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Abstract. We initiate the study of constraint satisfaction problems (CSPs) in the presence
of counting quantifiers ∃≥j which assert the existence of at least j elements such that the ensuing
property holds. These are natural variants of CSPs in the mould of quantified CSPs (QCSPs).
Namely, ∃≥1 := ∃ and ∃≥n := ∀ (for the domain of size n)

We observe that a single counting quantifier ∃≥j strictly between ∃ and ∀ already affords the
maximal possible complexity of QCSPs (which have both ∃ and ∀), namely being Pspace-complete
for a suitably chosen template. Therefore, to better understand the complexity of this problem, we
focus on restricted cases for which we derive the following results.

Firstly, for all subsets of counting quantifiers on clique and cycle templates, we give a full
trichotomy – all such problems are in P, NP-complete or Pspace-complete.

Secondly, we consider the problem with exactly two quantifiers: ∃≥1 := ∃ and ∃≥j (j 6= 1).
Such a CSP is already NP-hard on non-bipartite graph templates. We explore the situation of this
generalized CSP on graph templates, giving various conditions for both tractability and hardness.

For quantifiers ∃≥1 and ∃≥2, we give a dichotomy for all graphs; namely, the problem is NP-hard
if the graph contains a triangle or has girth at least 5, and is in P otherwise. We strengthen this
result in the following two ways. For bipartite graphs, the problem is in P for forests and graphs
of girth 4, and is Pspace-hard otherwise. For complete multipartite graphs, the problem is in L,
NP-complete or Pspace-complete.

Finally, using counting quantifiers we solve the complexity of a concrete QCSP whose complexity
was previously open.
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tional Complexity.
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1. Introduction. The constraint satisfaction problem CSP(B), much studied in
artificial intelligence, is known to admit several equivalent formulations, two of the
best known of which are the query evaluation of primitive positive (pp) sentences
– those involving only existential quantification and conjunction – on B, and the
homomorphism problem to B (see, e.g., [23]). The problem CSP(B) is NP-complete
in general, and a great deal of effort has been expended in classifying its complexity
for certain restricted cases. Notably it is conjectured [20, 8] that for all fixed B, the
problem CSP(B) is in P or NP-complete. While this has not been settled in general,
a number of partial results are known – e.g. over structures of size at most three
[34, 5] and over smooth digraphs [22, 1].

A popular generalisation of the CSP involves considering the query evaluation
problem for positive Horn logic – involving only the two quantifiers, ∃ and ∀,
together with conjunction. The resulting Quantified Constraint Satisfaction Problem
QCSP(B) allows for a broader class, used in artificial intelligence to capture non-
monotonic reasoning, whose complexities rise to Pspace-completeness.

In this paper, we study counting quantifiers of the form ∃≥j , which allow one to
assert the existence of at least j elements such that the ensuing property holds. Thus
on a structure B with domain of size n, the quantifiers ∃≥1 and ∃≥n are precisely
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∃ and ∀, respectively. Counting quantifiers have been extensively studied in finite
model theory (see [15, 31]), where the focus is on supplementing the descriptive
power of various logics. Of more general interest is the majority quantifier ∃≥n/2

(on a structure of domain size n), which sits broadly midway between ∃ and ∀.
Majority quantifiers are studied across diverse fields of logic and have various practical
applications, e.g. in cognitive appraisal and voting theory [14]. They have also been
studied in computational complexity, e.g. in [24].

We study variants of CSP(B) in which the input sentence to be evaluated on B
(of size |B|) remains positive conjunctive in its quantifier-free part, but is quantified
by various counting quantifiers from some non-empty set.

For X ⊆ {1, . . . , |B|}, X 6= ∅, the X-CSP(B) takes as input a sentence given by
a conjunction of atoms quantified by quantifiers of the form ∃≥j for j ∈ X . It then
asks whether this sentence is true on B.

To briefly introduce the reader to this concept, consider the following sentence:
Φ1 := ∃≥4x1 ∃≥3x2 E(x1, x2)

When E is the edge relation of a graph, this sentence asserts the existence of at least
4 vertices (x1) of degree at least 3 (having at least 3 distinct neighbors x2). A similar,
more complicated example is as follows.

Φ2 := ∃≥1x1 ∃≥2x2 ∃≥2x3 E(x1, x2) ∧ E(x1, x3) ∧ E(x2, x3)
Here, the formula asks for a pair adjacent edges (x1x2) that each belong to at least 2
triangles (x1, x2, x3). Note that the sentence Φ2 uses quantifiers ∃≥1 and ∃≥2. Thus
Φ2 is an input of {1, 2}-CSP(B) while Φ1 is an input of {3, 4}-CSP(B), or of any X-
CSP(B) where {3, 4} ⊆ X . Simple formulas like this are, of course, easy to evaluate.
The challenging task is when both the formula and the structure are given as input,
without any restrictions. Not surprisingly deciding the truth value of such a formula
on the given structure becomes hard, short of trying all possible assignments. The
standard approach to this is to assume that either the formula or the structure is
fixed. Here, we consider the latter.

1.1. Summary of results. Throughout the paper, we study the X-CSP(B)
problem for various restrictions on the set X and the structure B. We often
concentrate on graph structures.

First, in §3, we consider the power of a single quantifier ∃≥j , for some j. We
prove that for each n ≥ 3, there is a template Bn of size n, such that ∃≥j (1 < j < n)
already has the full complexity of QCSP, i.e., {j}-CSP(Bn) is Pspace-complete.

Then, in §4 and §5, we study the complexity of all possible subsets of counting
quantifiers on clique and cycle templates, Kn and Cn, respectively. We derive the
following classification theorems.

Theorem 1.1. For n ∈ N and X ⊆ {1, . . . , n}, the problem X-CSP(Kn) is
(i) in L if n ≤ 2 or X ⊆ {⌊n/2⌋+ 1, . . . , n},
(ii) in P if n = 4 and X = {2},
(iii) NP-complete if n ≥ 3 and X = {1},
(iv) Pspace-complete in all other cases.

Theorem 1.2. For n ≥ 3 and X ⊆ {1, . . . , n}, the problem X-CSP(Cn) is
(i) in L if n = 4, or 1 /∈ X, or n is even and X ∩

{
2, . . . , n/2

}
= ∅,

(ii) NP-complete if n is odd and X = {1},
(iii) Pspace-complete in all other cases.

Next, in §6, we consider {1, j}-CSP(H), for j 6= 1 on graphs. The CSP(H)
(in our language {1}-CSP(H)) is already NP-hard for non-bipartite graphs H [22].
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We therefore explore the complexity of {1, j}-CSP(H) on bipartite graph templates,
giving various conditions for both tractability and hardness, using and extending
results of §4 and §5. We are most interested here in the distinction between P and
NP-hard. This seems unavoidable – to understand which of these cases are Pspace-
complete would include as a subclassification the Pspace-complete cases of QCSP(H),
a challenging question which has been open for some time [29].

We first easily observe that {1, 2}-CSP(H) is in L if H is a bipartite graph
containing a 4-cycle; in fact, in this case the problem coincides with {1}-CSP(H).
For bipartite graphs of larger girth, we extend Theorem 1.2 to prove Pspace-hardness
of the problem. The remaining cases are when H contains no cycle, i.e., H is a forest.
For trees, we describe a polynomial-time algorithm. Notably, it turns out that an
algorithm for trees is directly linked to an algorithm for paths in the following sense.

Corollary 1.3. Let T be a tree, and let P be a longest path in T. Then Ψ is a
yes-instance of {1, 2}-CSP(T) if and only if Ψ is a yes-instance of {1, 2}-CSP(P).

Our algorithm for trees is based on a characterization of yes-instances. We
describe two particular obstructions, both of which take the form of a special walk,
where the presence or absence of this walk determines the answer to the problem.

This naturally extends to forests which completes the classification. Combined
with [22], this leads to the following dichotomy theorem which can be seen as a
companion to the celebrated result of Hell and Nešetřil.

Theorem 1.4. Let H be a graph. Then {1, 2}-CSP(H) is in P if H is a forest
or is a bipartite graph with a 4-cycle; the problem is NP-hard in all other cases.

Let H be a bipartite graph. Then {1, 2}-CSP(H) is in P if H is a forest or has a
4-cycle; the problem is Pspace-complete in all other cases.

Note that this result cannot be strengthened further for non-bipartite graphs,
since there exist NP-complete cases, such as when H is the octahedron K2,2,2. The
situation regarding the NP-complete cases is less clear. We investigate this issue and
present some further partial results in this direction in §9. For complete multipartite
graphs, we give a full trichotomy that can be seen as a final coup de grâce.

Theorem 1.5. For integers 1 ≤ a1 ≤ . . . ≤ an, let Ka1,...,an denote the complete
multipartite graph where parts have sizes a1, . . . , an. Then {1, 2}-CSP(Ka1,...,an) is

(i) in L if n = 2,
(ii) NP-complete if n ≥ 3 and a2 ≥ 2,
(iii) Pspace-complete in all other cases.

We close the paper in §10 where we use counting quantifiers to solve the
complexity of QCSP for the reflexive 4-cycle. The complexity of this problem was
previously open. Some closing remarks and open problems are the discussed in §11.

1.2. Related work. This paper is the full version of the conference reports [25]
and [25] in both of which most proofs were omitted. In addition, Theorem 1.5 is
completely new. The idea to study {1, . . . , |B|}-CSP(B) comes from Andrei Krokhin,
but similar motivations are behind the paper [6] of which we were not aware when
we wrote [25]. The paper [6] should be seen as complementary to this and makes
inquiry into counting quantifiers that is orthogonal to ours. We will return to discuss
its algebraic ideas in the conclusion. Many of our NP- and Pspace-hardness proofs are
elaborate re-workings of those NP-hardness proofs given for the retraction problem
by Feder, Hell and Huang in [17, 18]. The Pspace-hardness for Theorem 1.5 borrows
from the Pspace-hardness proof of [3].
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2. Preliminaries. Let B be a finite structure over a finite signature σ whose
domain B is of cardinality |B|. In the case of graphs G we will use the more common
domain (vertex) notation V (G), as well as E(G) for the edge set. In general, sets
are denoted in upper case and elements of sets in lower case. Boldface is reserved
for structures (walks and paths in graphs will mostly not be designated in boldface
unless we wish to emphasize them as graphs in their own right).

For 1 ≤ j ≤ |B|, the formula ∃≥jx φ(x) with counting quantifier should be
interpreted on B as stating that there exist at least j distinct elements b ∈ B such
that B |= φ(b). Counting quantifiers generalize existential (∃ := ∃≥1), universal
(∀ := ∃≥|B|) and (weak) majority (∃≥|B|/2) quantifiers. Counting quantifiers do not
in general commute with themselves, viz ∃≥jx∃≥jy 6= ∃≥jy∃≥jx. For an example of
this consider ∃≥2x∃≥2y∃≥2z E(x, y) ∧ E(x, z) and ∃≥2y∃≥2z∃≥2x E(x, y) ∧ E(x, z)
on the disjoint union of two paths P3 of length 2. By contrast, ∃ and ∀ do commute
with themselves, if not with one another.

For ∅ 6= X ⊆ {1, . . . , |B|}, the X-CSP(B) takes as input a sentence of the form
Φ := Q1x1Q2x2 . . . Qmxm φ(x1, x2, . . . , xm), where φ is a conjunction of positive
atoms of σ and each Qi is of the form ∃≥j for some j ∈ X . The set of such sentences
forms the logic X-pp (recall the pp is primitive positive). The yes-instances are those
for which B |= Φ. Note that all problems X-CSP(B) are trivially in Pspace, by
cycling through all possible evaluations for the variables. The problem {1}-CSP(B)
is better-known as just CSP(B), and {1, |B|}-CSP(B) is better-known as QCSP(B).

A homomorphism from A to B, both σ-structures, is a function h : A→ B such
that (a1, . . . , ar) ∈ RA implies (h(a1), . . . , h(ar)) ∈ RB, for all relations R of σ. A
frequent role will be played by the retraction problem Ret(B) in which one is given
a structure A containing B, and one is asked if there is a homomorphism from A
to A that is the identity on B. It is well-known that retraction problems are special
instances of CSPs in which the constants of the template are all named [17].

In line with convention we consider the notion of hardness reduction in proofs to
be polynomial many-to-one (though logspace is sufficient for our results).

2.1. Game characterization. There is a simple game characterization for the
truth of sentences of the logicX-pp on a structureB. Given a sentence Ψ ofX-pp, and
a structure B, we define the following game G (Ψ,B). Let Ψ := Q1x1Q2x2 . . . Qmxm
ψ(x1, x2, . . . , xm). Working from the outside in, coming to a quantified variable ∃≥jx,
the Prover (female) picks a subset Bx of j elements of B as witnesses for x, and an
Adversary (male) chooses one of these, say bx, to be the value of x. Prover wins iff
B |= ψ(bx1

, bx2
, . . . , bxm

). The following comes immediately from the definitions.

Lemma 2.1. Prover has a winning strategy in the game G (Ψ,B) iff B |= Ψ.

We will often move seemlessly between the two characterizations of Lemma 2.1.
One may alternatively view the game in the language of homomorphisms. There

is an obvious bijection between σ-structures with domain {1, . . . ,m} and conjunctions
of positive atoms in variables {v1, . . . , vm}. From a structure B build the conjunction
φB listing the tuples that hold on B in which element i corresponds to variable
vi. Likewise, for a conjunction of positive atoms ψ, let Dψ be the structure whose
relation tuples are listed by ψ, where variable vi corresponds to element i. The
relationship of B to φB and ψ to Dψ is very similar to that of canonical query and
canonical database (see [23]), except there we consider the conjunctions of atoms to
be existentially quantified. For example, K3 on domain {1, 2, 3} gives rise to

φK3
:= ∃v1, v2, v3 E(v1, v2) ∧E(v2, v1) ∧ E(v2, v3) ∧ E(v3, v2) ∧E(v3, v1) ∧E(v3, v1).
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The Prover-Adversary game G (Ψ,B) may be seen as Prover giving j potential
maps for element x in Dψ (ψ is quantifier-free part of Ψ) and Adversary choosing one
of them. The winning condition for Prover is now that the map given from Dψ to
B is a homomorphism. We denote by ≺ the total order of variables of Ψ as they are
quantified in the formula (from left to right).

In the case of QCSP, i.e., {1, |B|}-pp, each move of a game G (Ψ,B) is trivial for
one of the players. For ∃≥1 quantifiers, Prover gives a singleton set, so Adversary’s
choice is forced. In the case of ∃≥|B| quantifiers, Prover must advance all of B.
Thus, essentially, Prover alone plays ∃≥1 quantifiers and Adversary alone plays ∃≥|B|

quantifiers.

3. Complexity of a single quantifier. In this section we consider the
complexity of evaluating X-pp sentences when X is a singleton, i.e., we have at our
disposal only a single quantifier.

Theorem 3.1.

(i) {1}-CSP(B) is in NP for all B. For each n ≥ 2, there exists a template Bn

of size n such that {1}-CSP(Bn) is NP-complete.
(ii) {|B|}-CSP(B) is in L for all B.
(iii) For each n ≥ 3, there exists a template Bn of size n such that {j}-CSP(Bn)

is Pspace-complete for all 1 < j < n.

Proof. Parts (i) and (ii) are well-known (see [32], resp. [27]). For (iii), let BNAE

be the Boolean structure on domain {0, 1} with a single ternary not-all-equal relation
RNAE := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. To show Pspace-completeness, we reduce from
QCSP(BNAE), the quantified not-all-equal-3-satisfiability (see [32]).

We distinguish two cases.

Case I: j ≤ ⌊n/2⌋. Define Bn on domain {0, . . . , n− 1} with a single unary relation
U and a single ternary relation R. Set U := {0, . . . , j − 1} and set

R := {0, . . . , n− 1}3 \ {(a, b, c) : a, b, c either all odd or all even}.

The even numbers will play the role of false 0 and odd numbers the role of true 1.

Case II: j > ⌊n/2⌋. Define Bn on domain {0, . . . , n− 1} with a single unary relation
U and a single ternary relation R. Set U := {0, . . . , j − 1} and set

R := {0, . . . , n− 1}3 \ {(a, b, c) : a, b, c ≤ n− j and either all odd or all even}.

In this case even numbers ≤ n− j play the role of false 0 and odd numbers ≤ n− j
play the role of true 1. The j − 1 numbers n− j +1, . . . , n− 1 are somehow universal
and will always satisfy any R relation.

The reduction we use is the same for Cases I and II. We reduce QCSP(BNAE)
to {j}-CSP(Bn). Given an input Ψ := Q1x1Q2x2 . . . Qmxm ψ(x1, x2, . . . , xm) to the
former (i.e., each Qi is ∃ or ∀) we build an instance Ψ′ for the latter. From the outside
in, we convert quantifiers ∃x to ∃≥jx. For quantifiers ∀x, we convert also to ∃≥jx,
but we add the conjunct U(x) to the quantifier-free part ψ.

We claim BNAE |= Ψ iff Bn |= Ψ′. For the ∃ variables of Ψ, we can see that any
j witnesses from the domain Bn for ∃≥j must include some element playing the role
of either false 0 or true 1 (and the other j − 1 may always be found somewhere). For
the ∀ variables of Ψ, the relation U forces us to choose both 0 and 1 among the ∃≥j

(and the other j − 2 will come from 2, . . . , j − 1). The result follows.

4. Cliques: proof of Theorem 1.1. Recall that Kn is the complete irreflexive
graph on n vertices. We will sometimes refer to edges E(i, j) as simply ij.



6 B. MARTIN AND J. STACHO

We discuss the cases of Theorem 1.1 individually. For n ≤ 2, the results follow
from [29], and (iii) is proved in [22]. The remainder of (i) will be proved as Proposi-
tion 4.7 in §4.3 while (iv) will be given as Theorem 4.3 in §4.1, and Corollary 4.5 and
Proposition 4.6 in §4.2. Finally, (ii) will be proved in §4.4 as Theorem 4.9.

4.1. Pspace-completeness of {n}-CSP(K2n) when n ≥ 3. The proof is by
reduction from QCSP(Kn), the quantified n-coloring problem, which is known to
be Pspace-complete [3, 4]. The template Kn consists of vertices {1, 2, . . . , n} and
all possible edges between distinct vertices. We shall call these vertices colors. We
describe a reduction from QCSP(Kn)={1, n}-CSP(Kn) to {n}-CSP(K2n). Consider
an instance of QCSP(Kn), namely a formula Ψ of the following form

Ψ = ∃≥b1 v1 ∃≥b2 v2 . . . ∃≥bN vN ψ

where each bi ∈ {1, n}. We let G denote the graph Dψ with vertex set {v1, . . . , vN}
and edge set {vivj | E(vi, vj) appears in ψ}.

We construct an instance Φ of {n}-CSP(K2n) with the property that Ψ is a
yes-instance of QCSP(Kn) if and only if Φ is a yes-instance of {n}-CSP(K2n).

In short, we model the n-coloring using 2n− 1 colors, n− 1 of which will treated
as don’t care colors (vertices colored using any of such colors will be ignored). We
make sure that the colorings where no vertex is assigned a don’t-care color precisely
model all colorings that we need to check to verify that Ψ is a yes-instance.

We describe Φ by giving a graph H together with a total order of its vertices with
the usual interpretation that the vertices are the variables of Φ, the total order is the
order of quantification of the variables, and the edges of H define the conjunction of
predicates E(·, ·) which forms the quantifier-free part φ of Φ.

. . .
x y w q z a b c

u3 u2 u1un u4

Fig. 4.1. The edge gadget (here, as an example, x is an ∃ vertex while y is a ∀ vertex).

We start constructing H by adding the vertices v1, v2, . . . , vN and no edges. Then
we add new vertices u1, u2, . . . , un and make them pairwise adjacent.

We make each vi adjacent to u1, and if bi = n (i.e., if vi was quantified ∀), then
we also make vi adjacent to u2, u3, . . . , un.

We complete H by introducing for each edge xy ∈ E(G), a gadget consisting of
new vertices w, q, z, a, b, c with edges wa,wb, qb, qc, za, zb, and we connect this gadget
to the rest of the graph as follows: we make x adjacent to a, make y adjacent to b,
make a adjacent to u1, make c adjacent to u1, u2, u3, and make each of a, b, c adjacent
to u4, . . . , un. We refer to Figure 4.1 for an illustration.



7

The total order of V (H) first lists u1, u2, . . . , un, then v1, v2, . . . , vN (exactly in
the same order as quantified in Ψ), and then lists the remaining vertices of each
gadget, in turn, as depicted in Figure 4.1 (listing w, q, z, a, b, c in this order).

We consider the game G (Φ,K2n) of Prover and Adversary played on Φ where
Prover and Adversary take turns, for each variable in Φ in the order of quantification,
respectively providing a set of n colors and choosing a color from the set. Prover wins
if this process leads to a proper 2n-coloring ofH (no adjacent vertices receive the same
color), otherwise Prover loses and Adversary wins. The formula Φ is a yes-instance if
and only if Prover has a winning strategy.

Without loss of generality (up to renaming colors), we may assume that the
vertices u1, u2, . . . , un get assigned colors n + 1, n+ 2, . . . , 2n, respectively, i.e., each
ui gets color n + i. (The edges between these vertices make sure that Prover must
offer distinct colors while Adversary has no way of forcing a conflict, since there are
2n colors available.)

Lemma 4.1. If Adversary is allowed to choose for the vertices x, y in the edge
gadget (Figure 4.1) the same color from {1, 2, . . . , n}, then Adversary wins.

If Adversary is allowed to choose n+ 1 for x or y, then Adversary also wins.
In all other cases, Prover wins.

Proof. If Prover offers n+ 1 for x or y, then Adversary can choose this color (for
x or y) and Prover immediately loses, since both x and y are adjacent to u1 which is
assumed to be assigned the color n+1. (Prover loses since the coloring is not proper.)

Assume that x and y are assigned the same color i from {1, 2, . . . , n}. We describe
a winning strategy for Adversary. Consider the set of n colors Prover offers for w.
Since the colors are distinct and there is n of them, at least one of the colors, denote
it k, is different from i and each of n+ 1, n+ 4, n+ 5, . . . , 2n. Adversary chooses the
color k for w.

Then consider the n colors Prover offers for q. If any of the n colors, denote it
j, is from {1, 2, . . . , n}, then Adversary chooses the color j for q, which makes Prover
lose when considering the vertex c where Prover must offer n values different from
n + 1, n + 2, . . . , 2n and from j ∈ {1, 2, . . . , n}, which is impossible. (Note that c is
adjacent to q as well as u1, u2, . . . , un.)

Therefore we may assume that Prover offers the set {n+ 1, n+ 2, . . . , 2n} for q.
Let ℓ be any color in the set {n+ 2, n+ 3} \ {k}. By definition, ℓ is different from k,
and clearly also different from i, since i ∈ {1, 2, . . . , n} while ℓ ∈ {n+ 2, n+ 3}. We
make Adversary choose the color ℓ for q.

Now if Prover offers for z a color, denote it r, different from i, k and each of n+1,
n + 4, n + 5, . . . , 2n, then Adversary chooses this color and Prover loses at a when
she has to provide n colors distinct from i, k, r, n + 1, n + 4, n + 5, . . . , 2n, which is
impossible. Similarly, Prover loses, this time at b, if she offers for z a color different
from i, k, ℓ, n+4, n+5, . . . , 2n. Notice that there is no set of n values that excludes
both these situations, since i, k, ℓ, n+1, n+4, . . . , 2n are distinct values. This shows
that Adversary wins no matter what Prover does.

