, we can again replace every ∃≥j in Ψ by ∃≥1

without changing the truth of Ψ . Hence, we may assume that Ψ is an instance
of {1}-CSP(Cn). Thus, as n is even, Cn |= Ψ if and only if Dψ is bipartite. The
complexity again follows from [24]. That concludes the proof. �

Proposition 5. Let n ≥ 3. Then X-CSP(Cn) is Pspace-complete if n 6= 4 and
{1, j} ⊆ X: where j ∈ {2, . . . , n} if n is odd and j ∈ {2, . . . , n/2} if n is even.

Proof. By reduction, namely a reduction from QCSP(Cn) for odd n, and from
QCSP(Kn/2) for even n. Both problems are known to be Pspace-hard [4].

First, consider the case of odd n. Let Ψ be an instance of QCSP(Cn). In other
words, Ψ is an instance of {1, n}-CSP(Cn). Clearly, j < n otherwise we are done.

We modify Ψ by replacing each universally-quantified variable x of Ψ by a
path. Namely, let πx denote the pp-formula that encodes that

x11, x
1
2, . . . , x

1
j−1, x

2
1, x

2
2, . . . , x

2
j−1, . . . , xn1 , x

n
2 , . . . , x

n
j−1, x

is a path in that order (all but x are new variables). We replace ∀x by

Qx = ∃≥jx11 ∃≥jx21 . . . ∃
≥jxn1 ∃≥jx ∃≥1x12 . . . ∃

≥1x1j−1 . . . ∃≥1xn2 . . . ∃
≥1xnj−1

and append πx to the quantifier-free part of the formula. Let Ψ ′ denote the final
formula after considering all universally quantified variables. Note that Ψ ′ is an
instance of {1, j}-CSP(Cn). We claim that Cn |= Ψ if and only if Cn |= Ψ ′.

To do this, it suffices to show that Ψ ′ correctly simulates the universal quan-
tifiers of Ψ . Namely, that Cn |= Qxπx, and for each ℓ ∈ {0 . . . n− 1}, Adversary
has a strategy on Qxπx that evaluates x to ℓ. (We omit further details.)

It remains to investigate the case of even n. Recall that n ≥ 6 and j ≤ n/2.
We show a reduction from QCSP(Kn/2) to {1, j}-QCSP(Cn). The reduction is a
variant of the construction from [13] for the problem of retraction to even cycles.

Let Ψ be an instance of QCSP(Kn/2), and define r = (−n/2−2) mod (j−1).
We construct a formula Ψ ′ from Ψ as follows. First, we modify Ψ by replacing
universal quantifiers exactly as in the case of odd n. Namely, we define Qx
and πx as before, replace each ∀x by Qx, and append πx to the quantifier-free
part of the formula. After this, we append to the formula a cycle on n vertices
v0, v1, . . . , vn−1 with a path on r + 1 vertices w0, w1, . . . , wr. (See the black
vertices in Figure 2.) Then, for each edge xy of Dψ, we replace E(x, y) in Ψ
by the gadget depicted in Figure 2 (consisting of the cartesian product of Cn
and a path on 3n/2 vertices together with two attached paths on n/2− 2, resp.
r + 1 vertices). The vertices x and y represent the variables x and y while all
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Fig. 2. The gadget for the case of even n where r = (−n/2− 2) mod (j − 1).

other white vertices are new variables, and the black vertices are identified with
v0, . . . , vn−1, w0, . . . , wr introduced in the previous step.

Finally, we prepend the following quantification to the formula:

∃≥1w0 ∃≥jvj−r−2 ∃≥jv2j−r−3 . . .∃≥jv(k·j−r−k−1) . . .∃
≥jvn/2+1

followed by ∃≥1 quantification of all the remaining variables of the gadgets.
We prove that Kn/2 |= Ψ if and only if Cn |= Ψ ′. First, we show that Ψ ′

correctly simulates the universal quantification of Ψ . The argument for this is
essentially the same as in the case of odd n. Next, we need to analyse possible
assignments to the vertices v0, . . . , vn−1. There are two cases: either the values
chosen for v0, . . . , vn−1 are all distinct, or not. In the former, we show that Prover
can complete the homomorphism to Cn if and only if Kn/2 |= Ψ . All other cases
are degenerate and have to be addressed separately. (We omit the details.) �

Proof of Theorem 2. The case (i) is proved as Proposition 4, and the case
(ii) follows from [16]. Finally, the case (iii) is proved as Proposition 5. �

5 Extensions of the CSP

In this section we consider single-quantifier extensions of the classical CSP(B),
i.e., the evaluation of X-pp sentences, where X := {1, j} for some 1 < j ≤ |B|.