Now, for the second part of the claim, assume that x and y are either given
distinct colors different from n+ 1, or same colors from {n+ 2, n+ 3, . . . , 2n}. This
time Prover wins no matter what Adversary does.

First, assume that x and y have distinct colors i and j, respectively where i, j 6=
n+ 1. We consider three cases.

Case 1: assume that j ∈ {n + 4, n + 5, . . . , 2n}. Then we have Prover offer for the
vertices w and q the set {n+1, n+2, . . . , 2n}. Let k be the color chosen by Adversary
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for w, and let ℓ be the color chosen for q.
If {i, k, n+ 1, n + 4, n+ 5, . . . , 2n} contains n distinct elements, we have Prover

offer this set for z; otherwise Prover offers any set of n distinct elements for z. Let
r be the color chosen for z. Now Prover offers for a any set of n colors disjoint from
{i, k, r, n+1, n+4, . . . , 2n}, which is possible since r ∈ {i, k, n+1, n+4, . . . , 2n}. For
b Prover offers any set of n colors disjoint from {j, k, ℓ, r, n+4, . . . , 2n}, which is again
possible because j ∈ {n + 4, . . . , 2n}. Finally, Prover offers {1, 2, . . . , n} for c. It is
now easy to see that any choice of Adversary yields a proper coloring and so Prover
wins, as claimed.

Case 2: assume that i ∈ {n + 4, n + 5, . . . , 2n}. We similarly have Prover offer
{n + 1, n + 2, . . . , 2n} for both w and q, and let k and ℓ be the colors chosen by
Adversary for the two vertices. If {j, k, ℓ, n + 4, n + 5, . . . , 2n} contains n distinct
elements, Prover offers this set for z; otherwise Prover offers any set of n distinct
elements. Just like in Case 1.1, this now allows us to choose n distinct colors for each
of a, b, c so that none of the colors appears on their neighbors. So again, for any choice
of Adversary, Prover wins as required.

Case 3: assume that i, j 6∈ {n+ 4, n+ 5, . . . , 2n}. Recall that i, j 6= i+ 1 and i 6= j.
Thus we have Prover offer for w the set {n + 1, i, j, n+ 4, . . . , 2n} and for q the set
{n+ 1, . . . , 2n}. Let k be the color chosen by Adversary for w, and let ℓ be the color
chosen for q.

Suppose first that k ∈ {i, n+ 1, n+ 4, . . . , 2n}. If {j, k, ℓ, n+ 4, . . . , 2n} contains
n distinct elements, Prover offers this set for z; otherwise, she offers any set for z.
Again, for each of a, b, c, there are at most n colors used on their neighbors and so
Prover can offer each of a, b, c a set of n colors distinct from their neighbors to get a
proper coloring for any choice of Adversary.

So we may assume that k = j. In this case, we have Prover offer the set
{i, n+ 1, n+ 4, . . . , 2n} for z. Again, for each of a, b, c we have n colors distinct from
their neighbors and we can thus complete a proper coloring regardless of Adversary’s
choices. Thus Prover wins in any situation.

This exhausts all possibilities for when x, y have distinct colors different from
n + 1. To finish the proof, it remains to consider the case when x, y have the same
color i from {n + 2, n + 3, . . . , 2n} In this case, Prover offers for the vertices w, q, z
the set {n+ 1, n+ 2, . . . , 2n}, while for a, b, c Prover offers the set {1, 2, . . . , n}. It is
easy to see that any choice of Adversary yields a proper coloring. Thus Prover wins
as required. This concludes the proof.

Lemma 4.2. Φ is a yes-instance of {n}-CSP(K2n) if and only if Ψ is a yes-
instance of QCSP(Kn).

Proof. We treat the colors n+2, n+3, . . . , 2n as don’t care colors, while 1, 2, . . . , n
will be the actual colors used for coloring G. By Lemma 4.1, the edge gadget makes
sure that vertices x, y do not receive the same colors unless at least one of the colors
is from {n + 2, n + 3, . . . , 2n} (the don’t-care colors). This implies that Φ correctly
simulates Ψ whereby Prover offers {1, 2, . . . , n} for each ∀ variable of Ψ, and offers
{i, n+2, n+3, . . . , 2n} for each ∃ variable of Ψ where i ∈ {1, 2, . . . , n}. Note that the
construction forces Prover to offer {1, 2, . . . , n} for each ∀ variable, while for each ∃
variable Prover must offer n values excluding the value n + 1. In the latter case we
may assume that the set of offered values is of the form {i, n+2, n+3, . . . , 2n}, where
i ∈ {1, 2, . . . , n}, since offering more values from {1, 2, . . . , n} makes it even easier for
Adversary to win (has more choices to force a monochromatic edge).

Thus this shows that Φ indeed correctly simulates Ψ as required.
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Theorem 4.3. {n}-CSP(K2n) is Pspace-complete for all n ≥ 3.
Proof. The claim follows from the previous two lemmas. We finish the proof

by remarking that the construction of Φ is polynomial in the size of Ψ (in fact the
reduction is in L). Thus, since QCSP(Kn) is Pspace-hard, so is {n}-CSP(K2n).

. . . . . . • • . . . • •
x1 x2 xj y1 y2 yj

z1 z2
zj w

Fig. 4.2. The gadget Gj .

4.2. Other Pspace-complete cases. We now discuss the remaining Pspace-
complete cases of Theorem 1.1. Similar to Theorem 4.3, the reductions will also be
from the quantified coloring problem.

Proposition 4.4. If 1 < j, then {j}-CSP(K2j+1) is Pspace-complete.

Proof. The proof is by reduction from QCSP
(

K(2j+1

j )

)

. The key part of our proof

involves the gadget Gj (Figure 4.2) having vertices x1, . . . , xj , y1, . . . , yj, z1, . . . , zj, w
and all possible edges between {x1, . . . , xj} and {z1, . . . , zj}, and between w and
{y1, . . . , yj , z1, . . . , zj}. The leftmost 2j vertices represent free variables x1, . . . , xj ,
y1, . . . , yj. Observe that ∃≥jz1, . . . , zj , w φGj

is true on K2j+1 iff |{x1, . . . , xj} ∩
{y1, . . . , yj}| < j. If |{x1, . . . , xj}| = |{y1, . . . , yj}| = j, then this is equivalent to
{x1 . . . xj} 6= {y1 . . . yj}. We use this gadget to encode the edge relation of K(2j+1

j )
by representing vertices as sets {a1, . . . , aj} ⊂ {1, . . . , 2j + 1} with |{a1, . . . , aj}| = j.

Consider an instance Ψ of QCSP
(

K(2j+1

j )

)

. We construct the instance Ψ′ of

{j}-CSP(K2j+1) as follows. From the graph Dψ, build Dψ′ by transforming each
vertex v into an independent set of j vertices {v1, . . . , vj}, and each edge uv of Dψ we
transform to an instance of the gadget Gj in which the 2j free variables correspond
to u1, . . . , uj, v1, . . . , vj . The other variables of the gadget {z1, . . . , zj, w} are unique
to each edge and are quantified innermost in Ψ′ in the order z1, . . . , zj, w.

It remains to explain the quantification of the variables of the form v1, . . . , vj .
We follow the quantifier order of Ψ. Existentially quantified variables ∃v of Ψ are
quantified as ∃≥jv1, . . . , vj in Ψ′. Universally quantified variables ∀v of Ψ are also
quantified ∃≥jv1, . . . , vj in Ψ′, but we introduce additional variables v1,1, . . . , v1,j+1,
. . . , vj,1, . . . , vj,j+1 before v1, . . . , vj in the quantifier order of Ψ′. For each i ∈
{1, . . . , j}, we join vi,1, . . . , vi,j+1 into a clique with vi.

We show that K(2j+1

j ) |= Ψ iff K2j+1 |= Ψ′. Observe there is a natural bijection

π from subsets of j elements of Kn to vertices of K(2j+1

j ). In the simulation of

QCSP
(

K(2j+1

j )

)

in {j}-CSP(K2j+1), Adversary may be seen to take on the role of

denying K(2j+1

j ) |= Ψ while Prover is asserting that it is true. Thus, Adversary
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may always be assumed to play variables v1, . . . , vj such that |{v1, . . . , vj}| = j,
because otherwise he is simply making the job of Prover easier (by the properties of
the gadget Gj). The behavior of existential quantification in the simulation is easy
to see, but we will consider more carefully the behavior of universal quantification.
The additional v1,1, . . . , v1,j+1, . . . , vj,1, . . . , vj,j+1 cause that every possible subset
{a1, . . . , aj} ⊂ {1, . . . , 2j + 1} can be forced by Adversary on v1, . . . , vj . Indeed,
Adversary may force any single element on vi by avoiding it in vi,1, . . . , vi,j+1.

(⇒) Assume K(2j+1

j ) |= Ψ. However Prover plays the variables in Ψ′ correspond-

ing to universal variables of Ψ, she will be able to find a witness set π−1(a) for the
variables in Ψ′ corresponding to an existential variable x in Ψ, precisely because that
existential variable has some witness a ∈ V (K(2j+1

j )).

(⇐) Assume K2j+1 |= Ψ′. No matter how Prover plays to win G (Ψ′,K2j+1),
she will have possible witnesses sets {a1, . . . , aj} for variables {v1, . . . , vj} in Ψ′

corresponding to an existential variable v of Ψ, for all sets {b1, . . . , bj} ⊂ {1, . . . , 2j+1}
corresponding to universal variables {u1, . . . , vj} of Ψ (because of the behavior of the
universal variable simulation). Thus the existential witness π({a1, . . . , aj}) may be
used in Ψ for v, and the result follows.

Corollary 4.5. If 1 < j < n/2, then {j}-CSP(Kn) is Pspace-complete.

Proof. We reduce from {j}-CSP(K2j+1) and appeal to Proposition 4.4. Given
an input Ψ for {j}-CSP(K2j+1), we build an instance Ψ′ for {j}-CSP(Kn) by adding
an (n − 2j − 1)-clique on new variables, quantified outermost in Ψ′, and link by an
edge each variable of this clique to every other variable. Adversary chooses n− 2j− 1
elements of the domain for this clique, effectively reducing the domain size to 2j + 1
for the rest. Thus Kn |= Ψ′ iff K2j+1 |= Ψ follows.

Proposition 4.6. If 1 < j ≤ n, then {1, j}-CSP(Kn) is Pspace-complete.

Proof. By reduction from QCSP(Kn). We simulate existential quantification
∃v by itself, and universal quantification ∀v by the introduction of (n − j + 1) new
variables v1, . . . , vn−j , joined in a clique with v, and quantified by ∃≥j before v (which
is also quantified by ∃≥j). The argument follows as in Proposition 4.4.

4.3. Logspace cases. Define the n-star K1,n to be the graph with vertex set
{0, 1, . . . , n} and edge set {(0, j), (j, 0) : j ≥ 1} where 0 is called the hub and the
remaining vertices are called leaves.

Proposition 4.7. If X ∩ {1, . . . , ⌊n/2⌋} = ∅, then X-CSP(Kn) is in L.

Proof. Instance Ψ of X-CSP(Kn) of the form ∃≥λ1x1 . . . ∃≥λmxm ψ(x1, . . . , xm)
induces the graph Dψ, which we may consider totally ordered (the order ≺ is given
left-to-right ascending by the quantifiers). We claim that Kn |= Ψ iff Dψ does not
contain as a subgraph (not necessarily induced) a (n − λi + 1)-star in which the
n− λi + 1 leaves all come before the hub xi in the ordering.

(⇒) If Dψ contains such a star, then Ψ is a no-instance, as we may give a winning
strategy for Adversary in the game G (Ψ,Kn). Adversary should choose distinct values
for the variables associated with the n−λi+1 leaves of the star (can always be done as
each of the possible quantifiers assert existence of > n/2 elements and n−λi < n/2),
whereupon there is no possibility for Prover to choose λi witnesses to the variable xi
associated with the hub.

(⇐) If Dψ does not contain such a star, then we give the following winning
strategy for Prover in the game G (Ψ,Kn). Whenever a new variable comes up, its
corresponding vertex in Dψ has l < n − λi + 1 adjacent predecessors, which were
answered with b1, . . . , bl. Prover suggests any set of size λi from B \ {b1, . . . , bl}
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(which always exists) and the result follows.

4.4. Polynomial-time algorithm for {2}-CSP(K4). In this section, we
analyze the last remaining case of Theorem 1.1. In particular, we describe a
polynomial-time algorithm for the problem {2}-CSP(K4).

The template K4 has vertices {1, 2, 3, 4} and all possible edges between distinct
vertices. As before, we consider an instance Ψ := ∃≥2v1 . . .∃

≥2vNψ of {2}-CSP(K4)
as a graph G = Dψ with vertex set V (G) = {v1, . . . , vN} and edge set E(G) =
{vivj | E(vi, vj) appears in ψ}, and with a linear order ≺ where v1 ≺ v2 ≺ . . . ≺ vN .

We iteratively construct the following three sets: R+, R−, and F . The set F will
be a collection of unordered pairs of vertices of G, while R+ and R− will consist of
unordered triples of vertices. (For simplicity we write xy ∈ F in place of {x, y} ∈ F ,
and write xyz ∈ R+ or R− in place of {x, y, z} ∈ R+ or R−.)

The meaning of these sets is as follows. A pair xy ∈ F where x ≺ y indicates that
Prover in order to win must offer values so that the value f(x) chosen by Adversary
for x is different from the value f(y) chosen for y. A triple xyz ∈ R+ where x ≺ y ≺ z
indicates that if Adversary chose f(x) 6= f(y), then Prover must offer one (or both)
of f(x), f(y) for z. A triple xyz ∈ R− where x ≺ y ≺ z tells us that Prover must offer
values different from f(x), f(y) if f(x) 6= f(y).

With this, we describe how to iteratively compute the three sets F , R+, R−. We
start by initializing the sets as follows: F = E(G) and R+ = R− = ∅. Then we
perform the following rules as long as possible:

(X1) If there are x, y, z ∈ V (G) such that {x, y} ≺ z where xz, yz ∈ F , then add
xyz into R−.

(X2) If there are vertices x, y, w, z ∈ V (G) such that {x, y, w} ≺ z with wz ∈ F
and xyz ∈ R−, then add xyw into R+.

(X3) If there are x, y, w, z ∈ V (G) such that {x, y, w} ≺ z with wz ∈ F and
xyz ∈ R+, then if {x, y} ≺ w, then add xyw into R−

else add xw and yw into F .

(X4) If there are vertices x, y, w, z ∈ V (G) such that {x,w} ≺ y ≺ z with xyz ∈ R+

and wyz ∈ R−, then add xw into F , and add xwy into R+.

(X5) If there are vertices x, y, w, z ∈ V (G) such that {x, y, w} ≺ z where either
xyz, wyz ∈ R+, or xyz, wyz ∈ R−, then add xyw into R+.

(X6) If there are vertices x, y, q, w, z ∈ V (G) such that {x, y, w} ≺ q ≺ z where
either xyz, wqz ∈ R+, or xyz, wqz ∈ R−, then add xyw and xyq into R+.

(X7) If there are vertices x, y, q, w, z ∈ V (G) such that {x, y, w} ≺ q ≺ z where
either xyz ∈ R+ and wqz ∈ R−, or xyz ∈ R− and wqz ∈ R+, then add xyq
into R−, and if {x, y} ≺ w, also add xyw into R−,

else add xw and yw into F .
We then have the following theorem.

Theorem 4.8. The following are equivalent:
(i) K4 |= Ψ

(ii) Prover has a winning strategy in G (Ψ,K4).

(iii) Prover can play so that in every execution of the game, the resulting mapping
f : V (G) → {1, 2, 3, 4} satisfies the following properties:

(S1) For every xy ∈ F , we have: f(x) 6= f(y).
(S2) For every xyz ∈ R+ such that x ≺ y ≺ z:

if f(x) 6= f(y), then f(z) ∈
{
f(x), f(y)

}
.
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(S3) For every xyz ∈ R− such that x ≺ y ≺ z:
if f(x) 6= f(y), then f(z) 6∈

{
f(x), f(y)

}
.

(iv) there is no triple xyz in R+ such that x ≺ y ≺ z and (see Figure 4.3)
– xz ∈ F or yz ∈ F ,
– or xwz ∈ R− for some w ≺ z (possibly w = y),
– or ywz ∈ R− for some y ≺ w ≺ z.

x y z x y z x y zw

x

y

w

z x y zw

R−

R+

F

Fig. 4.3. Pictorial representation of the five forbidden configurations of Theorem 4.8.

Proof. (i) ⇐⇒ (ii) is by definition. (iii)⇒(ii) is implied by the fact that F ⊇
E(G), and that by (iii) Prover can play to satisfy (S1). Thus in every execution of
the game the mapping f is a homomorphism of G to K4 ⇒ (ii).

(ii)⇒(iii): Suppose that Prover plays a winning strategy in the game G (Ψ,K4)
but (iii) fails. We show that this is impossible. Namely, we show how Adversary can
play to win. Consider an execution of the game producing a mapping f .

We say that (S1) fails at a vertex v if there exists a ∈ V (G) with a ≺ v such
that av ∈ F and f(a) = f(v). We say that (S2) fails at v if there exist a, b ∈ V (G)
with a ≺ b ≺ v such that abv ∈ R+ while f(a) 6= f(b) and f(v) 6∈ {f(a), f(b)}. We
say that (S3) fails at v if there exist a, b ∈ V (G) with a ≺ b ≺ v such that abv ∈ R−

while f(a) 6= f(b) and f(v) ∈ {f(a), f(b)}.
Since (iii) fails, there is an execution of the game producing a mapping f that

fails (S1)-(S3) at some vertex v. Among all such executions, pick one for which v is
largest possible with respect to the order ≺. We will show that this is impossible,
namely we will produce a (possibly) different execution violating the maximality of
this choice. Note that, since we assume that Prover plays a winning strategy, the
mapping f is a homomorphism of G to K4.

Case 1: Suppose that (S1) fails at v. Then there is a ≺ v such that av ∈ F and
f(a) = f(v). If av ∈ E(G), then the mapping f is not a homomorphism of G to K4.
Thus Adversary wins, which contradicts (ii). So we may assume that av 6∈ E(G).
This implies that av was added to F using one of the rules (X3), (X4), (X7).

Case 1.1: Suppose that av was added to F using (X3). Then there exist vertices
x, y, w, z where {x, y, w} ≺ z and {x, y} 6≺ w such that wz ∈ F and xyz ∈ R+, and
either a ∈ {x, y} and v = w, or v ∈ {x, y} and a = w. In particular, since f(a) = f(v),
we deduce that f(x) = f(w) or f(y) = f(w).

We may assume by symmetry that x ≺ y. Recall that {x, y} 6≺ w. Thus {x,w} ≺
y. Consider the point of the execution of the game producing f when Prover offers
values for y. From this point on, we have Adversary play as follows: for y, if f(x) =
f(w), choose any value that is different from f(w); if f(x) 6= f(w), choose f(y) for y.
Let β denote the value chosen for y. Observe that the choice is always possible, since
Prover offers for y two distinct values, one of which is f(y). Moreover, the choice
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guarantees that f(x) 6= β, since either f(x) = f(w) 6= β or f(x) 6= f(w) = f(y) = β.
For this, recall that f(x) = f(w) or f(y) = f(w). Then for z, if f(w) is offered by
Prover, we let Adversary choose f(w) for z; otherwise Adversary chooses any value
different from f(x) and β. Let α denote the value chosen for z. Again, note that the
choice is always possible, in particular in the latter case where Prover offers for z two
distinct values, neither of which is f(w), while f(w) = f(x) or f(w) = f(y) = β. For
the remaining vertices, we let Adversary play any choices. This produces a (possibly)
different execution of the game. It follows that this execution fails (S1) or (S2) at z.
Namely, if f(w) was offered for z, then α = f(w) and (S1) fails at z, since wz ∈ F . If
f(w) was not offered for z, then α 6∈ {f(x), β}, in which case (S2) fails at z, because
xyz ∈ R+. However, since v ≺ z, this contradicts our choice of v.

Case 1.2: Suppose that av was added to F using (X4). Then there exist vertices
x, y, w, z where {x,w} ≺ y ≺ z such that xyz ∈ R+ and wyz ∈ R−, and where
{x,w} = {a, v}. In particular, we deduce that f(x) = f(w).

We consider the point when Prover offers values for y and have Adversary play as
follows: for y, choose any value different from f(x); let β denote this value. Note that
β 6= f(x). Then for z, choose any value, denote it α, and then play any choices for
the remaining vertices. The execution this produces fails (S2) or (S3) at z. Namely,
if α 6∈ {f(x), β}, then (S2) fails, since xyz ∈ R+, while if α ∈ {f(x), β}, then (S3)
fails, since f(x) = f(w) and wyz ∈ R−. This again contradicts our choice of v, since
v ≺ z.

Case 1.3: Suppose that av was added to F using (X7). Then there exist vertices
x, y, q, w, z where {x, y, w} ≺ q ≺ z and {x, y} 6≺ w such that xyz ∈ R+, wqz ∈ R−, or
xyz ∈ R−, wqz ∈ R+, and such that a ∈ {x, y} and v = w, or a = w and v ∈ {x, y}.
Since f(a) = f(v), we deduce that f(x) = f(w) or f(y) = f(w).

By symmetry, assume x ≺ y. Thus {x,w} ≺ y ≺ q ≺ z because {x, y} 6≺ w.
We have Adversary play from y as follows: for y, if f(x) = f(w), choose any value
different from f(w); if f(x) 6= f(w), choose f(y) for y. Let β denote the value chosen
for y. Note that f(x) 6= β and f(w) ∈ {f(x), β}, since either f(x) = f(w) 6= β
or f(x) 6= f(w) = f(y) = β. For this, recall that f(x) = f(w) or f(y) = f(w).
Next, for q, we let Adversary choose any value different from f(w), and denote it
γ. Note that γ 6= f(w). Finally, for z, if xyz ∈ R+ and wqz ∈ R−, Adversary
chooses f(w) if offered by Prover, and if not, he chooses any value different from
f(x) and β. Similarly, if xyz ∈ R− and wqz ∈ R+, Adversary chooses f(x) or β if
offered by Prover, and otherwise he chooses any value different from f(w) and γ. Let
α denote the value chosen for z. Again, we see that this choice is always possible,
since f(w) ∈ {f(x), β}. Adversary plays any choices for the rest. We claim that the
execution this produces fails (S2) or (S3) at z. Namely, if xyz ∈ R+ and wqz ∈ R−,
then (S2) fails at z if α 6∈ {f(x), β}, since xyz ∈ R+, while if α ∈ {f(x), β}, then (S3)
fails at z, since in that case we must have α = f(w) 6= γ by the choice of α, while
wqz ∈ R−. Similarly, if xyz ∈ R− and wqz ∈ R+, then either α ∈ {f(x), β} and (S3)
fails at z, since xyz ∈ R−, or α 6∈ {f(x), β} in which case α 6∈ {f(w), γ} and (S2)
fails, since wqz ∈ R+. Since v ≺ z, this contradicts our choice of v.