5.1 Bipartite graphs

In the case of (irreflexive, undirected) graphs, it is known that {1}-CSP(H) =
CSP(H) is in L if H is bipartite and is NP-complete otherwise [16] (for mem-
bership in L, one needs also [24]). It is also known that something similar holds
for {1, |H |}-CSP(H) = QCSP(H) – this problem is in L if H is bipartite and is
NP-hard otherwise [21]. Of course, the fact that {1, j}-CSP(H) is hard on non-
bipartite H is clear, but we will see that it is not always easy on bipartite H.

First, we look at complete bipartite graphs (in a more general statement).

Proposition 6. Let Kk,l be the complete bipartite graph with partite sets of size
k and l. Then {1, . . . , k + l}-CSP(Kk,l) is in L.

Proof. We reduce to QCSP(K1
2), where K

1
2 indicates K2 with one vertex named

by a constant, say 1. QCSP(K1
2) is equivalent to QCSP(K2) (identify instances

of 1 to a single vertex) and both are well-known to be in L (see, e.g., [21]). Let



Ψ be input to {1, . . . , k + l}-CSP(Kk,l). Produce Ψ ′ by substituting quantifiers
∃≥j with ∃, if j ≤ min{k, l}, or with ∀, if j > max{k, l}. Variables quantified by
∃≥j for min{k, l} < j ≤ max{k, l} should be replaced by the constant 1. It is
easy to see that Kk,l |= Ψ iff K2 |= Ψ ′, and the result follows. �

Proposition 7. For each j, there exists m s.t. [2m1∗]-CSP(C2j) is NP-complete.

Proof. Membership in NP follows because m is bounded – one may try all
possible evaluations to the ∃≥2 variables. NP-hardness follows as in the proof of
case (iii) of Theorem 2, but we are reducing from CSP(Kn/2) not QCSP(Kn/2).
As a consequence, the only instances of ∃≥2 we need to consider are those used
to isolate the cycle C2j (one may take m := j + 3). �

Corollary 2. If H is bipartite and (for j ≥ 3) contains some C2j but no smaller
cycle, then exists m s.t. [2m1∗]-CSP(H) is NP-complete.

Proof. Membership and reductions for hardness follow similarly to Proposi-
tion 7. The key part is in isolating a copy of the cycle, but we can not do this
as easily as before. If d is the diameter of H (the maximum of the minimal
distances between two vertices) then we begin the sentence Ψ ′ of the reduc-
tion with ∃≥2v1, . . . , vd+1, and then, for each i ∈ {1, . . . , d − j + 1} we add
∃≥2xi, x

′
i, . . . , x

′...′ (j − 1 dashes) and join vi, . . . , vi+j , x
′...′
i , . . . , xi in a 2i-cycle

(with E(xi, vi) also). For each of these d − j + 1 cycles C2j we build a separate
copy of the rest of the reduction. We can not be sure which of these cycles is
evaluated truly on some C2j , but at least one of them must be. �

In passing, we note the following simple propositions.

Proposition 8. If j ∈ {2, ..., n− 3} then one may exhibit a bipartite Hj of size
n such that {1, j}-CSP(Hj) is Pspace-complete.

Proof. The case j = 2 follows from Theorem 2; assume j ≥ 3. Take the graph
C6 and construct Hj as follows. Augment C6 with j−3 independent vertices each
with an edge to vertices 1, 3 and 5 of C6. Apply the proof of Theorem 2 withHj .�

Proposition 9. Let H be bipartite with largest partition in a connected compo-
nent of size < j. Then {1, j}-CSP(H) is in L.