From now on, we may assume that (S1) does not fail at v.

Case 2: Suppose that (S2) fails at v. Then there are vertices a, b with a ≺ b ≺ v
such that abv ∈ R+ while f(a) 6= f(b) and f(v) 6∈ {f(a), f(b)}. Since the set R+ is
initially empty, the triple abv was added to R+ by one of the rules (X2), (X4), (X5),
or (X6).
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Case 2.1: Suppose that abv was added to R+ using (X2). Then there exist
vertices x, y, w, z where {x, y, w} ≺ z such that wz ∈ F and xyz ∈ R−, and where
{a, b, v} = {x, y, w}. We deduce that f(x), f(y), f(w) are three distinct values, since
f(a), f(b), f(v) are. We have Adversary play from z as follows: for z, from the two
offered values, one will be in {f(x), f(y), f(w)}; choose this value α. For the rest,
play any choices. It follows that this execution fails (S1) or (S3) at z. Namely, if
α = f(w), then (S1) fails, since wz ∈ F , while if α ∈ {f(x), f(y)}, then (S3) fails,
since xyz ∈ R−. This contradicts our choice of v, since v ≺ z.

Case 2.2: Suppose that abv was added to R+ using (X4). Then there are vertices
x, y, w, z where {x,w} ≺ y ≺ z such that xyz ∈ R+ and wyz ∈ R−, and where
{a, b, v} = {x, y, w}. Again, we deduce that f(x), f(y), f(w) are pairwise distinct.
Adversary plays from z as follows: for z, if f(y) is offered, choose f(y); otherwise,
choose any value different from f(x). For the rest, play any choices. Let α be the
value chosen for z. We claim that this execution fails (S2) or (S3) at z. Namely, if
α = f(y), then (S3) fails, since f(w) 6= f(y) and wyz ∈ R−, while if α 6= f(y), then
α 6∈ {f(x), f(y)}, in which case (S2) fails, since f(x) 6= f(y) and xyz ∈ R+. This
contradicts our choice of v, since v ≺ z.

Case 2.3: Suppose that abv was added to R+ using (X5). Then there exist vertices
x, y, w, z where {x, y, w} ≺ z such that either xyz, wyz ∈ R+ or xyz, wyz ∈ R−,
and where {a, b, v} = {x, y, w}. Hence, we deduce that f(x), f(y), f(w) are pairwise
distinct. Adversary plays from z as follows: for z, if xyz, wyz ∈ R+, choose any
value different from f(y); if xyz, wyz ∈ R−, choose any value in {f(x), f(y), f(w)}.
For the rest, play any choices. Let α denote the value chosen for z. We claim that
this execution fails (S2) or (S3) at z. Namely, if xyz, wyz ∈ R+, then α 6= f(y)
and also α 6= f(x) or α 6= f(w), since f(x) 6= f(w). Thus (S2) fails, since either
α 6∈ {f(x), f(y)} and xyz ∈ R+, or α 6∈ {f(w), f(y)} and wyz ∈ R+. Similarly, if
xyz, wyz ∈ R−, then α ∈ {f(x), f(y), f(w)}. Thus if α ∈ {f(x), f(y)}, then (S3) fails,
since xyz ∈ R−, while if α = f(w), then (S3) fails, since wyz ∈ R−. This contradicts
the choice of v, since v ≺ z.

Case 2.4: Suppose that abv was added to R+ using (X6). Then there are vertices
x, y, q, w, z where {x, y, w} ≺ q ≺ z such that either xyz, wqz ∈ R+ or xyz, wqz ∈ R−,
and where either {a, b, v} = {x, y, w} or {a, b, v} = {x, y, q}. In either case, we have
f(x) 6= f(y). Adversary plays from q as follows: if f(w) ∈ {f(x), f(y)}, then choose
f(q) for q; otherwise choose any value different from f(w). Let γ denote the value
chosen for q. Then for z, if xyz, wqz ∈ R−, choose any value in {f(x), f(y), f(w), γ};
if xyz, wqz ∈ R+ and f(w) ∈ {f(x), f(y)}, choose any value different from f(w);
otherwise choose any value different from γ. Let α denote the value chosen for z.
Note that γ 6= f(w). Indeed, if f(w) 6∈ {f(x), f(y)}, then γ 6= f(w) by our choice.
If f(w) ∈ {f(x), f(y)}, then {a, b, v} 6= {x, y, w}, since f(a), f(b), f(v) are pairwise
distinct. Thus {a, b, v} = {x, y, q} implying that f(x), f(y), f(q) are pairwise distinct;
so f(w) 6= γ = f(q), since f(w) ∈ {f(x), f(y)}.

We claim that this execution fails (S2) or (S3) at z. Namely, if xyz, wqz ∈ R−,
then α ∈ {f(x), f(y), f(w), γ} and so (S3) either fails because α ∈ {f(x), f(y)} while
xyz ∈ R−, or it fails because α ∈ {f(w), γ} and f(w) 6= γ while wqz ∈ R−. If
xyz, wqz ∈ R+ and f(w) ∈ {f(x), f(y)}, then α 6= f(w) and γ = f(q) 6∈ {f(x), f(y)};
thus (S2) fails either because α 6∈ {f(x), f(y)} while xyz ∈ R+, or {α, f(w)} =
{f(x), f(y)} and γ 6∈ {f(x), f(y)} while wqz ∈ R+. Finally, if xyz, wqz ∈ R+ and
f(w) 6∈ {f(x), f(y)}, then α 6= γ, and (S2) fails either because α = f(w) while
xyz ∈ R+, or because α 6= f(w) and f(w) 6= γ 6= α, while wqz ∈ R+. This contradicts
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the choice of v, since v ≺ z.

Case 3: Suppose that (S3) fails at v. Then there are vertices a, b with a ≺ b ≺ v such
that abv ∈ R− while f(a) 6= f(b) and f(v) ∈ {f(a), f(b)}. Since the set R− is initially
empty, the triple abv was added to R− by one of the rules (X1), (X3), or (X7).

Case 3.1: Suppose that abv was added to R− using (X1). Then av, bv ∈ F and it
follows that (S1) fails at v. Namely, if f(v) = f(a), then (S1) fails, since av ∈ F ,
while if f(v) = f(b), then (S1) fails, since bv ∈ F . However, we assume that (S1) does
not fail at v (as this leads to Case 1), a contradiction.

Case 3.2: Suppose that abv was added to R− using (X3). Then there exist vertices
x, y, w, z where {x, y, w} ≺ z and {x, y} ≺ w such that wz ∈ F and xyz ∈ R+, and
where {a, b, v} = {x, y, w}. Since a ≺ b ≺ v, we have {a, b} = {x, y} and v = w. In
particular, we deduce that f(w) ∈ {f(x), f(y)}. Adversary plays from z as follows:
for z, if f(w) offered, choose this value; otherwise, choose any value different from
f(x) and f(y). Let α denote the value chosen for z. Note that this choice is always
possible, since Prover offers for z two distinct values; if neither is f(w), then at least
one of them is distinct from both f(x) and f(y), since f(w) ∈ {f(x), f(y)}. For the
rest, Adversary play any choices. We claim that this execution fails (S1) or (S2) at
z. Namely, if α = f(w), then (S1) fails at z, since wz ∈ F , while if α 6= f(w), then
α 6∈ {f(x), f(y)}, in which case (S2) fails, since f(x) 6= f(y) and xyz ∈ R+. This
contradicts the choice of v, since v ≺ z.

Case 3.3: Suppose that abv was added to R− using (X7). Then there are vertices
x, y, q, w, z where {x, y, w} ≺ q ≺ z such that either xyz ∈ R+ and wqz ∈ R−, or
xyz ∈ R− and wqz ∈ R+, and where either {a, b, v} = {x, y, q}, or where {x, y} ≺ w
and {a, b, v} = {x, y, w}. Since a ≺ b ≺ v, we deduce that {a, b} = {x, y} and
v ∈ {w, q}. In particular, f(x) 6= f(y) and either f(w) ∈ {f(x), f(y)} or f(q) ∈
{f(x), f(y)}. Adversary plays from q as follows: if f(w) 6∈ {f(x), f(y)}, then choose
f(q) for q; otherwise, choose any value different from f(w). Let γ denote the value
chosen for q. Then for z, if xyz ∈ R+ and wqz ∈ R−, choose f(w) or γ if offered,
else choose any value distinct from f(x) and f(y). Note that this choice is always
possible, since in the latter case Prover offers two distinct values, neither of which
is f(w), γ, while either f(w) ∈ {f(x), f(y)} or γ = f(q) ∈ {f(x), f(y)}. Similarly,
if xyz ∈ R− and wqz ∈ R+, we have Adversary choose f(x) or f(y) if offered, and
else choose any value distinct from f(w) and γ. Again, this choice is always possible,
since {f(w), γ} ∩ {f(x), f(y)} 6= ∅. Let α denote the value chosen for z. For the rest,
Adversary plays any choices. Note that γ 6= f(w). Indeed, if f(w) ∈ {f(x), f(y)},
then γ 6= f(w) by our choice. If f(w) 6∈ {f(x), f(y)}, then f(q) ∈ {f(x), f(y)} and
γ = f(q); thus γ 6= f(w), since γ is in {f(x), f(y)} while f(w) is not.

We claim that this execution fails (S2) or (S3) at z. Namely, if xyz ∈ R+ and
wqz ∈ R−, then either (S3) fails, since α ∈ {f(w), γ} while wqz ∈ R−, or (S2) fails,
since α 6∈ {f(x), f(y)} while xyz ∈ R+. Similarly, if xyz ∈ R− and wqz ∈ R+,
then either (S3) fails, since α ∈ {f(x), f(y)} while xyz ∈ R−, or (S2) fails, since
α 6∈ {f(w), γ} while wqz ∈ R+. This contradicts the choice of v, since v ≺ z.

This exhausts all possibilities. Therefore no such execution of the game exists,
which proves (ii)⇒(iii).

(iii)⇒(iv): Assume that Prover has a strategy as described in (iii), but (iv) fails,
i.e., there exists a triple xyz ∈ R+ such that x ≺ y ≺ z and either xz ∈ F , or yz ∈ F ,
or xwz ∈ R− for some w ≺ z, or ywz ∈ R− for some y ≺ w ≺ z. We show that this is
impossible. Namely, we show that there is a way that Adversary can play to violate
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the conditions of (iii). As usual, we let f denote the mapping produced during an
execution of the game.

Suppose first that xz ∈ F or yz ∈ F . Adversary plays as follows: until the
game reaches y, Adversary plays any choices. When the game reaches y, Prover
offers two values for y; from the two, Adversary chooses, as the value f(y), any
offered value that is different from f(x). Then Adversary again plays any choices
until the game reaches z when Prover offers two distinct values for z. If any of
the two values is not in {f(x), f(y)}, then Adversary chooses this value to be the
value f(z). Otherwise, he chooses f(x) if xz ∈ F , and chooses f(y) if yz ∈ F . For
the rest, Adversary plays any choices. It follows that the mapping f fails to satisfy
(S1) or (S2). Namely, if f(z) 6∈ {f(x), f(y)}, then (S2) fails, since f(x) 6= f(y) and
xyz ∈ R+. If f(z) ∈ {f(x), f(y)}, then either f(z) = f(x) in case xz ∈ F and so
(S1) fails, or f(z) = f(y) in case yz ∈ F and so (S1) fails again. This contradicts
our assumption (iii).

Now, assume that ywz ∈ R− for some y ≺ w ≺ z. Adversary again chooses f(x)
and f(y) to be distinct, and then chooses f(w) to be distinct from f(y). When z
is reached, Adversary chooses f(y) or f(w) if offered by Prover, and else he chooses
any value distinct from f(x). For the rest, Adversary plays any choices. It follows
that (S2) or (S3) fails for f . Namely, if f(z) ∈ {f(y), f(w)}, then (S3) fails, since
f(y) 6= f(w) and ywz ∈ R−. If f(z) 6∈ {f(y), f(w)}, then f(z) 6= f(x) and (S2) fails,
since f(x) 6= f(y) and xyz ∈ R+. This contradicts (iii).

Lastly, assume that xwz ∈ R− where w ≺ z (possibly w = y). Adversary
chooses f(x) and f(w) to be distinct and also chooses f(y) so that f(x) and f(y)
are distinct (possibly y = w). When z is reached, Adversary chooses f(x) or f(w)
if offered by Prover, and else he chooses any value distinct from f(y). For the rest,
Adversary plays any choices. Again, we have that (S2) or (S3) fails for f . Namely,
if f(z) ∈ {f(x), f(w)}, then (S3) fails, since f(x) 6= f(w) and xwz ∈ R−. If f(z) 6∈
{f(x), f(w)}, then also f(z) 6= f(y) in which case (S2) fails, since f(x) 6= f(y) and
f(z) 6∈ {f(x), f(y)}, while xyz ∈ R+. This again contradicts (iii).

This concludes the proof of (iii)⇒(iv).

(iv)⇒(iii): Assume (iv). We describe a strategy for Prover that will satisfy (iii).
As before, let f denote the mapping produced during the game. When asked to offer
values for z, Prover offers values as follows.

(1) If there exist x, y ∈ V (G) where x ≺ y ≺ z, xyz ∈ R+, f(x) 6= f(y), then
Prover offers {f(x), f(y)}.

(2) Else if there exist x, y ∈ V (G) where x ≺ y ≺ z, xyz ∈ R−, f(x) 6= f(y),
then Prover offers {1, 2, 3, 4} \ {f(x), f(y)}.

(3) Else if there exists x ∈ V (G) with x ≺ z and xz ∈ F , then Prover offers any
two values different from f(x).

(4) Else Prover offers any two values.

We prove that this strategy satisfies the conditions of (iii). For contradiction,
suppose that Adversary can play against this strategy so that the resulting mapping
f fails one of the conditions (S1)-(S3).

Consider the first point of the game when the value f(z) was assigned to z causing
one of (S1)-(S3) to fail. Recall that we assume (iv). We examine the three possibilities
as follows.

Case 1: Suppose that (S1) fails when the value is chosen for z. Namely, suppose that
there is a ∈ V (G) with a ≺ z where az ∈ F and f(a) = f(z). This means that f(a)
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was one of the values offered by Prover for z. Recall that Prover offered values for z
in steps (1)-(4) in that order.

Case 1.1: Suppose that Prover offered values for z in step (1). Then there exist
vertices x, y where x ≺ y ≺ z such that xyz ∈ R+ and f(x) 6= f(y), and Prover
offered {f(x), f(y)} for z. Thus f(a) ∈ {f(x), f(y)}, since f(a) = f(z). It follows that
a 6∈ {x, y}, since otherwise we contradict (iv). If {x, y} ≺ a, then we have xya ∈ R− by
(X3). But then (S3) is violated at a, since f(a) ∈ {f(x), f(y)}. Similarly, if {x, y} 6≺ a,
then we have xa, ya ∈ F by (X3), and (S1) is violated either at y if f(a) = f(y), or
else at a or x if f(a) = f(x). This contradicts our choice of z, since {x, y, a} ≺ z.

Case 1.2: Suppose that Prover offered values for z in step (2). Then there exist
vertices x, y where x ≺ y ≺ z such that xyz ∈ R− and f(x) 6= f(y), and Prover
offered for z the set {1, 2, 3, 4}\ {f(x), f(y)}. Since f(z) was chosen from this set, we
have f(z) 6∈ {f(x), f(y)}. Recall that f(a) = f(z). Thus also f(a) 6∈ {f(x), f(y)} and
hence a 6∈ {x, y}. This implies by (X2) that xya ∈ R+. But since f(a) 6∈ {f(x), f(y)}
and f(x) 6= f(y), we notice that f(a), f(x), f(y) are pairwise distinct, and hence,
(S2) is violated at either y or a, since xya ∈ R+. This contradicts our choice of z,
since {y, a} ≺ z.

Case 1.3: Suppose that Prover offered values for z in step (3). Then there exists
a vertex x where x ≺ z such that xz ∈ F and Prover offered for z a set of two
distinct values, neither of which was f(x). Since f(z) was chosen from this set, we
have f(z) 6= f(x). Recall that f(a) = f(z). Thus f(a) 6= f(x) and a 6= x. From
this we deduce using (X1) that xaz ∈ R−. Consequently, Prover should have offered
values in step (2), never reaching step (3), since f(a) 6= f(x) and xaz ∈ R−. Thus
Prover never reached step (3), a contradiction.

Case 1.4: Suppose that Prover offered values for z in step (4). Since step (4) was
reached, there is no x such that x ≺ z and xz ∈ F . Thus it is impossible that (S1)
failed when the value for z was chosen, a contradiction.

Case 2: Suppose that (S2) fails when the value is chosen for z. Namely, suppose that
there exist vertices a, b where a ≺ b ≺ z and abz ∈ R+ such that f(a) 6= f(b) and
f(z) 6∈ {f(a), f(b)}. Note that this implies that Prover offered values for z in step (1),
since we may always take x = a and y = b to satisfy the conditions of step (1). Thus
we only need to consider this possibility. Namely, we have that there exist vertices x, y
where x ≺ y ≺ z such that xyz ∈ R+ and f(x) 6= f(y), and Prover offered {f(x), f(y)}
for z. Thus f(z) ∈ {f(x), f(y)}. Recall that f(z) 6∈ {f(a), f(b)}. Hence {a, b} 6=
{x, y}. Moreover, since f(a) 6= f(b) and f(x) 6= f(y), it follows that {f(a), f(b)} 6=
{f(x), f(y)}, since {f(x), f(y)} contains f(z), and {f(a), f(b)} does not.

Assume first that {x, y} is disjoint from {a, b}. If y ≺ b, then we deduce using
(X6) that xya, xyb ∈ R+. This means that (S2) fails at b or at one of y, a, since
f(x) 6= f(y) and {f(a), f(b)} 6= {f(x), f(y)}. Similarly, if b ≺ y, we deduce using
(X6) that abx, aby ∈ R+, and (S2) fails at y or at one of b, x, since f(a) 6= f(b) and
{f(x), f(y)} 6= {f(a), f(b)}. This contradicts our choice of z, since {x, y, a, b} ≺ z.

So we may assume that {x, y} intersects {a, b}. If y ∈ {a, b}, then xab ∈ R+

by (X5). Recall that {f(a), f(b)} 6= {f(x), f(y)}. Since y ∈ {a, b}, we deduce that
f(x) 6∈ {f(a), f(b)}. This implies that f(x), f(a), f(b) are pairwise distinct, since
also f(a) 6= f(b). Thus (S2) fails at b, since xab ∈ R+. Similarly, if x ∈ {a, b},
then aby ∈ R+ by (X5) and we have f(y) 6∈ {f(a), f(b)}. Hence, f(a), f(b), f(y) are
pairwise distinct and so (S2) fails at y or b, since aby ∈ R+. This contradicts our
choice of z, since {y, b} ≺ z.



18 B. MARTIN AND J. STACHO

Case 3: Suppose that (S3) fails when the value is chosen for z. Namely, suppose
that there exist vertices a, b where a ≺ b ≺ z and abz ∈ R− such that f(a) 6= f(b)
and f(z) ∈ {f(a), f(b)}. Note that this implies that Prover offered values for z in
either step (1) or step (2), since we may always take x = a and y = b to satisfy the
conditions of step (2). Thus we only need to consider the steps (1) and (2).

Case 3.1: Suppose that Prover offered values for z in step (1). Then there exist
vertices x, y where x ≺ y ≺ z such that xyz ∈ R+ and f(x) 6= f(y), and Prover
offered {f(x), f(y)} for z. Thus f(z) ∈ {f(x), f(y)}. Recall that f(z) ∈ {f(a), f(b)}.
We deduce that {f(x), f(y)} ∩ {f(a), f(b)} 6= ∅.

Assume first that {a, b} and {x, y} are disjoint. If y ≺ b, then we deduce using
(X7) that xyb ∈ R− and either xya ∈ R− if {x, y} ≺ a, or else xa, ya ∈ F . Thus
if f(b) ∈ {f(x), f(y)}, then (S3) fails at b, since f(x) 6= f(y) and xyb ∈ R−. So
we may assume that f(b) 6∈ {f(x), f(y)} which yields that f(a) ∈ {f(x), f(y)}, since
{f(a), f(b)} ∩ {f(x), f(y)} 6= ∅. Thus if {x, y} ≺ a, we have xya ∈ R− and so (S3)
fails at a, since f(x) 6= f(y). If {x, y} 6≺ a, we have xa, ya ∈ F in which case (S1)
fails at either y or one of x, a. Similarly, if b ≺ y, we have by (X7) that aby ∈ R− and
either abx ∈ R− if {a, b} ≺ x, or ax, bx ∈ F if otherwise. Thus either (S3) fails at y if
f(y) ∈ {f(a), f(b)}, or we have f(x) ∈ {f(a), f(b)} in which case either (S3) fails at
x if {a, b} ≺ x, or (S1) fails at a or b or x if {a, b} 6≺ x. This contradicts our choice of
z, since {x, y, a, b} ≺ z.

Thus we may assume that {a, b} intersects {x, y}. Recall that a ≺ b and x ≺ y.
We observe that if x ∈ {a, b} or y = a, then we contradict (iv), the second or third
condition thereof, respectively. Thus it follows that x 6∈ {a, b} and y = b. From this
we deduce using (X4) that ax ∈ F and axy ∈ R+. We recall that f(x) 6= f(y)
and f(a) 6= f(b). Since y = b, we deduce that f(y) 6∈ {f(a), f(x)}. Thus either
f(a) = f(x) and (S1) fails at one of a, x, since ax ∈ F , or we have f(a) 6= f(x)
in which case (S2) fails at y, since axy ∈ R+ and f(y) 6∈ {f(a), f(x)}. This again
contradicts our choice of z, since {a, x, y} ≺ z.

Case 3.2: Suppose that Prover offered values for z in step (2). Then there exist
vertices x, y where x ≺ y ≺ z such that xyz ∈ R− and f(x) 6= f(y), and Prover
offered for z the set {1, 2, 3, 4} \ {f(x), f(y)}. Since f(z) was chosen from this set,
we have f(z) 6∈ {f(x), f(y)}. Recall that f(z) ∈ {f(a), f(b)} and f(a) 6= f(b). We
deduce that {f(a), f(b)} 6= {f(x), f(y)} and so {a, b} 6= {x, y}. Now we proceed
exactly as in Case 2.

If {x, y} is disjoint from {a, b}, we consider two cases: y ≺ b or b ≺ y. If y ≺ b,
then xya, xyb ∈ R+ by (X6), while if b ≺ y, we have abx, aby ∈ R+. In either case,
we deduce that (S2) fails at one of x, y, a, b, since {f(a), f(b)} 6= {f(x), f(y)}. If
{x, y}∩{a, b} 6= ∅, then we again have two cases: y ∈ {a, b} or x ∈ {a, b}. If y ∈ {a, b},
we have xab ∈ R+ by (X5) and we deduce that f(x), f(a), f(b) are pairwise distinct.
Thus (S2) fails at b, since xab ∈ R+. If x ∈ {a, b}, then aby ∈ R+ by (X5) and
f(y), f(a), f(b) are pairwise distinct. Thus (S2) fails at b or y, since aby ∈ R+. This
contradicts our choice of z, since {y, b} ≺ z.

This exhausts all possibilities. Thus we conclude that no such vertex z exists
which proves that the strategy for Prover described in steps (1)-(4) is indeed a strategy
satisfying the conditions of (iii). Therefore (iv)⇒(iii). This completes the proof.

We now have all pieces to prove the main theorem of this section.

Theorem 4.9. {2}-CSP(K4) is decidable in polynomial time.
Proof. By Theorem 4.8, it suffices to construct the sets F , R+, and R−, and check

the conditions of item (iv) of the said theorem. This can clearly be accomplished in
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polynomial time, since each of the three sets contains at most n3 elements, where n
is the number of variables in the input formula, and elements are only added (never
removed) from the sets. Thus either a new pair (triple) needs to be added as follows
from one of the rules (X1)-(X7), or we can stop and the output the resulting sets.

5. Cycles: proof of Theorem 1.2. Similarly to §4, we discuss the cases of
Theorem 1.2 individually. The case (i) will be proved as Proposition 5.2, and the case
(ii) follows from [22]. Finally, the case (iii) will be proved as Proposition 5.3.

Recall that we denote by Cn the irreflexive symmetric cycle on n vertices. We
consider Cn to have vertex set {0, 1, . . . , n − 1} and edge set

{
(i, j) : |i − j| ∈

{1, n− 1}
}
.

In the forthcoming proof, we use the following elementary observation from
additive combinatorics. Let n ≥ 2, j ≥ 1, and A,B be sets of integers. Define:

• A+n B =
{
(a+ b) mod n

∣
∣ a ∈ A, b ∈ B

}
• j ×n A = A+n . . .+n A

︸ ︷︷ ︸

j times

Lemma 5.1. Let n ≥ 3 and 2 ≤ j < n. Then
∣
∣
∣ j ×n {−1,+1}

∣
∣
∣ =

{
j + 1 n is odd
min

{
j + 1, n/2

}
n is even

∣
∣
∣n×n {−1,+1}

∣
∣
∣ =

∣
∣
∣n×n {−2, 0,+2}

∣
∣
∣=

{
n n is odd
n/2 n is even

Proposition 5.2. If n ≥ 3, then X-CSP(Cn) is in L if n = 4, or 1 6∈ X, or n
is even and X ∩ {2, 3 . . . , n/2} = ∅,

Proof. Let Ψ be an instance of X-CSP(Cn). Recall that we denote by Dψ the
graph corresponding to the quantifier-free part of Ψ, and write x ≺ y if x is quantified
before y in Ψ. For an edge xy of Dψ where x ≺ y, we say that x is a predecessor of
y. Note that a vertex can have several predecessors.

The following claims restrict the yes-instances of X-CSP(Cn).

Let x be a vertex of Dψ quantified in Ψ by ∃≥j for some j. If Cn |= Ψ then
(a) if j ≥ 3, then x has no predecessors,
(b) if n is even and j > n/2, then x is the first vertex (w.r.t. ≺) of some connected

component of Dψ, and
(c) if n 6= 4 and j = 2, then all predecessors of x except for its first predecessor

(w.r.t. ≺) are quantified by ∃≥1.

For (a), let y be a predecessor of x. Then for the value i chosen by Adversary
for y, Prover must offer a set of at least three vertices of Cn that are adjacent to i
in Cn. Since there are only two such vertices, Adversary can always choose for x a
vertex non-adjacent to i at which point Prover loses.

For (b), let y be the first vertex of the connected component ofDψ that contains x.
Assume y 6= x and consider the path P between x and y in Dψ . Without loss of
generality, we may assume that the value i chosen by Adversary for y is even. Note
that, because n is even, if the length of P is also even, then Adversary must choose an
even value for x, while if the length is odd, she must choose an odd value (otherwise
Prover loses). However, as j > n/2, the set provided by Prover for x contains both
an even and an odd number. Thus Adversary is allowed to choose for x the wrong
parity and Prover loses.

For (c), suppose that y and z with y ≺ z are predecessors of x where z is quantified
by ∃≥j

′

for some j′ ≥ 2. If i is the value chosen by Adversary for y, then Prover must
offer for z a set of j′ ≥ 2 values which hence must contain at least one value different
from i. Adversary then chooses this value i′ after which Prover must offer for x two
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distinct vertices i′′, i′′′ of Cn adjacent to both i and i′. But then i, i′, i′′, i′′ yield a
4-cycle in Cn, impossible if n 6= 4.

Using these claims, we prove the proposition. First, we consider the case n = 4.
We show that {1, 2, 3, 4}-CSP(C4) is in L. This will imply that X-CSP(C4) is in L
for every X . Observe that if Dψ contains a vertex x quantified by ∃≥3 or ∃≥4, then
by (b) this vertex is the first in its component (if Ψ is not a trivial no-instance). Thus
replacing its quantification by ∃≥1 does not change the truth of Ψ. So we may assume
that Ψ is an instance of {1, 2}-CSP(C4). We now claim that C4 |= Ψ if and only if
Dψ is bipartite. Clearly, if Dψ is not bipartite, it has no homomorphism to C4 and
hence C4 6|= Ψ. Conversely, assume that Dψ is bipartite with bipartition (A,B). Our
strategy for Prover offers the set {0, 2} or its subsets for the vertices in A and offers
{1, 3} or its subsets for every vertex in B. It is easy to verify that this is a winning
strategy for Prover. Thus C4 |= Ψ. The complexity now follows as checking (b) and
checking if a graph is bipartite is in L by [33].

Now, we may assume n 6= 4, and next we consider the case 1 6∈ X . If also 2 6∈ X ,
then by (a) the graph Dψ contains no edges (otherwise Ψ is a trivial no-instance).
This is clearly easy to check in L. Thus 2 ∈ X . We claim that if we satisfy (a) and
(c), then Cn |= Ψ. We provide a winning strategy for Prover. Namely, for a vertex
x, if x has no predecessors, offer any set for x. If x has a unique predecessor y for
which the value i was chosen, then x is quantified by ∃≥2 (or ∃) by (a) and we offer
{i− 1, i+ 1} (mod n) for x . There are no other cases by (a) and (c). It follows that
Prover always wins with this strategy. In terms of complexity, it suffices to check (a)
and (c) which is in L.

Finally, suppose that n is even and X ∩ {2 . . . n/2} = ∅. Note that every vertex
of Dψ is either quantified by ∃≥1 or by ∃≥j where j > n/2. Thus, using (b), unless Ψ
is a trivial no-instance, we can again replace every ∃≥j in Ψ by ∃≥1 without changing
the truth of Ψ. Hence, we may assume that Ψ is an instance of {1}-CSP(Cn). Thus,
as n is even, Cn |= Ψ if and only if Dψ is bipartite. The complexity again follows
from [33]. This concludes the proof.

Proposition 5.3. Let n ≥ 3. Then X-CSP(Cn) is Pspace-complete if n 6= 4
and {1, j} ⊆ X: where j ∈ {2, . . . , n} if n is odd and j ∈ {2, . . . , n/2} if n is even.

Proof. The proof is by reduction from QCSP(Cn) for odd n, and from
QCSP(Kn/2) for even n. Both problems are known to be Pspace-hard [4].

First, consider the case of odd n. Let Ψ be an instance of QCSP(Cn). In other
words, Ψ is an instance of {1, n}-CSP(Cn). Clearly, j < n otherwise we are done.

We modify Ψ by replacing each universally-quantified variable x of Ψ by a path.
Namely, let πx denote the pp-formula that encodes that

x11, x
1
2, . . . , x

1
j−1, x

2
1, x

2
2, . . . , x

2
j−1, . . . , xn1 , x

n
2 , . . . , x

n
j−1, x

is a path in that order (all but x are new variables). We replace ∀x by

Qx = ∃≥jx11 ∃≥jx21 . . . ∃
≥jxn1 ∃≥jx ∃≥1x12 . . . ∃

≥1x1j−1 . . . ∃≥1xn2 . . . ∃
≥1xnj−1

and append πx to the quantifier-free part of the formula. Let Ψ′ denote the final
formula after considering all universally quantified variables. Note that Ψ′ is an
instance of {1, j}-CSP(Cn).

We argue that Cn |= Ψ if and only if Cn |= Ψ′. To see this, it suffices to show
that Ψ′ correctly simulates the universal quantifiers of Ψ. Namely, it suffices to prove
that Cn |= Qxπx, and for each ℓ ∈ {0, . . . , n− 1}, Adversary has a strategy on Qxπx
that evaluates x to ℓ.

For the first part, we provide a strategy for Prover. We treat x as xn+1
1 . For x11,

Prover offers any set. For xk1 where k ≥ 2, let i be the value chosen by Adversary
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3n/2 copies of Cn

Fig. 5.1. The gadget for the case of even n where r = (−n/2− 2) mod (j − 1).

for xk−1
1 . By Lemma 5.1, we observe that there are exactly j vertices in Cn having

a walk to i of length j − 1. Prover offers this set for xk1 . This allows her to choose
values for xk−1

2 . . . xk−1
j−1 as the path xk−1

1 , . . . xk−1
j−1 , x

k
1 encodes precisely the fact that

there exists a walk of length j − 1 between the values chosen for xk−1
1 and xk1 . Thus

Cn |= Qxπx.
For the second part, consider any ℓ ∈ {0, . . . , n − 1}. We explain a strategy for

Adversary that allows him to choose ℓ for x. First, Adversary chooses any value for
x11. Let i0 be this value, and by the second part of Lemma 5.1, choose a sequence of
n numbers i1, i2, . . . , in either all from {−1,+1} if j is odd, or all from {−2, 0,+2} if
j is even, such that i0 + i1 + i2 + . . .+ in = ℓ. After this, consider inductively k ≥ 2
and let i be the value chosen by Adversary for xk−1

1 . By Lemma 5.1, there are exactly
j possible values that Prover can offer if she does not want to lose. Thus Prover is
forced to offer all these values. In particular, if j is even, this set contains values i+1
and i− 1 (mod n) while if j is odd, the set contains values i+2, i, and i− 2 (mod n).
Thus Adversary is allowed to choose the value i + ik−1 (mod n) for xk1 . This shows
that Adversary is allowed to choose the value i0 + i1 + . . .+ in = ℓ for xn+1

1 = x.
Thus, this proves that Ψ′ correctly simulates the universal quantifiers of Ψ, and

consequently Cn |= Ψ if and only if Cn |= Ψ′. For odd n, this completes the proof of
the claim that {1, j}-CSP(Cn) is Pspace-hard.

It remains to investigate the case of even n. Recall that n ≥ 6 and j ≤ n/2. We
show a reduction from QCSP(Kn/2) to {1, j}-QCSP(Cn). The reduction is a variant
of the construction from [18] for the problem of retraction to even cycles.

Let Ψ be an instance of QCSP(Kn/2), and define r = (−n/2 − 2) mod (j − 1)
(recalling anything mod 1 is 0). We construct a formula Ψ′ from Ψ as follows. First,
we modify Ψ by replacing universal quantifiers exactly as in the case of odd n. Namely,
we define Qx and πx as before, replace each ∀x by Qx, and append πx to the quantifier-
free part of the formula. After this, we append to the formula a cycle on n vertices
v0, v1, . . . , vn−1 with a path on r + 1 vertices w0, w1, . . . , wr. (See the black vertices
in Figure 5.1.) Then, for each edge xy of Dψ , we replace E(x, y) in Ψ by the gadget
depicted in Figure 5.1 (consisting of the cartesian product of Cn and a path on 3n/2
vertices together with two attached paths on n/2 − 2, resp. r + 1 vertices). The
vertices x and y represent the variables x and y while all other white vertices are new
variables, and the black vertices are identified with v0, . . . , vn−1, w0, . . . , wr introduced
in the previous step.

Finally, we prepend the following quantification to the formula:

∃≥1w0 ∃≥jvj−r−2 ∃≥jv2j−r−3 . . . ∃≥jv(k·j−r−k−1) . . . ∃
≥jvn/2+1

followed by ∃≥1 quantification of all the remaining variables of the gadgets.
We prove that Kn/2 |= Ψ if and only if Cn |= Ψ′. First, we show that Ψ′ correctly
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simulates the universal quantification of Ψ. The argument for this is essentially the
same as in the case of odd n. Next, we analyse possible assignments to the vertices
v0, . . . , vn−1. For clarity, we define αk = kj − r − k − 1 and note that n/2 + 1 = αk
for k =

⌈
n+4

2(j−1)

⌉
. By the symmetry of Cn, we assume that Adversary chooses for w0

the value n − r − 1. The next quantified vertex is vj−r−2 = vα1
in distance j − 1

from w0. Thus, by Lemma 5.1, there are exactly j values that Prover can and must
offer. Among them, we find j − r − 2 = α1. Similarly, for 2 ≤ k ≤

⌈
n+4

2(j−1)

⌉
, the

vertex vαk−1
is in distance j − 1 from vαk

, and hence, Prover is forced to offer a set
of j values only depending on the value chosen for vαk−1

. In particular, if αk−1 was
chosen for vαk−1

, then Adversary can choose αk for vαk
. This argument also shows

that if Prover acts as we describe, then in every possible case she can complete the
homomorphism for the path w0, w1, . . . , wr, v0 . . . , vn/2+1. Further, she also has a way
of assigning the values to vn/2+2, . . . , vn−1. This can be seen as follows. First, note
that the distance between vn/2+1 and v0 is n/2 − 1. Thus, if n/2 is odd, then the
values assigned to v0 and vn/2+1 have the same parity because n/2 + 1 is even and
we observe that between any two vertices of the same parity in Cn there exists a
walk of length n/2− 1. Similarly, if n/2 is even, the values chosen for v0, vn/2+1 have
different parity and between any two vertices of Cn of different parity there is a walk
of length n/2− 1.

This concludes the argument for the vertices v0, . . . , vn−1. It implies two possible
types of outcomes: either the values chosen for v0, . . . , vn−1 are all distinct, or not.
To obtain the former case, for each 1 ≤ k ≤

⌈
n+4

2(j−1)

⌉
, Adversary chooses αk for vαk

.

This forces assigning i to vi for all i ∈ {0, . . . , n/2 + 1} and thus consequently also
for all the other vi’s. We shall assume this situation first. For all other (degenerate)
cases we use a different argument explained later.

Thus assuming that v0, . . . , vn−1 get assigned values 0, . . . , n − 1 in that order
and the values for the original variables of Ψ are chosen, we argue that Prover can
finish the homomorphism if and only if the assignment to the variables of Ψ is a
proper coloring for Dψ . This follows exactly as in [18]. Namely, in every gadget, each
copy of Cn is forced to copy the assignment from the adjacent copy of Cn, shifted
by +1 or by −1 (mod n). In particular, if i is the value assigned to y, the vertex z
opposite y in the last copy of Cn is necessarily assigned value n/2 + i (mod n). This
implies that the value assigned to x is different from i as the path from z to x is too
short (of length less than n/2). On the other hand, this path is long enough so that
any value of the same parity as i but different from i can be chosen for x such that
the homomorphism can be completed. This precisely simulates the edge predicate of
Ψ. Finally, we observe that Prover can choose whether consecutive copies of Cn are
shifted by +1 or −1 and there are exactly 3n/2 copies of Cn. Thus, by Lemma 5.1,
every possible odd number from {0, . . . , n − 1} can be chosen for y by a particular
series of shifts. It follows that {1, 3, . . . , n − 1} is precisely the set colors we use to
simulate QCSP(Kn/2).

Now, we discuss the degenerate cases. Namely, we show that, regardless of the
assignment to v0, . . . , vn−1, for each copy of the gadget (in Figure 5.1) there is a way
to complete the homomorphism (by assigning the values to the white vertices) in such
a way that if ℓ is the value assigned to y, then the vertex opposite y in the last copy
of Cn is assigned value ℓ + n/2 (mod n). As this is exactly what happens in the
non-degenerate case, the rest will follow. Note that consideration of these degenerate
cases is the reason we use a chain of 3n/2 copies of Cn in the gadget of Figure 5.1,
instead of the n/2 used in the like gadget in [17].
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Since we assume that the vertices v0, . . . , vn−1 are assigned a proper subset of
{0, . . . , n− 1}, it can be seen that they are assigned a circularly consecutive subset of
these numbers, and this subset is of size at most n/2+ 1 as otherwise the assignment
cannot be a homomorphism. (Recall that in the proof we argue that we can assume
that the assignment to v0, . . . , vn−1 is a homomorphism).

For simplicity, let λ denote the assignment constructed so far, i.e., a mapping
from the assigned vertices to their assigned values. We explain how to complete this
assignment for the gadget so that it becomes a homomorphism to Cn.

The gadget contains 3n/2 copies of Cn. We consider them from the right to left,
namely {v0, . . . , vn−1} is the 1st copy, and the 3n/2-th copy is the one containing y.
With this in mind, we denote by vi0, . . . , v

i
n−1 the respective copies of v0, . . . , vn−1 in

the i-th copy of Cn. In particular, y is the vertex v
3n/2
n/2 .

We describe the assignment to the copies of Cn in three phases. In the first
phase, we assign values to the first n/2 copies. Consider 1 ≤ i < n/2, and assume
that the vertices vi0, . . . , v

i
n−1 are assigned values between a and b (inclusive) in the

clock-wise order. Then the assignment to the (i+ 1)-st copy of Cn is as follows. For
k ∈ {0, . . . , n−1}, if λ(vik) = a, then we set λ(vi+1

k ) = a+1 (mod n), otherwise we set
λ(vi+1

k ) = λ(vik)−1 (mod n). It is easy to verify that this constitutes a homomorphism

to Cn. It follows that
∣
∣λ
(
{v
n/2
0 , . . . , v

n/2
n−1}

)∣
∣ = 2.

Next, we explain the assignment to the second n/2 copies of Cn. Let ℓ be the
value assigned to y. We choose the values for the second n/2 copies in such a way that
consecutive copies of Cn are just shifted by +1 or −1. We can choose an appropriate
sequence of +1,−1 shifts so that the value assigned to vnn/2 is exactly ℓ+n/2 (mod n).

(The argument about the parity of these values is the same as in the non-degenerate
case.) We further conclude that

∣
∣λ
(
{vn0 , . . . , v

n
n−1}

)∣
∣ = 2.

The assignment to the final n/2 copies is as follows. For n ≤ i < 3n/2, again
assume that the vertices vi0, . . . , v

i
n−1 are assigned values between a and b in the

clockwise order. Then for k ∈ {0, . . . , n − 1} \ {n/2}, if λ(vik) = a + 1 (mod n) and
λ
(
vi(k−1) mod n

)
= λ

(
vi(k+1) mod n

)
= a, then we set λ(vi+1

k ) = a, and otherwise we

set λ(vi+1
k ) = λ(vik) + 1. Again, we conclude that this constitutes a homomorphism,

and it follows that
∣
∣λ
(
{v

3n/2
0 , . . . , v

3n/2
n−1 }

)∣
∣ = n/2 + 1. In particular, we observe that

λ
(
y = v

3n/2
n/2

)
= ℓ and λ

(
v
3n/2
0

)
= ℓ+ n/2 (mod n).

This concludes the proof.

6. Extensions of the CSP: simple cases. In this section we consider single-
quantifier extensions of the classical CSP(B), namely the problem {1, j}-CSP(B) for
some 1 < j ≤ |B|. The results will follow as outlined in the introduction.

6.1. Logspace cases of bipartite graphs. In the case of (irreflexive, undi-
rected) graphs, it is known that {1}-CSP(H) = CSP(H) is in L if H is bipartite and
is NP-complete otherwise [22] (for membership in L, one needs also [33]).

It is also known that something similar holds for {1, |H |}-CSP(H) = QCSP(H)
– this problem is in L if H is bipartite and is NP-hard otherwise [29]. Of course, the
fact that {1, j}-CSP(H) is hard on non-bipartite H is clear, but we will see that it is
not always easy on bipartite H. In the rest of this section, we look at particular cases
where the problem {1, j}-CSP(H) is in L.

Proposition 6.1. Let Kk,l be the complete bipartite graph with partite sets of
size k and l. Then {1, . . . , k + l}-CSP(Kk,l) is in L.

Proof. We reduce to QCSP(K1
2), where K1

2 indicates K2 with one vertex named
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by a constant, say 1. QCSP(K1
2) is equivalent to QCSP(K2) (identify instances if

1 to a single vertex) and both are well-known to be in L (see, e.g., [29]). Let Ψ
be input to {1, . . . , k + l}-CSP(Kk,l). Produce Ψ′ by substituting quantifiers ∃≥j

with ∃, if j ≤ min{k, l}, or with ∀, if j > max{k, l}. Variables quantified by ∃≥j for
min{k, l} < j ≤ max{k, l} should be replaced by the constant 1. It is easy to see that
Kk,l |= Ψ iff K2 |= Ψ′, and the result follows.

Proposition 6.2. Let H be a bipartite graph with vertices properly colored black
and white such that no j vertices of the same color belong to the same connected
component of H. Then {1, j}-CSP(H) is in L.

Proof. We will consider an input Ψ to {1, j}-CSP(H) of the form Q1x1 Q2x2 . . .
Qmxm ψ(x1, x2, . . . , xm). An ∃≥j variable is called trivial if it has neither a path to
another (distinct) ∃≥j variable in Dψ, nor a path to an ∃ variable that precedes it in
the quantifier order ≺. The key observation here is that any non-trivial ∃≥j variable
must be evaluated on vertices of both colors of some connected component. If in Ψ
there is a non-trivial ∃≥j variable, then Ψ must be a no-instance (as ∃≥js must be
evaluated on vertices of both colors of a connected component, and a path cannot be
both even and odd in length). All other instances are readily seen to be satisfiable.
Testing if Ψ contains a non-trivial ∃≥j variable is in L by [33], and the result follows.

Proposition 6.3. If H is bipartite and contains C4, then Ψ ∈ {1, 2}-CSP(C4)
iff the underlying graph Dψ of Ψ is bipartite. In particular, {1, 2}-CSP(H) is in L.

Proof. Necessity is clear; sufficiency follows by the canonical evaluation of ∃≥1

and ∃≥2 on a fixed copy of C4 in H. Membership in L follows from [33].

The path Pn has vertices {1, 2, . . . , n} and edges {ij : |i− j| = 1}.

Proposition 6.4. For n ≤ 5, the problem {1, 2}-CSP(Pn) is in L.
Proof. Let Ψ be an instance of {1, 2}-CSP(Pn). As usual, let G be the graph Dψ

corresponding to Ψ, and let ≺ be the corresponding total order of V (G). If G is not
bipartite, then Ψ is a no-instance, and we reject immediately. This can be tested in
L by [33]. We may therefore assume that the vertices of G are properly colored using
colors black and white. Also we may assume that G is connected, otherwise we test
each connected component individually. Let q be the first vertex in the ordering ≺.
Then
(i) P1 |= Ψ ⇐⇒ G is the single ∃≥1 vertex q.
(ii) P2 |= Ψ ⇐⇒ G does not contain ∃≥2 vertex except possibly for q.
(iii) P3 |= Ψ ⇐⇒ all ∃≥2 vertices in G have the same color.
(iv) P4 |= Ψ ⇐⇒ all ∃≥2 vertices in G are pairwise non-adjacent except possibly

for q.
(v) P5 |= Ψ ⇐⇒ there is color C (black or white) such that each edge xy between

two ∃≥2 vertices where x ≺ y is such that x has color C, and there is no neighbor
of y before x in ≺.