Proof. We will consider an input Ψ to {1, j}-CSP(H) of the form Q1x1 Q2x2 . . .
Qmxm ψ(x1, x2, . . . , xm). An instance of an ∃≥j variable is called trivial if it has
neither a path to another (distinct) ∃≥j variable, nor a path to an ∃ variable
that precedes it in the natural order on Dψ. The key observation here is that
any non-trivial ∃≥j variable must be evaluated on more than one partition of a
connected component. If in Ψ there is a non-trivial ∃≥j variable, then Ψ must
be a no-instance (as ∃≥js must be evaluated on more than one partition of a
connected component, and a path can not be both even and odd in length).
All other instances are readily seen to be satisfiable. Detecting if Ψ contains a
non-trivial ∃≥j variable is in L by [24], and the result follows. �

We note that Proposition 8 is tight, namely in that {1, j}-CSP(H) is in L if
j ∈ {1, |H | − 2, |H | − 1, |H |}. (For space restrictions, we omit the details.)



Proposition 10. If H is bipartite and contains C4, then Ψ ∈ {1, 2}-CSP(C4) iff
the underlying graph Dψ of Ψ is bipartite. In particular, {1, 2}-CSP(H) is in L.

Proof. Necessity is clear; sufficiency follows by the canonical evaluation of ∃≥1

and ∃≥2 on a fixed copy of C4 in H. Membership in L follows from [24]. �

Proposition 11. Let H be a forest, then [2m1∗]-CSP(H) is in P for all m.

Proof. We evaluate each of the m variables bound by ∃≥2 to all possible pairs,
and what we obtain in each case is an instance of CSP(H′) where H′ is an
expansion of H by some constants, i.e., equivalent to the retraction problem. It
is known that Ret(H) is in P for all forests H [14], and the result follows. �

We bring together some previous results into a classification theorem.

Theorem 4. Let H be a graph. Then

– [2m1∗]-CSP(H) ∈ P for allm, if H is a forest or a bipartite graph containing C4
– [2m1∗]-CSP(H) is NP-complete from some m, if otherwise.

Proof. Membership of NP follows since m is fixed. The cases in P follow from
Propositions 11 and 10. Hardness for non-bipartite graphs follows from [16] and
for the remaining bipartite graphs it follows from Corollary 2. �

6 The complexity of QCSP(C∗

4
)

Let C∗
4 be the reflexive 4-cycle. The complexities of Ret(C6) and Ret(C∗

4 ) are
both hard (NP-complete) [13, 12], and retraction is recognised to be a “cousin”
of QCSP (see [2]). The problem QCSP(C6) is known to be in L (see [21]), but the
complexity of QCSP(C∗

4) was hitherto unknown. Perhaps surprisingly, we show
that is is markedly different from that of QCSP(C6), being Pspace-complete.

Proposition 12. {1, 2, 3, 4}-CSP(C∗
4) is Pspace-complete.

Corollary 3. QCSP(C∗
4 ) is Pspace-complete.

The proofs of these claims are based on the hardness of the retraction problem to
reflexive cycles [12] and are similar to our proof of the even case of Proposition 5.

While QCSP(C∗
4 ) has different complexity from QCSP(C6), we remark that

the better analog of the retraction complexities is perhaps that {1, |C∗
4 |}-CSP(C

∗
4)

and {1, |C6|/2}-CSP(C6) do have the same complexities (recall the reductions
to Ret(C∗

4 ) and Ret(C6) involved CSP(K|C∗

4
|) and CSP(K|C6|/2), respectively.

7 Conclusion

We have taken first important steps to understanding the complexity of CSPs
with counting quantifiers, even though several interesting questions have resisted
solution. We would like to close the paper with some open problems.

In Section 4.1, the case n = 2j remains. When j = 1 and n = 2, we have
{1}-CSP(K2)=CSP(K2) which is in L by [24]. For higher j, the question of the
complexity of {j}-CSP(K2j) is both challenging and open.



We would like to prove the following more natural variants of Theorem 4,
whose involved combinatorics appear to be much harder.

Conjecture 1. Let H be a graph. Then

– [2∗1∗]-CSP(H) is in P, if H is a forest or a bipartite graph containing C4,
– [2∗1∗]-CSP(H) is NP-hard, if otherwise.

Conjecture 2. Let H be a graph. Then

– {1, 2}-CSP(H) is in P, if H is a forest or a bipartite graph containing C4,
– {1, 2}-CSP(H) is NP-hard, if otherwise.
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