The claim (i) is clear. For (ii), any ∃≥2 vertex other than q must be offered both
1 and 2, one of which will violate the parity with respect to q (since G is connected).
In all other cases, P2 |= Ψ because Dψ is bipartite.

A similar argument works for (iii), if there are two ∃≥2 vertices u, v of different
color where u ≺ v, then Prover must offer 1 or 3 among the values for u and Adversary
chooses it. She also must offer 1 or 3 among the values for v and again, Adversary
chooses it. This now violates the parity, since u and v are in different sides of the
bipartition of G. Conversely, if all ∃≥2 vertices are, say black, then Prover offers
{1, 3} to all black ∃≥2 vertices, 1 to all black ∃≥1 vertices, and 2 to all white vertices.
This will allow Prover to win.
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For (iv), if G contains adjacent ∃≥2 vertices u, v distinct from f where u ≺ v,
then Prover must offer {1, 3} or {2, 4} for u because of the parity with respect to q.
Adversary chooses either 1 or 4 and Prover subsequently loses at v. Conversely, if no
such vertices u, v exist, Prover first offers {2, 3} for q. By symmetry of the path P4, we
may assume that Advesary chooses 2 for q, and that q is black. Prover subsequently
offers 2 for each black ∃≥1 vertex, and offers 3 for each white ∃≥1 vertex. She offers
{2, 4} for each ∃≥2 black vertex and offers {1, 3} for each white ∃≥2 vertex. Since no
two ∃≥2 vertices are adjacent, any Adversary’s choices lead to a homomorphism, and
so Prover always wins.

Finally, for (v), by symmetry, assume that q is black. Suppose that G contains
edges xy and wz where x, y, w, z are ∃≥2 vertices with x ≺ y and w ≺ z, and where x
is black and w is white (possibly q = x). If 2 or 4 is chosen for q, then {1, 3} or {1, 5}
or {3, 5} is offered for w because of the parity (q is black and w is white). This allows
Adversary to choose 1 or 5 for w and Prover loses at z. If one of 1, 3, 5 is chosen for q,
then 1 or 5 is among values offered for x because of parity. So Adversary can choose
1 or 5 for x and Prover loses at y. For the second part, suppose that x, y are adjacent
∃≥2 vertices where x ≺ y, and there exists a neighbor z of y with z ≺ x. Since x is
an ∃≥2 vertex, Adversary can choose for x a value different from that chosen for z.
Prover then loses at y because there is no 4-cycle in P5.

Conversely, suppose first that every edge xy where x, y are ∃≥2 vertices is such
that x is black (recall that q is black), and there is no neighbor of y before x in ≺.
Prover {2, 4} for every black ∃≥2 vertex. She offers 3 for each white ∃≥1 vertex. For
each black ∃≥1 vertex z, Prover offers 2 if there exist vertices x, y where x ≺ z ≺ y
such that y is an ∃≥2 vertex adjacent to both x and z, and the value 2 was chosen
for x. Similarly, Prover chooses 4 if the value 4 was chosen for x. In any other case,
Prover chooses 2 or 4 arbitrarily. Lastly, each white ∃≥2 vertex is offered {1, 3} if 2
was chosen for all its preceding neighbors, or {3, 5} if 4 was chosen on all its preceding
neighbors. One of these two possibilities must happen as guaranteed by our rules for
black vertices. This shows that Prover indeed always wins.

Thus we may assume that every edge xy where x, y are ∃≥2 vertices is such that
x is white. Here Prover offers 3 or {3, 5} for q. Then we proceed exactly as in the
previous case, just switching colors black and white.

A similar argument gives the following result.

Proposition 6.5. {1, 3}-CSP(P5) is in L.
Proof. Let Ψ be an instance of {1, 2}-CSP(Pn), considered as the graph G = Dψ

together with the quantifier order ≺. Again, G must be bipartite otherwise it is a
no-instance. (This can be determined in L.) Thus we may assume that the vertices of
G are properly colored black and write. Further, we may assume that G is connected
(the argument can be applied on each connected component individually). Let q be
the first vertex in ≺. If there are no ∃≥3 vertices, then this is a yes-instance. If q is
the only ∃≥3 variable, Prover offers {2, 3, 4} for q, and then depending on the choice
of Adversary, she offers 2 and 3 for the black and white vertices, respectively, or she
offers 3 and 2 for the two colors, respectively. Prover wins with this strategy.

For the remaining cases, we have the following claim.

(vi) P5 |= Ψ ⇐⇒ each edge xy where x ≺ y is such that y is an ∃≥1 variable, and
all ∃≥3 vertices have the same color, and any two are at distance at least 3.

For the forward direction, recall that we assume that G is connected. This implies
that Prover in order to win must offer values of the same parity for vertices of the
same color (including q, since there are other ∃≥3 vertices). This implies that for any
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∃≥3 variable Prover must offer the set {1, 3, 5}, the only set of 3 distinct values of the
same parity. Thus if two ∃≥3 variables have diffent color, then Prover cannot offer
{1, 3, 5} to both and consequently loses. This shows that any such variables must be
at an even distance. In particular, if they are at distance 2, then Adversary chooses
1 for one of them and 5 for the other, and Prover loses, since there is no value that
can be offered for their common neighbor (irrespective of the order of the vertices).

Now, consider an edge xy where x ≺ y and y is an ∃≥3 variable. If one of 1, 3, 5
was chosen for x, then Prover must offer values 2 or 4 for y, but there are only two
such values available. So Prover loses at y. If one of 2, 4 was chosen for x, then Prover
must offer {1, 3, 5} for y. Then Adversary chooses 1 or 5 for y if 4 or 2 respectively
was chosen for x. Again Prover loses. This proves the forward direction.

Conversely, assume that every edge xy with x ≺ y is such that y is an ∃≥1 variable,
and all ∃≥3 vertices have the same color, and any two are at distance at least 3.

By symmetry, we may assume that all ∃≥3 vertices are black. Prover offers
{1, 3, 5} for every ∃≥3 variable. For every black ∃≥1 variable, Prover offers 3. For
every white ∃≥1 variable x, Prover offers 2 if 5 was not chosen for any neighbor of x
preceding it. She offers 4 if 1 was not chosen for any neighbor of x preceding it. We
argue that one of these two is always possible. If not, then x has neighbors {y, z} ≺ x
such that 1 was chosen for y and 5 for z. By our rules, this means that y and z are
∃≥3 variables. But they are now at distance 2 as witnessed by the path y, x, z, and
we assume that no such vertices exist. Thus this is a winning strategy for Prover.

We remark in passing the following proposition.
Proposition 6.6. If j ∈ {2, ..., n− 3} then one may exhibit a bipartite graph Hj

of size n such that {1, j}-CSP(Hj) is Pspace-complete.
Proof. The case j = 2 follows from Theorem 1.2; assume j ≥ 3. Take the graph

C6 and construct Hj as follows. Augment C6 with j − 3 independent vertices each
with an edge to vertices 1, 3 and 5 of C6. Apply the proof of Theorem 1.2 with Hj .

We now show the above statement is tight, in the following sense.

Proposition 6.7. Let H be a bipartite graph. Then {1, j}-CSP(H) is in L if
j ∈ {1, |H | − 2, |H | − 1, |H |}.

Proof. When j := |H | we have QCSP(H) and we refer for the result to [29]. For
j := |H | − 1, we argue as in the proof of Proposition 6.2 unless H is the complete
bipartite (star) K1,l (for some l), in which case we appeal to Proposition 6.1. The
case j := |H | − 2 is not much more complicated. If we do not fall as in the proof of
Proposition 6.2 or under Proposition 6.1, then we are equivalent to {1, 3}-CSP(P5)
and the result follows from Proposition 6.5.

After these introductory results, we move on to another major result of the paper.

7. Algorithm for {1, 2}-CSP(T) for trees T. Let T be a fixed tree. In this
section, we describe a polynomial-time algorithm for the problem {1, 2}-CSP(T). The
algorithm will be based around metric properties [9] of the tree T, and will follow
from a characterization of yes-instances. First we look at some useful properties of
the distance metric of T.

7.1. Metric properties of trees. For vertices x, y ∈ V (T), we write dist(x, y)
to denote the distance between x and y in T, i.e., the length of a shortest path in
T between x and y. Note that since T is a tree, there is a unique path between
x and y for all x, y ∈ V (T). We write ecc(x) for the eccentricity of vertex x in T,
defined as ecc(x) = max{dist(x, y) | y ∈ V (T)}. We write rad(T) and diam(T) for the
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radius and diameter of T, respectively, where rad(T) = min{ecc(x) | x ∈ V (T)}, and
diam(T) = max{ecc(x) | x ∈ V (T)}. In [9], it is proved that vertices of a tree satisfy
the following so-called 4-point condition.

Lemma 7.1. [9] Let x, y, z, w be distinct vertices of T. Then

dist(x, y) + dist(z, w) ≤ max

{
dist(x, z) + dist(y, w)
dist(x,w) + dist(z, y)

}

A collection of sets S1, S2, . . . , St has the strong Helly property [21] if there exist
indices i, j such that (S1 ∩ . . .∩ St) = (Si ∩ Sj). Note that any collection of subpaths
of a path has the strong Helly property [21].

7.2. Definitions. Now we are ready to introduce some terminology. An instance
to {1, 2}-CSP(T) is a sentence Ψ := ∃≥β1 v1 ∃≥β2 v2 · · · ∃≥βn vm ψ, where ψ is a
conjunction of atoms E(vi, vj) for some i, j. As usual we think of this instance as the
graph G = Dψ where V (G) = {v1, . . . , vm} and E(G) = {vivj | E(vi, vj) appears in
ψ}, together with a linear order ≺ where v1 ≺ v2 ≺ . . . ≺ vm. We write X ≺ Y if
x ≺ y for each x ∈ X and each y ∈ Y . Also, we write x ≺ Y in place of {x} ≺ Y . We
write β(vi) for βi. Note that β is a function β : V (G) → {1, 2}.

A walk Q ofG consists of a sequence x1, x2, . . . , xr of vertices ofG where xixi+1 ∈
E(G) for all i ∈ {1, . . . , r − 1}. A walk x1, . . . , xr is a closed walk if x1 = xr. Write
|Q| to denote the length of the walk Q (number of edges on Q).

Definition 7.2. If Q = x1, . . . , xr is a walk of G, we define λ(Q) as follows:

λ(Q) = |Q| − 2
r−1∑

i=2

(
β(xi)− 1

)

Put differently, we assign weights to the vertices of G, with weight +1 assigned
to each ∃≥1 node, and weight −1 to each ∃≥2 node; the value λ(Q) is then simply the
total weight of all inner nodes in the walk Q.

Definition 7.3. A walk x1, . . . , xr of G is a looping walk if x1 6= xr and if r ≥ 3
(i) {x1, xr} ≺ {x2, . . . , xr−1}, and
(ii) there is ℓ 6∈ {1, r} such that both x1, . . . , xℓ and xℓ, . . . , xr are looping walks.

The above is a recursive definition. Note that endpoints of a looping walk are
distinct and never appear in the interior of the walk. Other vertices, however, may
appear on the walk multiple times as long as the walk obeys (ii). Notably, it is possible
that the same vertex is one of x2, . . . , xℓ−1 as well as one of xℓ−1, . . . , xr−1 where ℓ
is as defined in (ii). See Figure 7.1 for examples. Using looping walks, we define a
notion of “distance” in G that will guide Prover in the game.

Definition 7.4. For vertices u, v ∈ V (G), define δ(u, v) as follows:

δ(u, v) = min
{

λ(Q)
∣
∣
∣ Q = x1, . . . , xr is a looping walk of G with x1 = u and xr = v

}

.

If no looping walk between u and v exists, define δ(u, v) = ∞.
In other words, δ(u, v) denotes the smallest λ-value of a looping walk between u

and v. Note that δ(u, v) = δ(v, u), since the definition of a looping walk does not
prescribe the order of the endpoints of the walk.

The main structural obstruction in our characterization is the following.

Definition 7.5. A bad walk of G is a looping walk Q = x1, . . . , xr of G such
that x1 ≺ xr and λ(Q) ≤ β(xr)− 2.

We also define two values γ(v) and γ′(v) that will allow us to keep track of the
distance from the center edge or vertex of T , respectively.

Definition 7.6. For each vertex v we define γ(v) recursively as follows:

γ(v) = 0 if v is first in the ordering ≺
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G :
≺ is the left-to-right order

v1 v2 v3 v4 v5 v6 v7 v8 v9

β : ∃ ∃≥2 ∃≥2 ∃≥2 ∃ ∃≥2 ∃ ∃ ∃≥2

Example looping walks:
Q∗ = v1, v9, v8, v7, v2 |Q∗| = 4 λ(Q∗) = 4− 2 · 1 = 2
Q = v1, v9, v8, v7, v6, v5, v4, v3, v4, v5, v6, v7, v2 |Q| = 12

{v1, v2} ≺ {v3, . . . , v9} λ(Q) = 12− 2 · 6 = 0

We decompose Q into looping walks:
Q1 = v1, v9, v8, v7, v6, v5, v4, v3 λ(Q1) = 7− 2 · 3 = 1
Q2 = v2, v7, v6, v5, v4, v3 λ(Q2) = 5− 2 · 2 = 1

{v1, v2} ≺ v3 ≺ {v4, . . . , v9}
Note that Q is a bad walk, while neither Q∗ nor Q1 nor Q2 is.

Fig. 7.1. Examples of looping walks.

else γ(v) = β(v) − 1 + max

{

0, max
u≺v

(

γ(u)− δ(u, v) + β(v)− 1
)}

For each vertex v we define γ′(v) recursively as follows:

γ′(v) = β(v) − 1 + max

{

0, max
u≺v

(

γ′(u)− δ(u, v) + β(v)− 1
)}

It follows that γ′(v) = β(v)− 1 if v is first in the ordering ≺.

7.3. Example. Before the proofs, let us pause for a brief moment to illustrate
complications that may arise in instances, especially in the case of even diameter.

∃≥2 ∃≥1 ∃≥1 ∃≥2 ∃≥2 ∃≥2

v1 v2 v3 v4 v5 v6

Ψ := ∃≥2 v1 ∃≥1 v2, v3 ∃≥2 v4, v5, v6 E(v1, v2) ∧ E(v2, v3) ∧ E(v3, v4)
∧E(v4, v5) ∧E(v5, v6)

Fig. 7.2. Example instance of {1, 2}-CSP(P7) and its graphical representation.

Consider the 7-vertex path P7 with vertex set {1, . . . , 7} and with edges between
consecutive numbers. The example instance Ψ of {1, 2}-CSP(P7), depicted in
Figure 7.2, is a yes-instance of this problem. To see this, let Prover offer {2, 4}
for v1, then 3 for v2, 4 for v3, and {3, 5} for v4. Afterwards let Prover offer {2, 4}
or {4, 6} for v5, depending on Adversary’s choice. Finally, let Prover offer {1, 3} or
{3, 5} or {5, 7} for v6, again based on Adversary’s choice.

Observe that it is paramount that Prover is allowed to offer {3, 5} for the vertex
v4. If this were not the case, Adversary can make Prover lose by playing numbers
closest to any end of the path. Note that Prover must honor the parity and so only
even or only odd numbers can be offered for v4. But in order for Prover to offer {3, 5}
for v4, she must start by offering {2, 4} for v1, which could be seen as counterintuitive
(one would expect that best strategy simply offers values closest to the center).

This illustrates the type of complications we shall pay attention to, and also
shows one type of obstruction, the path v4, v5, v6, that we will be looking to identify
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in instances (the other being a bad walk). The example also shows that the set offered
to the first vertex in the instance is crucial for later success, and a particular attention
will be paid to this. We hope that this discussion will help the reader to gain some
insight into the definitions of γ and γ′, before proceeding to proofs.

7.4. Characterization. Now we are ready to state the main theorem.

Theorem 7.7. Suppose that G is connected and bipartite, with a fixed bipartition
into black and white vertices. Similarly, assume that vertices of the tree T are properly
colored black and white. Assume that diam(T) ≥ 3.

Then the following statements are equivalent.

(I) T |= Ψ
(II) Prover has a winning strategy in G (Ψ,T).
(III) Prover can play G (Ψ,T) so that in every execution of the game, the resulting

mapping f satisfies the following for all u, v ∈ V (G) with δ(u, v) <∞:
(IIIa) dist(f(u), f(v)) ≤ δ(u, v),
(IIIb) f(u) and f(v) have the same color ⇐⇒ δ(u, v) is even.

(IV) The following conditions hold:
(IVa) There are no u, v ∈ V (G) where u ≺ v such that δ(u, v) ≤ β(v) − 2.
(IVb) If diam(T) is odd, then there is no vertex v such that γ(v) ≥ rad(T).

If diam(T) is even, then there are no vertices u, v such that u is black
and v is white, and such that γ′(u) ≥ rad(T) and γ′(v) ≥ rad(T).

7.5. Proof of Theorem 7.7. We prove the claim by considering individual
implications. Note that the condition (IVa) states that G has no bad walk.

The equivalence (I)⇔(II) is proved as Lemma 2.1. The other implications are
proved as follows. For (III)⇒(II), we show that Prover’s strategy described in (III) is
a winning strategy. For (II)⇒(III), we show that every winning strategy must satisfy
the conditions of (III). For (III)⇒(IV), we show that violating (IVa) or (IVb) allows
Adversary to play along a specific walk and win. Finally, for (IV)⇒(III), assuming
(IV), we describe a strategy for Prover that satisfies (III). Before the proofs of the
individual implications, we make several useful observations as follows.

Lemma 7.8. Every path in G whose internal vertices appear after its endpoints
in ≺ is a looping walk.

Proof. Consider a smallest counterexample, namely a path P = x1, x2, . . . , xr
where {x1, xr} ≺ {x2, . . . , xr−1} but where P is not a looping walk. Thus r ≥ 3,
as otherwise P is trivially a looping walk. So there exists an index ℓ such that
{x1, xr} ≺ xℓ ≺ {x2, . . . , xℓ−1, xℓ+1, . . . , xr−1}. Note that both P ′ = x1, . . . , xℓ and
P ′′ = xℓ, . . . , xr are paths whose internal vertices appear after their endpoints in ≺.
By the minimality of P , we deduce that both P ′ and P ′′ are looping walks. But then
so is P , since we now fullfil both (i) and (ii) of the definition, a contradiction.

Lemma 7.9. If v is not first in ≺, then there exists u ≺ v with δ(u, v) <∞.

Proof. Since v is not first in ≺, there exists w ≺ v. Since G is connected, consider
a shortest path P from w to v in G. Since this path starts before v and ends at v,
let u be the last vertex on P such that u ≺ v. Let Q denote the subpath of P from
u to v. Note that by the maximality of u, all internal vertices of Q appear after their
endpoints u, v. Thus by Lemma 7.8, we conclude that Q is a looping walk. Therefore
δ(u, v) ≤ λ(Q) <∞ as required.

Lemma 7.10. If Q is a looping walk of G between u and v, then λ(Q) + δ(u, v)
is an even number.
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Proof. Let Q = x1, . . . , xr be a looping walk of G with x1 = u and xr = v. By
definition δ(u, v) ≤ λ(Q) < ∞. So there exists a looping walk Q′ = x′1, . . . , x

′
s with

x′1 = u and x′s = v such that δ(u, v) = λ(Q′). We calculate:

λ(Q) + δ(u, v) = λ(Q) + λ(Q′) = |Q| − 2

r−1∑

i=2

(
β(xi)− 1

)
+ |Q′| − 2

s−1∑

i=2

(
β(x′i)− 1

)

It follows that λ(Q)+δ(u, v) is even if and only if |Q|+|Q′| is. Recall that x1 = x′1 = u
and xr = x′s = v. Thus Q′′ = x1, x2, . . . , xr−1, x

′
s, x

′
s−1, . . . , x

′
1 is a closed walk of G

of length |Q| + |Q′|. Since G is bipartite, it contains no closed walk of odd length.
Thus |Q|+ |Q′| is even, and so is λ(Q) + δ(u, v).

The following can be viewed as a triangle inequality for δ(·, ·).

Lemma 7.11. If u 6= w and {u,w} ≺ v, then δ(u,w) ≤ δ(u, v)+δ(w, v)−2β(v)+2.
Moreover, δ(u, v) + δ(w, v) + δ(u,w) is an even number or ∞.

Proof. If δ(u, v) = ∞ or δ(w, v) = ∞, the claim is clearly true. So we may
assume that δ(u, v) < ∞ and δ(w, v) < ∞. This means that there exists a looping
walk Q = x1, . . . , xr with x1 = u and xr = v where λ(Q) = δ(u, v), and also a looping
walk Q′ = x′1, . . . , x

′
s with x′1 = w and x′s = v where δ(w, v) = λ(Q′). Note that

xr = x′s = v, and define Q′′ = x1, x2, . . . , xr−1, x
′
s, x

′
s−1, . . . , x

′
1. We calculate:

λ(Q) + λ(Q′) = |Q| − 2

r−1∑

i=2

(
β(xi)− 1

)
+ |Q′| − 2

s−1∑

i=2

(
β(x′i)− 1

)

= |Q|+ |Q′| − 2

r−1∑

i=2

(
β(xi)− 1

)
− 2(β(v) − 1)− 2

s−1∑

i=2

(
β(x′i)− 1

)
+ 2(β(v) − 1)

= λ(Q′′) + 2β(v)− 2

Observe that Q′′ is a walk of G whose endpoints are u and w. We verify that Q′′

is in fact a looping walk ofG. We need to check the conditions (i)-(ii) of the definition.
First, we recall the assumption u 6= w. For (i), we note that {x1, xr} ≺ {x2, . . . , xr−1}
since Q is a looping walk. Similarly, {x′1, x

′
s} ≺ {x′2, . . . , x

′
s−1} since Q′ is a looping

walk. We also recall the assumptions {u,w} ≺ v. Thus, since v = xr = x′s, we
conclude that {u,w} ≺ v ≺ {x2, . . . , xr−1, x

′
2, . . . , x

′
s−1} which shows (i). Finally, (ii)

follows from the fact that both Q and Q′ are looping walks. This verifies that Q′′

indeed is a looping walk of G between u and v.
So we have δ(u,w) ≤ λ(Q′′) by definition, and we can calculate:

δ(u, v) + δ(w, v) = λ(Q) + λ(Q′) = λ(Q′′) + 2β(v) − 2 ≥ δ(u,w) + 2β(v)− 2

Thus δ(u,w) ≤ δ(u, v) + δ(w, v) − 2β(v) + 2 as claimed.
Now, recall that λ(Q) + λ(Q′) = λ(Q′′) + 2β(v) − 2. This implies that λ(Q) +

λ(Q′) + λ(Q′′) is an even number. By Lemma 7.10, also λ(Q) + δ(u, v) and λ(Q′) +
δ(w, v) are even. For the same reason λ(Q′′)+δ(u,w) is even. So since λ(Q)+λ(Q′)+
λ(Q′′) is even, it follows that δ(u,w) + δ(u, v) + δ(w, v) is even, as claimed.

7.5.1. Proof of (III)⇒(II). Assume (III), namely that Prover can play so as
to satisfy (IIIa) and (IIIb) in every execution of the game. We show that this is a
winning strategy for Prover, thus proving (II).

To this end, we need to verify that in every execution of the game the resulting
mapping f is a homomorphism of G to T. Namely, we verify that for every edge
uv ∈ E(G), the mapping f satisfies (f(u), f(v)) ∈ E(T).

Consider an edge uv ∈ E(G). Observe that Q = u, v is a looping walk of G
with λ(Q) = 1. Thus δ(u, v) ≤ λ(Q) = 1 by the definition of δ(u, v). Using Lemma
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7.10, we deduce that λ(Q) + δ(u, v) = 1 + δ(u, v) is even, i.e., δ(u, v) is odd. Thus,
by (IIIb), we conclude that f(u) and f(v) are from different color classes of T . In
particular, f(u) 6= f(v). Further, by (IIIa), we observe that dist(f(u), f(v)) ≤ δ(u, v).
Thus dist(f(u), f(v)) ≤ 1, since δ(u, v) ≤ λ(Q) = 1. In fact, dist(f(u), f(v)) = 1,
since f(u) 6= f(v). Thus together we conclude (f(u), f(v)) ∈ E(T ) as required.

7.5.2. Proof of (II)⇒(III). Assume (II), i.e., Prover has a winning strategy.
Assume that Prover plays this strategy. Then no matter how Adversary plays, Prover
always wins. We show that this strategy satisfies the conditions of (III).

For contradiction, suppose that there is an execution of the game for which the
conditions of (III) do not hold. Let g denote the resulting mapping produced by
this execution. Let us play the game again to produce a new mapping f by making
Adversary play according to the following rules:

1. When a vertex v is considered, examine the set Sv ⊆ V (T) that Prover offers
for v. Check if there exists µ ∈ Sv and u ≺ v with δ(u, v) < ∞ such that at
least one of the following holds:

• dist(f(u), µ) > δ(u, v), or
• δ(u, v) is odd and f(u), µ have the same color, or
• δ(u, v) is even and f(u), µ have different colors.

2. If such a µ exists, choose f(v) = µ. If such a µ does not exist and f(w) = g(w)
for all w ≺ v, then choose f(v) = g(v). If neither is possible, then choose any
value from Sv for f(v).

We now argue that f does not satisfy the conditions of (III) much like g. Indeed,
if for some v, we find in step 1 that µ exists, then setting f(v) = µ in step 2 makes
(IIIa) or (IIIb) fail for the pair u, v. Thus f fails the conditions of (III). Otherwise, if
for every v the value µ in step 1 is not found, then we conclude that f = g, and hence,
f again fails the conditions of (III), since g does. (For this to hold, it is important to
note that this is only possible because Prover plays the same deterministic strategy
in both executions of the game; thus Prover will offer the same values for f(v) as she
did for g(v) as long as Adversary makes the same choices for f as he did for g; i.e.,
as long as f(w) = g(w) for all vertices w ≺ v.)

Since Prover plays a winning strategy, we must conclude that f is a homomor-
phism of G to T. Namely, we have that each uv ∈ E(G) satisfies dist(f(u), f(v)) = 1.
We show that this leads to a contradiction. From this we will conclude that g does
not exist, and hence, Prover’s winning strategy satisfies (III) as we advertized earlier.

We say that a vertex v is good if for all u ≺ v with δ(u, v) < ∞ the conditions
(IIIa) and (IIIb) hold. Otherwise, we say that v is bad. The following is a restatement
of Adversary’s strategy as described above.

(+) A vertex v is good iff every µ ∈ Sv and every u ≺ v with δ(u, v) <∞ satisfy
– dist(f(v), µ) ≤ δ(u, v), and
– f(v) and µ have the same color ⇐⇒ δ(u, v) is even.

To see this, observe that if v is bad, then one of the above two conditions fails for
µ = f(v) ∈ Sv, since one of (IIIa), (IIIb) fails. Conversely, suppose that for some
µ ∈ Sv there is u ≺ v with δ(u, v) < ∞ such that dist(f(v), µ) > δ(u, v) or such that
either δ(u, v) is odd and f(v), µ have the same color, or δ(u, v) is even and f(v), µ have
different colors. Then, by our strategy in steps 1 and 2, we deduce that Adversary
chose f(v) = µ in step 2. Thus v is not a good vertex. This proves (+).

Since f fails the conditions of (III), there exists at least one bad vertex. Among
all bad vertices, choose v to be the bad vertex that is largest with respect to ≺.
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Since v is bad, there exists u ≺ v with δ(u, v) <∞ such that

(i) dist(f(u), f(v)) > δ(u, v), or
(ii) f(u), f(v) have the same color ⇐⇒ δ(u, v) is odd.

In particular, since δ(u, v) < ∞, there exists a looping walk Q = x1, . . . , xr with
x1 = u and xr = v such that λ(Q) = δ(u, v).

Suppose first that r = 2. Then Q = u, v and λ(Q) = 1. In particular, uv ∈
E(G) and δ(u, v) = λ(Q) = 1. Recall that we assume that one of (i), (ii) holds.
If dist(f(u), f(v)) > δ(u, v), then dist(f(u), f(v)) > 1, since δ(u, v) = 1. But then,
since uv ∈ E(G), we conclude that f is not a homomorphism, a contradiction. So
by (i) and (ii), we deduce that f(u), f(v) have the same color, since δ(u, v) = 1 is
odd. But then dist(f(u), f(v)) 6= 1 again contradicting our assumption that f is a
homomorphism.

This excludes the case r = 2. Thus we may assume r ≥ 3. Since Q is a looping
walk, this implies that there exists ℓ ∈ {2, . . . , r − 1} such that both Q1 = x1, . . . , xℓ
and Q2 = xℓ, . . . , xr are looping walks of G.

Let us denote w = xℓ. So Q1 is a looping walk from u to w, while Q2 is a looping
walk from w to v. This implies that δ(u,w) ≤ λ(Q1) and δ(v, w) ≤ λ(Q2). Note that
u ≺ v ≺ w, since {u, v} ≺ {x2, . . . , xr−1} because Q is a looping walk. Thus by the
maximality of v, we deduce that w is a good vertex. We calculate:

λ(Q) = |Q| − 2

r−1∑

i=2

(
β(xi)− 1

)

= |Q1|+ |Q2| − 2

ℓ−1∑

i=2

(
β(xi)− 1

)
− 2(β(w) − 1)− 2

r−1∑

i=ℓ+1

(
β(xi)− 1

)

= λ(Q1) + λ(Q2)− 2β(w) + 2

≥ δ(u,w) + δ(v, w)− 2β(w) + 2 ≥ δ(u, v) = λ(Q)

The last inequality is by Lemma 7.11. Therefore, δ(u, v) = δ(u,w)+δ(v, w)−2β(w)+2.

Now, since w is a good vertex, we have by (IIIb) that both f(u), f(w) have the
same color iff δ(u,w) is even, and also f(v), f(w) have the same color iff δ(v, w) is
even. If δ(u, v) is even, then both δ(u,w) and δ(v, w) have the same parity, since
δ(u, v) = δ(u,w) + δ(v, w) − 2β(w) + 2. It follows that f(u) and f(v) have the same
color. If δ(u, v) is odd, then one of δ(u,w), δ(v, w) is even, and one is odd. Thus
either f(u), f(w) have the same color different from f(v), or f(v), f(w) have the same
color different from f(u). In either case, f(u), f(v) have different colors.

This shows that (ii) fails. Thus since we assume that at least one of (i), (ii) holds,
we deduce that dist(f(u), f(v)) > δ(u, v). In fact, since f(u), f(v) have the same color
iff δ(u, v) is even, it follows that dist(f(u), f(v)) ≥ δ(u, v)+2. For this, observe that no
two vertices of the same color in T are at an odd distance, since the coloring is proper.

Now, recall again that w is a good vertex. By (+), every µ ∈ Sw satisfies
dist(f(u), µ) ≤ δ(u,w) and dist(f(v), µ) ≤ δ(v, w). Using this we can calculate:

dist(f(u), f(v)) ≥ δ(u, v) + 2 = δ(u,w) + δ(v, w) − 2β(w) + 2 + 2

≥ dist(f(u), µ) + dist(f(v), µ)− 2β(w) + 4

≥ dist(f(u), f(v))− 2β(w) + 4

For the last inequality, note that dist satisfies the triangle-inequality.

This implies that β(w) = 2 and all the above inequalities are in fact equalities.
Namely, the set Sw contains distinct values µ1, µ2 such that for i = 1, 2:

dist(f(u), f(v)) = dist(f(u), µi) + dist(f(v), µi)
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This means that concatenating a shortest path from f(u) to µi with a shortest
path from µi to f(v) yields a shortest path Pi from f(u) to f(v). Since µ1 6= µ2, the
paths P1, P2 are different. However, this is impossible, since in T, because it is a tree,
there is a unique shortest path between any two vertices, a contradiction.

The proof is now complete.

7.5.3. Proof of (III)⇒(IV). Assume that (III) holds. Namely, Prover can play
so as to always satisfy the conditions (IIIa) and (IIIb) for all u, v with δ(u, v) <∞.

Assume first that (IVa) fails. Namely, suppose that there are u, v ∈ V (G) with
u ≺ v such that δ(u, v) ≤ β(v) − 2. We show that Adversary can play to violate
(IIIa) for u, v. If δ(u, v) ≤ −1, then (IIIa) can never be satisfied, since dist(f(u), f(v))
is always non-negative. In that case (III) fails no matter how Adversary plays. So
we may assume that δ(u, v) ≥ 0. This implies that δ(u, v) = 0 and β(v) = 2,
since we assume δ(u, v) ≤ β(v) − 2. So Prover must offer to Adversary two distinct
values for v. Since the values are different, at least one of them must be different
from f(u). Adversary chooses this value for f(v). This yields dist(f(u), f(v)) ≥ 1
which violates (IIIa), since δ(u, v) = 0. This shows that Prover cannot play to always
satisfy the conditions of (III), and hence (III) fails, a contradiction.

Next, assume that (IVb) fails. We distinguish the case when diam(T) is even and
when diam(T) is odd. A center of T is a vertex α with ecc(α) = rad(T).

We first observe the following useful property.
Lemma 7.12. If µ1, µ2 are two distinct centers of T, then they are adjacent.
Proof. For contradiction, suppose that ecc(µ1) = ecc(µ2) = rad(T), but µ1 and

µ2 are not adjacent. Consider any internal vertex ρ on a shortest path from µ1 to µ2

in T. Let η be the vertex that maximizes ecc(ρ), i.e., ecc(ρ) = dist(ρ, η). If for some
i ∈ {1, 2}, we have dist(µi, η) > dist(ρ, η), then we obtain a contradiction as follows.

rad(T) ≤ ecc(ρ) = dist(ρ, η) < dist(µi, η) ≤ ecc(µi) = rad(T)

Now consider three shortest paths, path P1 between µ1 and η, path P2 between
η and µ2, and path P between µ1 and µ2. Observe that for each i ∈ {1, 2}, the path
Pi does not contain ρ, since ρ 6= µi and dist(µi, η) ≤ dist(ρ, η). This implies that the
union of paths P1 and P2 contains a path P ′ from µ1 to µ2, and this path does not
contain ρ. Recall that P is another path from µ1 to µ2, but P contains ρ. This is
impossible, since in T there is a unique path between any two vertices.

The case of odd diameter follows from the next lemma.

Lemma 7.13. Adversary can play so that the resulting mapping f satisfies
ecc(f(v))− rad(T) ≥ γ(v) for every vertex v.

Proof. Recall that we assume that Prover plays so as to satisfy (IIIa) and (IIIb).
Adversary when given choice between two values will choose the value of higher
eccentricity (ties broken arbitrarily). Note that all α ∈ V (T) satisfy ecc(α) ≥ rad(T).

We prove the claim by induction on the number of steps. Consider some step in
the game, and let v denote the vertex considered in this step. If v is the first vertex
in ≺, then γ(v) = 0 and ecc(f(v))− rad(T) ≥ 0 ≥ γ(v) holds. So v is not first in ≺.

Next, suppose that γ(v) = β(v) − 1. If β(v) = 1, then γ(v) = β(v) − 1 = 0
and so again ecc(f(v)) − rad(T) ≥ 0 = γ(v). Thus β(v) = 2 in which case Prover
offers two distinct values µ1, µ2. Recall that v is not first in ≺, and G is connected.
Since the values that Prover offers must satisfy (IIIb) when used as f(v), we deduce
that µ1, µ2 must have the same color. Indeed, since G is connected and v is not first
in ≺, we conclude by Lemma 7.9 that there exists a looping walk from some u to v
where u ≺ v. Then (IIIb) applied to u and v implies that the values µ1, µ2 have the
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same color, either different from or same as that of f(u). In particular, µ1, µ2 are
not adjacent. Thus by Lemma 7.12, at least one of µ1, µ2 is not a center of T. Let
µi be this vertex. Then ecc(µi) − rad(T) ≥ 1 and Adversary chooses f(v) = µi. We
conclude ecc(f(v))− rad(T) ≥ 1 = β(v) − 1 = γ(v) as required.

It therefore remains to consider the case when there is a vertex u ≺ v that
maximizes γ(v), namely γ(v) = 2(β(v) − 1) + γ(u) − δ(u, v). From the inductive
hypothesis, we know that ecc(f(u))− rad(T) ≥ γ(u). From this we conclude

(+1) ecc(f(u))− rad(T) ≥ γ(u) = γ(v) + δ(u, v)− 2(β(v)− 1)

Recall that Prover offers values that satisfy (IIIa) when chosen for f(v). There
are two cases to examine.

Case 1: suppose that β(v) = 1. Then Prover offers one value that becomes f(v) where
dist(f(u), f(v)) ≤ δ(u, v) by (IIIa). By (+1), we deduce that ecc(f(u)) − δ(u, v) ≥
γ(v) + rad(T), since β(v) = 1. Let η be the vertex that maximizes ecc(f(u)), i.e.,
ecc(f(u)) = dist(f(u), η). Then we can calculate

ecc(f(u)) = dist(f(u), η) ≤ dist(f(v), η) + dist(f(u), f(v)) ≤ ecc(f(v)) + δ(u, v)

From this, we conclude that ecc(f(v)) − rad(T) ≥ γ(v) as follows.

ecc(f(v)) ≥ ecc(f(u))− δ(u, v) ≥ γ(v) + rad(T)

Case 2: suppose that β(v) = 2. Then Prover offers two values µ1, µ2 where µ1 6= µ2,
and both satisfy (IIIa) and (IIIb) in place of f(v). Namely, for each i ∈ {1, 2}, we
have dist(f(u), µi) ≤ δ(u, v). From (IIIb) we know that µ1, µ2 have the same color.

We now prove the following claim.

(+2) There exists i ∈ {1, 2} such that ecc(f(u)) ≤ δ(u, v) + ecc(µi)− 2

Let η be a vertex that maximizes ecc(f(u)), i.e., ecc(f(u)) = dist(f(u), η). Recall that
dist(f(u), µi) ≤ δ(u, v) for all i ∈ {1, 2}.

Let P be a shortest path from f(u) to η. Suppose first that µi does not appear
on P for some i ∈ {1, 2}. Let Pi be a shortest path from f(u) to µi, and let P ′

i be a
shortest path from µi to η. Concatenating Pi and P

′
i gives us a walk Q from f(u) to

η. If this walk has the same length as P , then Q = P because in T there is a unique
path between any two vertices. But since µi is on Q but not on P , this is impossible.
So the walk Q is longer than P . In fact, Q has at least two more edges that P , since
otherwise the union of P and Q yields a closed walk of odd length, and T contains
no such a walk, since T is bipartite. Thus we conclude the following

ecc(f(u)) = dist(f(u), η) ≤ dist(f(u), µi) + dist(µi, η)− 2 ≤ δ(u, v) + ecc(µi)− 2

This yields the required i ∈ {1, 2} for the claim. Thus we may assume that both
µ1 and µ2 appear on P . Recall that dist(f(u), µi) ≤ δ(u, v) for all i ∈ {1, 2}. Since
both µ1 and µ2 belong to P , the subpath of P from f(u) to µi is a shortest path from
f(u) to µi. Since µ1 6= µ2, we may assume by symmetry µ1 appears before µ2 on P .
Moreover, since µ1, µ2 have the same color, they are not consecutive on P . Thus we
deduce that dist(f(u), µ1) + 2 ≤ dist(f(u), µ2) ≤ δ(u, v). From this we calculate

ecc(f(u)) = dist(f(u), η) = dist(f(u), µ1) + dist(µ1, η) ≤ δ(u, v) + ecc(µ1)− 2

This proves (+2).

In view of (+2), there exists i ∈ {1, 2} such that ecc(f(u)) ≤ δ(u, v)+ ecc(µi)− 2.
Adversary chooses f(v) = µi. Note that by (+1), we have ecc(f(u)) − δ(u, v) ≥
γ(v) + rad(T)− 2, since β(v) = 2. Thus we calculate

ecc(f(v)) = ecc(µi) ≥ ecc(f(u))− δ(u, v)+ 2 ≥ γ(v)− rad(T)− 2+2 = γ(v)− rad(T)
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Therefore ecc(f(v))− rad(T) ≥ γ(v) as required. This completes the proof.

The case of even diameter similarly follows from this lemma.

Lemma 7.14. Suppose that diam(T) is even. Then Adversary can play so that
the resulting mapping f satisfies ecc(f(v)) − rad(T) ≥ γ′(v) for every vertex v.

Proof. The proof is by induction on the number of steps. For the base case, we
consider v such that γ′(v) = β(v) − 1. If β(v) = 1, then γ′(v) = 0 and ecc(f(v)) −
rad(T) ≥ 0 = γ′(v), as required. If β(v) = 2, Prover offers two distinct values for
v, and at least one of them is not a center of T, since diam(T) is even. Adversary
chooses this value as f(v). Then ecc(f(v)) − rad(T ) ≥ 1 = γ′(v), as required.

The rest of the proof (the inductive case) is exactly as in the proof of Lemma 7.13
(with γ replaced by γ′). This completes the proof.

Now we are ready to finish the proof of (III)⇒(IV). Recall that we assume that
(IVb) fails. Suppose first that diam(T) is odd. Then by (IVb), there exists v such that
γ(v) ≥ rad(T). By Lemma 7.13, Adversary can play so that the resulting mapping f
satisfies ecc(f(v)) − rad(T) ≥ γ(v). Note that since T is a tree of odd diameter, we
have diam(T) = 2rad(T) − 1. From this we obtain a contradiction as follows.

diam(T) ≥ ecc(f(v)) ≥ γ(v) + rad(T) ≥ 2rad(T) > diam(T).

Now assume that diam(T) is even. By (IVb), there exist vertices u, v of different
colors such that γ′(u) ≥ rad(T) and γ′(v) ≥ rad(T). By Lemma 7.14, Adversary
can play so that the resulting mapping f satisfies ecc(f(u)) − rad(T) ≥ γ′(u) and
ecc(f(v)) − rad(T) ≥ γ′(v). Note that diam(T) = 2rad(T), since T is a tree of even
diameter. Thus we conclude that

diam(T) ≥ ecc(f(u)) ≥ γ′(u) + rad(T) ≥ 2rad(T) = diam(T)

and similarly ecc(f(v)) = diam(T). Let µ be a vertex that maximizes ecc(f(u)),
i.e., ecc(f(u)) = dist(f(u), µ). Similarly, let η be a vertex such that ecc(f(v)) =
dist(f(v), η). From implication (III)⇒(II) we deduce that f is a homomorphism
of G to T, since we assume (III) (and we have already proved (III)⇒(II)). Thus,
since both G and T are bipartite and since u, v have different colors, it follows that
f(u) and f(v) also have different colors. By symmetry, we may assume that f(u)
is black and f(v) is white. Observe that µ is also black, since the shortest path
between f(u) and µ has even length diam(T). By the same token, η is white. Since
T is connected, this implies that the vertices f(u), f(v), µ, η are pairwise distinct.
Moreover, dist(f(u), η) < diam(T) since f(u), η have different colors and diam(T) is
even. Likewise, each of dist(f(v), µ), dist(f(u), f(v)), dist(µ, η) is less than diam(T).

By Lemma 7.1, we must have

dist(f(u), µ) + dist(f(v), η) ≤ max

{
dist(f(u), η) + dist(f(v), µ)
dist(f(u), f(v)) + dist(µ, η)

}

However, the expression on the left is 2diam(T), while both expressions on the
right are at most 2diam(T) − 2, a contradiction.

Therefore, such vertices u, v cannot exist which proves (III)⇒(IV).

7.5.4. Proof of (IV)⇒(III). Assume (IV), namely that both (IVa) and (IVb)
hold. We explain how Prover can play so as to satisfy the conditions of (III). In
particular, we explain how Prover can play exclusively on a longest path of T and
satisfy (IIIa) and (IIIb). In the following argument, we consider the two cases of odd
and even diameter together. In case diam(T) is even, we make the following additional
assumption. By (IVb), we have that either no black vertex v has γ′(v) ≥ rad(T), or
no white vertex v has γ′(v) ≥ rad(T). By symmetry, we shall assume:
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(+0) If diam(T) is even, then every white vertex v is such that γ′(v) ≤ rad(T)− 1.

Now, let P be a fixed longest path of T, i.e., a path of length diam(T). Let
α1, α2 be the endpoints of P . Define eccP (x) as max{dist(x, α1), dist(x, α2)}. Clearly
ecc(x) ≥ eccP (x). For x ∈ P , we observe the following.

(+1) ecc(x) = eccP (x) for all x ∈ P .

To see this, note that for each i ∈ {1, 2}, the subpath of P between x and αi is a
shortest path, since there is a unique path between any two vertices in T. Therefore
dist(x, α1) + dist(x, α2) = diam(T), since P has length diam(T).

For contradiction, assume ecc(x) > eccP (x). Let η be a vertex maximizing ecc(x),
i.e., ecc(x) = dist(x, η). Then dist(x, α1) < dist(x, η) and dist(x, α2) < dist(x, η),
since eccP (x) < ecc(x). Note that dist(x, α1) + dist(α2, η) < dist(x, η) + dist(α1, α2)
since dist(x, α1) < dist(x, η) and dist(α2, η) ≤ diam(T) = dist(α1, α2). Similarly,
dist(x, α2) + dist(α1, η) < dist(x, η) + dist(α1, α2). Thus dist(x, η) + dist(α1, α2) >
max{dist(x, α1) + dist(α2, η), dist(x, α2) + dist(α1, η)} contradicting Lemma 7.1.

This proves (+1).

The next lemma explains the desired strategy for Prover.

Lemma 7.15. Prover can play so that in every execution of the game the resulting
mapping f satisfies (IIIa), (IIIb) and for every vertex v, we have f(v) ∈ P , and

(i) if diam(T) is odd, then ecc(f(v))− rad(T) ≤ γ(v),
(ii) if diam(T) is even, then ecc(f(v))− rad(T) ≤ γ′(v) + 1,

and ecc(f(v)) is odd ⇐⇒ v is white.
Proof. In the desired strategy, Prover offers vertices of smallest eccentricity. We

construct Prover’s strategy by induction on the number of processed vertices during
the game. As usual let f denote the (partial) assignment constructed by Adversary.

If diam(T) is odd, the path P contains an edge m1m2 where m1 and m2 are
centers of T, namely ecc(m1) = ecc(m2) = rad(T). If diam(T) is even, P contain
a unique center m. Observe that no two consecutive vertices on P have the same
eccentricity except for m1,m2 if diam(T) is odd.

For the base case of the induction, consider v to be the first vertex in ≺. Then
γ(v) = 0 and γ′(v) = β(v) − 1. If diam(T) is odd, Prover offers for v the vertex m1

if β(v) = 1, and offers the set {m1,m2} if β(v) = 2. Adversary chooses f(v) = mi

for some i ∈ {1, 2} and we have ecc(f(v))− rad(T) = ecc(mi)− rad(T) = 0 = γ(v) as
required. This shows (i) for v. Conditions (IIIa) and (IIIb) are satisfied vacuously.

Similarly, if diam(T) is even. Recall that γ′(v) = β(v)− 1. Let µ1, µ2 be the two
neighbors of m on P . Let µ be a distance-2 vertex from m on P . Note that µ exists,
since diam(T) ≥ 3. For later, note that ecc(µ) = rad(T)− 2 and ecc(µi) = rad(T)− 1
for i = 1, 2, since dist(µi,m) = 1, dist(µ,m) = 2, and ecc(m) = rad(T).

If v is white and rad(T) is odd, or if v is black and rad(T) is even, Prover offers
f(v) = m if β(v) = 1, and offers f(v) ∈ {m,µ} if β(v) = 2. In all other cases, Prover
offers f(v) = µ1 if β(v) = 1, and offers f(v) ∈ {µ1, µ2} if β(v) = 2. Irrespective of
the choice of Adversary, we conclude that ecc(f(v)) − rad(T) ≤ β(v) = γ′(v) + 1, as
required. Moreover, ecc(f(v)) is odd ⇐⇒ v is white. Therefore (ii) holds for v.

We may therefore assume that v is not the first vertex in ≺. Let U denote the
set of vertices u ≺ v with δ(u, v) < ∞. For each u ∈ U , write Iu to denote the set
Iu =

{
µ ∈ P

∣
∣ dist(f(u), µ) ≤ δ(u, v)

}
. Note that since v is not first in ≺, the set

U is non-empty by Lemma 7.9. Let L denote the intersection of the sets {Iu}u∈U .
Observe that each Iu is a subpath of the path P . Since subpaths of a path have the
strong Helly property [21] and since U 6= ∅, there exist x, y ∈ U (possibly x = y) such
that L = Ix ∩ Iy. Thus, L is also a subpath of P .
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Define c to be the color (black or white) such that f(x) has color c if and only if
δ(x, v) is even. We have the following observations.

(+2) Let µ ∈ L have color c. Then f(v) = µ satisfies (IIIa) and (IIIb) for all u ≺ v.

Since µ ∈ L, setting f(v) = µ satisfies (IIIa), since µ ∈ Iu for all u ∈ U (and thus
dist(f(u), µ) ≤ δ(u, v) for all u ∈ U). For contradiction, assume that (IIIb) fails for
some u ∈ U . Recall that µ has color c. Since u fails (IIIb) for f(v) = µ, we have that
f(u) has color c if and only if δ(u, v) is odd. Recall that f(x) has color c if and only
if δ(x, v) is even. This implies that x 6= u, and also that f(u) and f(x) have different
colors if and only if δ(u, v) + δ(x, v) is even. Since x 6= u, we may apply Lemma 7.11
to deduce that δ(u, x)+δ(x, v)+δ(u, v) is an even number. Since both x and u appear
before v in ≺, we have by the inductive hypothesis that x, u satisfy (IIIb). Thus f(u)
and f(x) have the same color if and only if δ(u, x) is even. Put together, we deduce
that f(u) and f(x) have the same color ⇐⇒ δ(u, x) is even ⇐⇒ δ(x, v) + δ(u, v) is
even ⇐⇒ f(u) and f(x) have different colors, a contradiction. This proves (+2).

(+3) Suppose that µ ∈ L has a neighbor η ∈ P \ L. Then µ has color c, and there
exists u ∈ U such that dist(f(u), µ) = δ(u, v) < dist(f(u), η).

Recall that µ ∈ L = Ix ∩ Iy . Thus since η 6∈ L, we have either η 6∈ Ix or η 6∈ Iy .
Suppose first that η 6∈ Ix. Then dist(f(x), η) > δ(x, v) and so

dist(f(x), µ) ≤ δ(x, v) < dist(f(x), η) ≤ dist(f(x), µ) + dist(µ, η) = dist(f(x), µ) + 1

This proves that dist(f(x), µ) = δ(x, v). Since the colors black and white alternate
on paths in T, it follows that f(x) and µ have the same color ⇐⇒ δ(x, v) is even.
Recall that f(x) has color c ⇐⇒ δ(x, v) is even. This implies that µ has color c, and
that we may take u := x for the existential statement.

We may therefore assume that η ∈ Ix and η 6∈ Iy. In particular, this implies
x 6= y. Similarly to the above, we deduce that dist(f(y), µ) = δ(y, v), and hence, f(y)
and µ have the same color ⇐⇒ δ(y, v) is even. Since x 6= y and {x, y} ≺ v, the
inductive hypothesis applies to x and y, and so by (IIIb), we have that f(x) and f(y)
have the same color ⇐⇒ δ(x, y) is even. Therefore f(x) and µ have the same color
⇐⇒ δ(x, y) + δ(y, v) is even. Moreover, by Lemma 7.11, δ(x, y) + δ(x, v) + δ(y, v) is
even. Finally, recall that f(x) has color c ⇐⇒ δ(x, v) is even. Putting all together,
we deduce that f(x) has color c ⇐⇒ δ(x, v) is even ⇐⇒ δ(x, y) + δ(y, v) is even
⇐⇒ f(x) and µ have the same color. This implies that µ has color c, and that we
may take u := y for the existential statement, as claimed.

This proves (+3).

Recall that by (IVa), we have δ(u, v) ≥ β(v) − 1 for all u ∈ U .

(+4) Suppose that there exists u ∈ U such that δ(u, v) = β(v) − 1 and f(u) is an
endpoint of P . Then β(v) = 1.

First, suppose that diam(T) is odd. Since u ≺ v, applying the inductive hypothesis to
u yields ecc(f(u))− rad(T) ≤ γ(u). Since f(u) is an endpoint of P which is a longest
path ofT, we have ecc(f(u)) = diam(T) = 2rad(T)−1. This implies γ(u) ≥ rad(T)−1.
Observe, by the definition of γ(v), that γ(v) ≥ 2β(v)− 2+ γ(u)− δ(u, v). Recall that
δ(u, v) = β(v) − 1, and that we assume (IVb). Thus γ(v) ≤ rad(T )− 1 and so

rad(T)− 1 ≥ γ(v) ≥ 2β(v) − 2 + γ(u)− δ(u, v) ≥ β(v)− 1 + rad(T) − 1

Therefore the above inequalities are, in fact, equalities and β(v) = 1, as claimed.
So we may assume, for contradiction, that diam(T) is even and β(v) = 2. Recall

that we assume that δ(u, v) = β(v) − 1 = 1. Let Q be the walk minimizing δ(u, v),
i.e., δ(u, v) = λ(Q) = 1. By definition, |Q| and λ(Q) have the same parity. Thus since
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λ(Q) = 1 is odd, the walk Q has odd length. This shows that the vertices u, v have
different colors.

There are two cases to consider. Suppose first that u is black and v is white. Since
u ≺ v, the condition (ii) holds for u, namely ecc(f(u))−rad(T) ≤ γ′(u)+1. Recall that
f(u) is an endpoint of P , and so ecc(f(u)) = diam(T) = 2rad(T). Therefore γ′(u) ≥
rad(T)− 1. Observe by the definition of γ′(v) that γ′(v) ≥ 2β(v)− 2+γ′(u)− δ(u, v).
Since δ(u, v) = 1, β(v) = 2, and γ′(u) ≥ rad(T) − 1, we can calculate

γ′(v) ≥ 2β(v)− 2 + γ′(u)− δ(u, v) ≥ γ′(u) + 1 ≥ rad(T)

This shows that γ′(v) ≥ rad(T), but v is white, contradicting our assumption (+0).
Similarly, suppose that u is white and v is black. By (ii), we have that ecc(f(u))

is odd, since u is white. However, f(u) is an endpoint of T and hence ecc(f(u)) =
diam(T) which is even, a contradiction. This proves (+4).

(+5) |L| ≥ 2β(v)− 1

To see this, note that f(x) ∈ P and f(y) ∈ P by the inductive hypothesis. We
consider the following possibilities.

Suppose first that dist(f(x), f(y)) < δ(y, v). By the definition of Iy , this implies
f(x) ∈ Iy and so f(x) ∈ L = Ix ∩ Iy . We recall that δ(x, v) ≥ β(v) − 1. If β(v) = 1,
we deduce {f(x)} ⊆ L and so |L| ≥ 2β(v) − 1, as claimed. So we may assume
β(v) = 2. If f(x) is not an endpoint of P , then both its neighbors belong to L,
since δ(x, v) ≥ β(v) − 1 and dist(f(x), f(y)) < δ(y, v). So f(x) together with those
two neighbors implies |L| ≥ 2β(v) − 1. We may therefore assume that f(x) is an
endpoint of P . By (+4), we deduce that δ(x, v) ≥ β(v). Recall that f(y) ∈ P . If
dist(f(x), f(y)) ≥ 2, then f(x) together with next two vertices on P belong to Iy
and thus to L, since dist(f(x), f(y)) < δ(y, v). If dist(f(x), f(y)) = 1, then since
δ(y, v) ≥ β(v)− 1 = 1, we again have that the f(x) and next two vertices on P are in
L. If f(x) = f(y), then f(y) is an endpoint of P and so δ(y, v) ≥ β(v) by (+4). Thus
again f(x) and next two vertices on P are in L. In all cases, |L| ≥ 2β(v)− 1.

Therefore, we may assume that dist(f(x), f(y)) ≥ δ(y, v), and symmetrically,
dist(f(x), f(y)) ≥ δ(x, v). Since {x, y} ≺ v, the inductive hypothesis applies to x, y
which yields dist(f(x), f(y)) ≤ δ(x, y) by (IIIa). Recall that f(x) ∈ P and f(y) ∈ P .
Let P ′ denote the subpath of P between f(x) and f(y). Note that P ′ is a shortest
path betweeen x and y, since there is a unique path between any two vertices in T.
By Lemma 7.11, we have δ(x, y) ≤ δ(x, v) + δ(y, v)− 2β(v) + 2. Together we deduce
dist(f(x), f(y)) ≤ δ(x, v) + δ(y, v) − 2β(v) + 2. Since dist(f(x), f(y)) ≤ δ(x, v) +
δ(y, v)− 2β(v)+ 2, the path P ′ contains at most δ(x, v) + δ(y, v)− 2β(v) + 3 vertices,
where the first δ(x, v) + 1 belong to Ix, since dist(f(x), f(y)) ≥ δ(x, v), and the last
δ(y, v) + 1 belong to Iy, since dist(f(x), f(y)) ≥ δ(y, v). Thus by inclusion-exclusion,

|Ix ∩ Iy| ≥ δ(x, v) + 1 + δ(v, y) + 1−
(
δ(x, v) + δ(y, v)− 2β(v) + 3

)
= 2β(v)− 1

This proves that |L| ≥ 2β(v) − 1 as claimed. This proves (+5).

After these preliminary observations, we are ready to analyze cases.

Case 1a: assume diam(T) is odd and m1,m2 ∈ L. Note that γ(v) ≥ β(v) − 1,
since v is not first in ≺. Since m1,m2 are adjacent, they have different colors. By
symmetry, we may assume that m1 has color c. If β(v) = 1, Prover offers for v the
vertex m1 which becomes f(v). Since m1 has color c, we have by (+2) that setting
f(v) = m1 satisfies (IIIa), (IIIb), and f(v) ∈ P . Since ecc(m1) = rad(T), we have
ecc(f(v))− rad(T) = 0 ≤ β(v) − 1 ≤ γ(v), as required.

Thus assume β(v) = 2. Since diam(T) ≥ 3, the vertex m2 is not an endpoint
of P . Thus m2 has a neighbor µ 6= m1 on P . By (+3), we conclude that µ ∈ L,
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since m2 does not have color c. This also implies that µ has color c. Observe that
ecc(µ) ≥ rad(T)−1, since µ is adjacent to m2 which is a center of T. Prover therefore
offers the set {m1, µ}. Adversary chooses a value from this set to become f(v). It
follows that f(v) satisfies (IIIa) and (IIIb), by (+2), since both m1 and µ are in L and
have color c. Moreover, f(v) ∈ P and since ecc(µ) ≥ rad(T)−1 and ecc(m1) = rad(T),
we have ecc(f(v)) − rad(T) ≤ 1 = β(v)− 1 ≤ γ(v), as required.

Case 1b: assume that diam(T) is even and both m and its two neighbors µ1, µ2 on P
are in L. Observe that µ1, µ2 either both have color c or neither has. If both have color
c, then Prover offers µ1 or {µ1, µ2} if β(v) = 1 or β(v) = 2, respectively. It follows by
(+2) that setting f(v) = µi satisfies both (IIIa) and (IIIb) and f(v) ∈ P . Moreover,
since ecc(µi) ≤ rad(T)+1, we deduce that ecc(f(v))− rad(T) ≤ 1 ≤ β(v) = γ′(v)+1,
as required. Similarly, if m has color c, then neither µ1 nor µ2 has color c and so
by (+3) both neighbors of µ1 and µ2 on P are in L. Let µ be one such neighbor
different from m. Prover offers m or {m,µ} if β(v) = 1 or β(v) = 2, respectively.
Note that µ also has color c. Thus by (+2), any choice that Adversary makes for f(v)
satisfies (IIIa) and (IIIb). Moreover, we have ecc(f(v)) = rad(T) if β(v) = 1, and
ecc(f(v)) ≤ rad(T) + 2 if β(v) = 2. Thus ecc(f(v)) − rad(T) ≤ β(v) = γ′(v) + 1, as
required.

Case 2: all other possibilities. Recall that L is a subpath of P , and no two consecutive
vertices on P have the same eccentricity, except for m1, m2 if diam(T) is odd but in
that case, we assume that not both m1, m2 are in L. This implies that L lies on P
on one side of the centers (possibly including one center). We therefore conclude that
there exists µ ∈ L and i ∈ {1, 2} such that µ 6= αi (recall αi are the endpoints of P ),
and eccP (µ) = dist(µ, αi), and such that µ is the only vertex in L on the subpath P ′

of P between µ and αi.
In particular, µ has a neighbor η ∈ P ′. Thus η 6∈ L and by (+3), we deduce that

µ has color c and dist(f(u), µ) = δ(u, v) < dist(f(u), η) for some u ∈ U .
We have f(u) ∈ P by the inductive hypothesis. We observe that f(u) does

not belong to P ′, except if f(u) = µ, since dist(f(u), µ) < dist(f(u), η). Therefore
concatenating to P ′ the subpath of P between f(u) and µ yields a shortest path from
f(u) to αi. By (+1), we note that eccP (µ) = ecc(µ) = dist(αi, µ). Put together,

ecc(µ) + δ(u, v) = dist(αi, µ) + dist(f(u), µ) = dist(f(u), αi) ≤ ecc(f(u))

If β(v) = 1, then Prover offers for v the vertex µ which becomes f(v). Since µ
is in L and has color c, we deduce by (+2) that (IIIa), (IIIb) hold for f(v) = µ. We
also clearly have f(v) ∈ P . If diam(T) is odd, we deduce from the definition of γ(v)
that γ(v) ≥ 2β(v) − 2 + γ(u) − δ(u, v). Thus γ(v) ≥ γ(u) − δ(u, v), since β(v) = 1.
By (i), we have ecc(f(u)) − rad(T) ≤ γ(u). Recall that ecc(µ) + δ(u, v) ≤ ecc(f(u)).
When put together, we have

ecc(f(v)) = ecc(µ) ≤ ecc(f(u))− δ(u, v) ≤ γ(u)− δ(u, v) + rad(T) ≤ γ(v) + rad(T)

We therefore conclude that ecc(f(v))− rad(T) ≤ γ(v) as required for (i).
If diam(T) is even, the process is similar. From (ii), we have ecc(f(u))− rad(T) ≤

γ′(u)+1, and by the definition of γ′(v), we have γ′(v) ≥ γ′(u)−δ(u, v), since β(v) = 1.
The facts ecc(µ) + δ(u, v) ≤ ecc(f(u)) and f(v) = µ now yield ecc(f(v)) − rad(T) ≤
γ′(v) + 1 as required. It remains to show that ecc(f(v)) is odd ⇐⇒ v is white.

Let Q be the walk that minimizes δ(u, v), i.e., δ(u, v) = λ(Q). By definition, λ(Q)
and |Q| have the same parity. This implies that u, v have the same color ⇐⇒ δ(u, v)
is even. Now recall that dist(f(u), µ) = δ(u, v). Since both µ = f(v) and f(u) belong
to P , we deduce by (+1) that ecc(f(u)), ecc(f(v)) have the same parity ⇐⇒ δ(u, v)
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is even. Put together, we conclude that u, v have the same color ⇐⇒ ecc(f(u)),
ecc(f(v) have the same parity. Thus since by (ii), we have ecc(f(u)) is odd ⇐⇒ u
is white, it now follows that ecc(f(v)) is odd ⇐⇒ v is white, as required for (ii).

It remains to consider β(v) = 2. In this case, we conclude by (+5) that the set L
has at least 2β(v)− 1 = 3 elements. In particular, since L is a subpath of P and µ is
one of the endpoints of L, the set L contain another vertex µ′ at distance 2 from µ.
Since µ has color c, so does µ′. Moreover, by (+1), we deduce ecc(µ′) = ecc(µ) + 2,
since dist(µ, µ′) = 2 and µ, µ′ ∈ P . Thus ecc(µ′) ≤ ecc(f(u)) − δ(u, v) + 2, since
ecc(µ) ≤ ecc(f(u))−δ(u, v). Prover therefore offers the set {µ, µ′}. Adversary chooses
f(v) from this set. Since both µ, µ′ are in L and have color c, we satisfy (IIIa), (IIIb)
by (+2). Also f(v) ∈ P . We again distinguish at the case of odd and even diameter.

If diam(T) is odd, we have by the definition of γ(v) that γ(v) ≥ γ(u)−δ(u, v)+2,
since β(v) = 2. By (i), we have ecc(f(u)) ≤ γ(u) + rad(T). Since f(v) ∈ {µ, µ′}, we
have ecc(f(v)) ≤ ecc(f(u))− δ(u, v) + 2. So put together

ecc(f(v)) ≤ ecc(f(u))− δ(u, v) + 2 ≤ γ(u) + rad(T)− δ(u, v) + 2 ≤ γ(v) + rad(T)

We therefore conclude that ecc(f(v))− rad(T) ≤ γ(v), as required for (i).

If diam(T) is even, then by (ii), we have ecc(f(u))− rad(T) ≤ γ′(u) + 1 and the
same calculation yields ecc(f(v)) − rad(T) ≤ γ′(v) + 1. We recall that in the case
β(v) = 1 we proved that have ecc(µ) is odd ⇐⇒ v is white. Thus ecc(µ′) is odd
⇐⇒ v is white, since ecc(µ′) = ecc(µ) + 2 as argued earlier. Since f(v) ∈ {µ, µ′}, we
therefore conclude that ecc(f(v)) is odd ⇐⇒ v is white, proving that (ii) holds for v.

This completes the proof (of Lemma 7.15 and with it (IV)⇒(III)).

7.6. Main theorem. With this characterization, the main theorem of this
section is straightforward.

Theorem 7.16. {1, 2}-CSP(T) is decidable in polynomial time.

Proof. If diam(T) ≤ 2, then T is a star K1,ℓ and {1, 2}-CSP(T) is in L by
Proposition 6.1. Thus we may assume diam(T) ≥ 3. If the input formula Ψ has
disconnected graph G = Dψ, we apply Theorem 7.7 on each connected component of
G individually. Clearly, Ψ is a yes-instance if and only if every connected component
of G yields a yes-instance. We may therefore assume that G is connected. To
use Theorem 7.7, we observe that the values δ(u, v), γ(v), and γ′(v) can be easily
computed in polynomial time by dynamic programming. This allows us to test
conditions of Theorem 7.7 and thus decide {1, 2}-CSP(T) in polynomial time as
claimed.

An immediate question arises from the above proof. Is it possible to test the
conditions of Theorem 7.7 in L? If the walks that we need to examine in order to
do so were of bounded length, then the answer would be yes. This may be unlikely.
Consider a long path P on ∃≥1 and ∃≥2 vertices, where for every subpath Q of P ,
we have k ≤ λ(Q) ≤ ℓ for some constants k, ℓ > 0. In particular, λ(P ) ≥ k. Let u
be the first vertex on P , and assume the last vertex on P is ∃≥2. Then attach to the
end of P another path P ′ with λ(P ) vertices, each quantified ∃≥2. In the quantifier
order ≺, put u first, then the vertices of P ′, and then the rest of P . It follows that
P ′′ = P ∪P ′ is a bad walk, however, we cannot tell this unless we examine the entirety
of P ′′. Moreover, the path P yields a yes-instance of {1, 2}-CSP(P2ℓ) and therefore
for a sufficiently large tree, we cannot discard this instance based on the values γ or
γ′. We return to this question in the conclusion of the paper.

Now note that the proof of Theorem 7.7 implies the following interesting corollary.
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Corollary 7.17. Let T be a tree. Let P be a longest path that is a substructure
of T. Then Ψ is a yes-instance of {1, 2}-CSP(T) if and only if Ψ is a yes-instance
of {1, 2}-CSP(P).

This implies the following main case of Theorem 1.4.

Corollary 7.18. {1, 2}-CSP(H) is polynomial-time solvable, for each forest H.
Proof. Let Ψ be a given instance to {1, 2}-CSP(H) and let G = Dψ be the

corresponding graph. Just like in the proof of Theorem 7.16, we may assume that G
is connected. The problem reduces to the case when H is a tree as follows.

Let Ψ′ be obtained from Ψ by making the first quantified variable (vertex of G)
an ∃≥1 vertex (possibly Ψ′ = Ψ). The theorem will follow from this observation.

(+) H |= Ψ if and only if at least one of the following,
(i) K |= Ψ for some connected component K of H,
(ii) K |= Ψ′ and K′ |= Ψ′ for some distinct components K, K′ of H.

If K |= Ψ for some connected component K of H, then clearly also H |= Ψ. If
K |= Ψ′ and K′ |= Ψ′ for distinct components K, K′ of H, we may assume Ψ 6= Ψ′.
Prover then plays the following strategy. For the first variable, Prover offers the pair
of initial vertices from K and K′ from the winning strategies for the games G (Ψ′,K)
and G (Ψ′,K′). Then based on the choice of Adversary, Prover plays the respective
strategy for Ψ′ on K or K′. This shows that H |= Ψ.

For the converse, suppose that H |= Ψ. Then Prover has a winning strategy in
the game G (Ψ,H). Let us examine the values that Prover offers for the first variable
in Ψ in this strategy. If there is only one value from a connected component K, or two
values from K, then the remaining values also belong to K, because G is connected.
Thus K |= Ψ and we obtain (i). If there are two values from distinct connected
componentsK, K′ ofH, then any choice from these values fixes the remaining vertices
to the component K or K′. In particular, each choice yields a winning strategy for
Ψ′, namely one strategy for the game G (Ψ′,K) and one for the game G (Ψ′,K′). This
shows that K |= Ψ′ and K′ |= Ψ′. We thus obtain (ii). This proves (+).

Thus in view of (+) and Corollary 7.18, we let P be a longest path in H, and
see that H |= Ψ if and only if either P |= Ψ, or P |= Ψ′ and at least two connected
components of H contain a longest path. Both can be tested in polynomial time by
Theorem 7.16. This concludes the proof.

8. Proof of Theorem 1.4. For the proof, the last remaining piece of the puzzle
is the following proposition.

Proposition 8.1. If H is a bipartite graph whose smallest cycle is C2j for j ≥ 3,
then {1, 2}-CSP(H) is Pspace-complete.

Proof. We reuse one of the reductions used to prove case (iii) of Theorem 1.2. We
briefly discuss the key steps. The reduction is from QCSP(Kj). Let Ψ be an input
formula for QCSP(Kj). We begin by considering the graph Dψ to which we add a
disjoint copy V = {v1, . . . , w2j} of C2j . Then we replace every edge (x, y) ∈ Dψ with
a gadget shown in Figure 5.1, where the black vertices are identified with V . Finally,
for ∀ variables x of Ψ, we add a new path z1, z2, . . . , zj where zj = x.

The resulting graph defines the quantifier-free part of θ of our desired formula Θ.
The quantification in Θ is as follows. The outermost quantification is ∃≥2v1, . . . , vj+1

∃≥1vj+2, . . . , v2j . Then we move inwards through the quantifier order of Ψ; when we
encounter an existential variable x, we apply ∃≥1 to it in Θ. When we encounter a
∀ variable x, we apply ∃≥2 to the path z1, z2, . . . , zj constructed for x, in that order.
All the remaining variables are then quantified ∃≥1.
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As proved in Theorem 1.2, the cycle C2j models Θ if and only if Kj models Ψ.
We now adjust this to the bipartite graph H. There are three difficulties arising from
simply using the above construction as it is.

Firstly, assume the variables v1, . . . , v2j are mapped to a fixed copy C of C2j in
H. We need to ensure that variables x, y, derived from the original instance Ψ and
constrained by E(x, y), are also mapped to C. For y variables in our gadget one can
check this must be true – the successive cycles in the edge gadget may never deviate
from C, since H contains no cycle smaller than 2j. For x variables off on the pendant
this might not be true. To fix this, we insist that Ψ contains an atom E(x, y) iff it
also contains E(y, x); QCSP(Kj) remains Pspace-complete on such instances [3].

Secondly, we need to check that Adversary has freedom to assign any value from
C to each ∀ variable x. Consider z1, . . . , zj , the path associated with x. As long
as Prover offers values for z1, . . . , zj from C, Adversary has freedom to chose any
value for x = zj . If on the other hand Prover offers for one of z1, . . . , zj , say for zi,
a value not on C, then Adversary can choose all subsequent zi+1, . . . , zj to also be
mapped outside C, since H has no cycle shorter than C2j . Thus x = zj ends up
mapped outside C, which we ensured is not possible, i.e., Prover would lose if she
had done this.

Finally, we discuss how to ensure that V is mapped to a copy of C2j . Since
the first j + 1 vertices of V are quantified ∃≥2, Adversary can force this by always
choosing a value not seen already when going through each of v1, . . . , vj+1 in turn.
If this is not possible (both offered values have been seen), this gives rise to a cycle
in H shorter than C2j , which does not exist. In conclusion, if Adversary maps V
to a cycle, then Prover must play exclusively on this cycle, thus solving QCSP(Kj).
If Adversary maps V to a subpath of C2j , then Prover can play to win (certainly
if Φ is a yes-instance and possibly even if not). So the situation is just like with
{1, 2}-CSP(C2j).

Finally, we are ready to prove a dichotomy for {1, 2}-CSP(H) where H is a graph
(and a stronger dichotomy when H is a bipartite graph).

Proof of Theorem 1.4. If H is not bipartite, then {1}-CSP(H) is NP-hard by [22];
thus {1, 2}-CSP(H) is also NP-hard. So we may assume that H is a bipartite graph.
If H contains a C4, then {1, 2}-CSP(H) is in L as shown in Proposition 6.3.

We may therefore assume that G contains no C4. If H contains any cycles at all,
then the smallest cycle in H is C2j where j ≥ 3, and the problem is Pspace-complete
by Proposition 8.1. Thus we may assume thatH contains no cycles and so it is a forest.
In this case, {1, 2}-CSP(H) is polynomial-time solvable as Corollary 7.18 shows.

This completes the proof.

9. Finer classifications.

9.1. Partially reflexive graphs. In this section, we briefly list some results
for graphs allowing self-loops on some vertices (so-called partially reflexive graphs).
Our understanding of these cases is rather limited and some recent results [30, 28]
suggest that a simple dichotomy is very unlikely. Nonetheless, some cases might still
be of further interest. First, we consider the class of undirected graphs with a single
dominating vertex w which is also a self-loop. Let H − {w} be the subgraph of H
induces by the set V (H)− {w}.

Proposition 9.1. If H has a reflexive dominating vertex w and H−{w} contains
a loop or is irreflexive bipartite, then {1, 2}-CSP(H) is in P



43

Proof. If H− {w} contains a loop then H contains adjacent looped vertices and
{1, 2}-CSP(H) is trivial (all instances are yes-instances). Assume H − {w} is an
irreflexive bipartite graph and consider an input Ψ for {1, 2}-CSP(H). All variables
quantified by ∃≥1 can be evaluated as w and can be safely removed while preserving
satisfaction. So, let Ψ′ be the subinstance of Ψ induced by the variables quantified by
∃≥2 and let ψ′ be the associated quantifier-free part. If Dψ′ is bipartite, the instance
is a yes-instance, otherwise it is a no-instance.

Proposition 9.2. If H has a reflexive dominating vertex w and H− {w} is an
irreflexive non-bipartite graph, then {1, 2}-CSP(H) is NP-complete.

Proof. For membership of NP we note the following. Let U be a unary predicate
defining the set V (H) − {w}. From an input Ψ for {1, 2}-CSP(H) we will build an
instance Ψ′ for CSP(H;U) so that H |= Ψ iff (H;U) |= Ψ′. The latter is clearly in
NP, so the result follows. To build Ψ′ we take Ψ and add U(v) to the quantifier-free
part for all ∃≥2 quantified variables v, before converting in the quantification ∃≥2v to
∃≥1v.

For NP-hardness we reduce from CSP(H − {w}) which is NP-hard by [22]. For
an input Ψ to this, we build an input Ψ′ for {1, 2}-CSP(H) by converting each ∃ to
∃≥2. It is easy to see that (H− {w}) |= Ψ iff H |= Ψ′ and the result follows.

We sum up the previous two propositions in the following corollary.
Corollary 9.3. If H has a reflexive dominating vertex, then {1, 2}-CSP(H) is

either in P or is NP-complete.

9.2. Small graphs. It follows from Proposition 9.2 that there is a partially
reflexive graph on four vertices, K4 with a single reflexive vertex, so that the
corresponding {1, 2}-CSP is NP-complete. We can argue this phenomenon is not
visible on smaller graphs.

Proposition 9.4. Let H be a (partially reflexive) graph on at most three vertices,
then either {1, 2}-CSP(H) is in P or it is Pspace-complete.

Proof. The Pspace-complete cases are K3 (see [25]) and P∗
101, which is the path

of length two whose internal vertex is loopless while the end vertices are looped. It
is known that QCSP(P∗

101) is Pspace-complete [28]. One can reduce this problem to
{1, 2}-CSP(P∗

101) by substituting ∀x in the former by ∃≥2x, x′ E(x, x′) in the latter
(where x′ is a newly introduced variable). We now address the tractable cases.

Case 1. If H contains a reflexive clique of size 2, then {1, 2}-CSP(H) is trivial.
Case 2. If H is an irreflexive bipartite graph, i.e., H is a forest, then {1, 2}-CSP(H)
is in P according to Corollary 7.18.
Case 3. When H contains just isolated loops and non-loops then it is easy to give
a tailored algorithm, as follows. If H contains at least two loops then: any input
with a subinstance Qx∃≥2x′ E(x, x′), where Q is any quantifier, and x 6= x′, is false;
all other inputs are true. If H contains only one loop: any input with a subinstance
Qx∃≥2x′ E(x, x′) where Q is any quantifier, and possibly x = x′, is false; all other
inputs are true. If H contains just isolated loops then it is bipartite.
Case 4. We are now left with one remaining 2-vertex graph, P∗

10, the 2-vertex path
with one loop. For this problem, any input with a subinstance ∃≥2x, x′ E(x, x′) where
possibly x = x′, is false; all other inputs are true.
Case 5. We continue with graphs on exactly three vertices.
Case 5a. Among the remaining possibilities where H has exactly two loops is only
P∗

10 ⊎ K∗
1, the disjoint union of P∗

10 and a single vertex with a loop K∗
1. For this

problem, any input with a subinstance ∃≥2x, x′ E(x, x′) where x 6= x′, is false; all
other inputs are true.
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Case 5b. We now address the case in which there is precisely one loop. If the vertex
with a loop dominates, then we have tractability by Proposition 9.1. If it is isolated,
then the remaining case is K∗

1 ⊎K2, the disjoint union of K∗
1 and K2. For this, any

input Ψ with subinstance ∃≥2x E(x, x) or an ∃≥2v at the beginning of a sequence
(connected component of v in Dψ) that is non-bipartite is false; all other inputs are
true. The remaining possibilities are P∗

100, the path on three vertices with loop at one
endpoint, and P∗

10 ⊎K1, the disjoint union of P∗
10 and K1. For the latter, we have

the same {1, 2}-CSP as for P∗
10, which has already been resolved. {1, 2}-CSP(P∗

100)
requires some subtlety and appears as its own result in Proposition 9.5.

Case 5c. All other 3-vertex cases are irreflexive and are hence already resolved.

Proposition 9.5. {1, 2}-CSP(P∗
100) is in P.

Proof. Let Φ be an instance of {1, 2}-CSP(P∗
100) in which we assume without loss

of generality that the quantifier-free part φ is symmetrically closed, i.e., contains an
atom E(v, v′) only if it contains E(v′, v). The following four types of subinstance in Ψ
result in it being false (including the symmetric closure of the quantifier-free parts).

(i) ∃≥2x1, x2, x3 E(x1, x2) ∧ E(x2, x3)
(ii) Qx1∃≥2x2, x3 E(x1, x3) ∧ E(x2, x3) (Q is any quantifier)
(iii) ∃≥2x1, x2, x3 E(x2, x3) ∧ E(x1, y) ∧ E(x3, y)

(y is quantified existentially, and x2 is quantified before x3)
(iv) ∃≥2x1, x2, x3, x4 E(x1, x2) ∧ E(x3, x4) ∧ E(x2, y1) ∧ E(x4, y2) ∧ E(y1, y2)

(y1, y2 are quantified existentially, x1 is quantified before x2, and x3 before x4)

We claim that all other inputs are yes-instances. We give the following strategy
for Prover. Consider P∗

100 to have vertex set {0, 1, 2} with edges 01, 12, and loop at 0.

For ∃≥2 variables Prover offers {0, 1}, unless constrained by adjacency of a variable
already played to 1, in which case she offers {0, 2}. For ∃ variables Prover offers {0},
unless constrained by adjacency of a variable already played to 2, in which case she
offers {1}. We argue this strategy must be winning. This is tantamount to saying that
Prover is never offered (a) an ∃≥2 variable that is simultaneously adjacent to 0 and 1;
(b) an ∃≥2 variable that is adjacent to 2; and (c) an ∃ variable that is simultaneously
adjacent to both 2 and 1. We observe that (b) follows from Rule (i) and (a) follows
from Rule (ii), while (c) follows from (iii) and (iv).

9.3. Multipartite graphs trichotomy. For 1 ≤ a1 ≤ . . . ≤ an, let Ka1,...,an

be the complete multipartite graph with respective parts of size a1, . . . , an. We refer
to a part ai = 1 as singleton. We write Kn(x1, . . . , xn) to denote

∧

i6=j∈[n] xi 6= xj .

Proposition 9.6. {1, 2}-CSP(K1,1,2) is Pspace-complete.

Proof. In K1,1,2 let us label the vertices r, b, g, g′ in the obvious fashion. If we
evaluate ∃≥1p, q∃≥2x K3(x, p, q) then it must be that {p, q} is evaluated as {r, b} and
x is offered to be both {g, g′}. It follows that ∃≥2w∃≥1p, q∃≥2x K3(x, p, q)∧K2(x,w)
enforces the quantification “w must hold for both r and b”. Armed with this it is
simple to adapt the Pspace-hardness proof of [3] to reduce Quantified not-all-equal 3-
satisfiability QCSP(BNAE) to {1, 2}-CSP(K1,1,2), thus proving Pspace-completeness
of the latter. Naturally, r and b play the role of true and false. We outline the
reduction here (see [3, Proposition 5.1] and [3, Figure 2 on Page 993] for further
details.)

For an input Φ of QCSP(BNAE) we build an input Ψ for {1, 2}-CSP(K1,1,2), via
its quantifier-free part ψ, so that the Φ is a yes-instance of QCSP(BNAE) iff Ψ is
a yes-instance of {1, 2}-CSP(K1,1,2). Each variable of Φ becoms a triangle K3 on
i,¬v, v in Dψ, where we will identify the i vertex of all of the variable gadgets and
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ensure it is evaluated as either (or both) g, g′ (which we already explained that we
can do). Each clause also becomes a triangle K3 on ℓ, ℓ′, ℓ′′ in Dψ and is connected by
a single edge to the respective variable. That is, if we have the clause (v1 ∨ ¬v2 ∨ v3)
then we have edges ℓv1, ℓ

′¬v2, ℓ′′v3. Finally we need a single edge variable gadget
from a new vertex v∀ attached to the vertex ¬v for each universal variable v.

The quantification goes as follows. Outermost, i is quantified so as to force it
to be {g, g′}. Then we move in according to the variable order of Φ. For existential
variables v, we existentially quantify v and ¬v; while for universal variables v we
quantify v∀ so that it ranges over both r and b, then existentially quantify v and ¬v.
All remaining variables are quantified existentially innermost.

It is not hard to see the reduction stays true to [3] and the result follows.
Corollary 9.7. If a1 = a2 = 1, then {1, 2}-CSP(Ka1,...,an) is Pspace-complete.
Proof. The proof is similar to that of Proposition 9.6, we just need to isolate two

vertices each in singleton parts. Suppose a1 = a2 = . . . = am = 1 and the remaining
n−m are > 1. Parts corresponding to a1, . . . , am are called singletons. Use

(∃≥1y1, . . . , ym−2)∃≥2w∃≥1p, q∃≥2x1, . . . , xn−mψ
ψ := Kn(x1, . . . , xn−m, y1, . . . , ym−2, p, q) ∧Kn−1(x1, . . . , xn−m, y1, . . . , ym−2, w)

to enforce the quantification “w must hold for both of two singletons”. In
the reduction, (∃≥1y1, . . . , ym−2) can sit outermost in the quantification and is
only written once, whereas the subsequent piece may be repeated whenever the
quantification “w must hold for both of two singletons” is needed; y1, . . . , ym−1 will
have to have been evaluated on singletons, so precisely two will remain.

Proposition 9.8. If 1 = a1 < a2 ≤ . . . ≤ an then {1, 2}-CSP(Ka1,...,an) ∈ NP.
Proof. Let Φ be an input to CSP(Ka1,...,an). For 2 ≤ i ≤ n, let xi, yi be two

vertices of Ka1,...,an corresponding to the part of size ai > 1. Let x1 be the single
vertex in the part corresponding to a1 = 1. We claim that the following are equivalent.
(i) Φ is true on Ka1,...,an , and
(ii) Dφ has a proper n-coloring in which no ∃≥2 vertex has color 1.

(ii)⇒(i): Using the n-coloring, Prover offers xi or {xi, yi} for any vertex of color i.
Prover wins, since color 1 is never used on an ∃≥2 vertex of Dψ.

(i)⇒(ii): We build an n-coloring for (ii) from Prover’s winning strategy for Φ in the
following fashion. Each time we meet an ∃≥2 variable v, Prover must offer at least
one choice z that is not x1, and Adversary chooses z. The vertex z belongs to a part
of Ka1,...,an corresponding to ai for some i. The variable v is then assigned the color
i and we continue. This builds the required n-coloring.

It now follows that {1, 2}-CSP(Ka1,...,an) is in NP by condition (ii).

We are now ready to prove our trichotomy theorem.

Proof of Theorem 1.5. Let 1 ≤ a1 ≤ . . . ≤ an. Part (i) appears as Proposition 6.1.
For Part (ii), if a1 ≥ 2, then each ∃≥2 may be evaluated as ∃≥1 and we collapse to NP.
The remaing case of Part 2 is Proposition 9.8. Note that NP-hardness in (ii) follows
from Hell and Nešetřil [22]. Finally, Part (iii) is proved as Corollary 9.7.

10. The complexity of QCSP(C∗
4). Let C∗

4 be the reflexive 4-cycle, i.e., the
4-cycle with loop at every vertex. The complexities of Ret(C6) and Ret(C∗

4) are both
hard (NP-complete) [18, 17], and retraction is recognized to be a “cousin” of QCSP
(see [2]). The problem QCSP(C6) is known to be in L (see [29]), but the complexity of
QCSP(C∗

4) was hitherto unknown. Perhaps surprisingly, we show that is is markedly
different from that of QCSP(C6), namely being Pspace-complete.

Proposition 10.1. {1, 2, 3, 4}-CSP(C∗
4) is Pspace-complete.
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Proof. We will reduce from the problem QCSP(K4), known to be Pspace-complete
from, e.g., [3]. We will borrow heavily from the reduction of CSP(K4) to Ret(C∗

4) in
[17]. The reduction has a very similar flavour to that used in case (iii) of Theorem 1.2,
but borrows from [17] instead of [18].

For an input Ψ := Q1x1Q2x2 . . . Qmxm ψ(x1, x2, . . . , xm) to QCSP(K4), we build
an input Ψ′ to {1, 2, 3, 4}-CSP(C∗

4). We begin by considering the graph G = Dψ,
from which we build G′ by taking the disjoint union of G and a copy of C∗

4. We then
build G′′ from G′ by replacing every edge (x, y) ∈ E(G) with the following gadget.
In this gadget, the dark vertices z1, z2, z3, z4 are identified with the fixed copy of C∗

4

in G′.

•

•

•

•

x

y

z1

z2

z3

z4

Fig. 10.1. Reduction gadget for QCSP(C∗
4
).

The formula φG′′ will form the quantifier-free part of Ψ′; we now explain the
structure of the quantifiers. Let z1, z2, z3, z4 be the the fixed copy of C∗

4 in G′′ as
before. The formula Ψ′ begins ∃z1∃≥2z2∃≥3z3∃≥2z4 (z1 could equally be quantified
with ∃≥j , j > 1). Now we continue in the quantifier order of Ψ. When we meet an ∃
quantifier, we quantify as ∃. When we meet a ∀ quantifier, we quantify with ∀ = ∃≥4.
Finally, we quantify with ∃ all remaining variables, corresponding to vertices we added
in gadgets in G′′. We claim that K4 |= Ψ iff C∗

4 |= Ψ′. The proof of this proceeds as
with Theorem 1.2 (though there are several more degenerate cases to consider).

Corollary 10.2. QCSP(C∗
4) is Pspace-complete.

Proof. We give a reduction from {1, 2, 3, 4}-CSP(C∗
4) to QCSP(C∗

4), using the
following shorthands (x′, x′′ are new vertices which appear nowhere else in φ).

∃≥1x φ(x) := ∃x φ(x)
∃≥2x φ(x) := ∀x′∃x E(x′, x) ∧ φ(x)
∃≥3x φ(x) := ∀x′′∀x′∃x E(x′′, x) ∧ E(x′, x) ∧ φ(x)
∃≥4x φ(x) := ∀x φ(x)

On C∗
4, it is easy to verify that, for each i ∈ {1, 2, 3, 4}, ∃ix φ(x) holds iff there

exist at least i elements x satisfying φ. The result follows easily (note that each use
of shorthand substitution involves new variables corresponding to x and x′ above).

That concludes the proof.

While QCSP(C∗
4) has different complexity from QCSP(C6), we remark that the

better analog of the retraction complexities is perhaps that {1, |C∗
4 |}-CSP(C

∗
4) and

{1, |C6|/2}-CSP(C6) do have the same complexities (recall the reductions to Ret(C∗
4)

and Ret(C6) involved CSP(K|C∗

4
|) and CSP(K|C6|/2), respectively).

11. Conclusion. We have taken first important steps to understanding the
complexity of CSPs with counting quantifiers. We mainly focused on graph templates.
As we uncovered, this already provides a rich landscape of problems and challenging
questions. In cases of cliques and cycles, we have managed a completely characterize
all cases. For quantifiers ∃ and ∃≥2, we have proved a dichotomy for all graphs (and
a stronger one for bipartite graphs). In addition, we explored a number of cases of
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special graphs (with loops, complete multipartite graphs). Our view of the general
situation so far does not go beyond basic observations. One important aspect that
we have not fully utilized is the connection to algebraic methods as we now discuss.

The algebraic method has been very potent in understanding the complexity of
CSPs and QCSPs [8, 5, 1, 3, 10]. Recently, we have become aware of an algebraic
theory tailored to counting quantifiers [6] (early version was [7]).

A polymorphism of a structure B is a homomorphism from Bk to B, for some
k. Call a function f : Bk → B j-expanding if, for all X1, . . . , Xk ⊆ B such that
|X1| = . . . = |Xk| = j, we have |f(X1, . . . , Xk)| ≥ j. This condition at j = 1 is trivial
(it says that f is a function) and at j = |B| asserts surjectivity. For X ⊆ {1, . . . , |B|},
we say that f is X-expanding if it is j-expanding for all j ∈ X . Now, the relations that
are X-pp-definable over B are exactly those that are preserved by the X-expanding
polymorphisms of B [6]. In the case of {1}-pp and {1, |B|}-pp, this includes the
celebrated Galois connections previously known.

The link between polymorphisms and algorithms has been very useful in the study
of CSPs and QCSPs. For counting quantifiers, this leads to the following question.

Question 1. What expanding polymorphisms might be responsible for tractability
of X-CSP(B)?

For example, ifB has an expanding majority polymorphism (expanding for each j)
might that bestow tractability as it does for the {1, |B|}-CSP(B) in [3]?

For more combinatorial questions, recall that we have proved that {1, 2}-CSP(H)
displays dichotomy on graphs between those cases in P and those that are NP-
hard. On bipartite graphs, this dichotomy is between P and Pspace-complete. For
non-bipartite graphs, it is not difficult to exhibit template graphs H such that the
problem is NP-complete, such as those furnished by Theorem 1.5. However, this is
far from a complete answer. Is it possible to extend the dichotomy of Theorem 1.4 to
a trichotomy? In other words,

Question 2. Is it possible to classify all {1, 2}-CSP(H) problems as either in P,
NP-complete, or Pspace-complete, depending on H?

We conjecture this might be difficult, though we doubt there exist cases of
intermediate complexity.

Another direction concerns space complexity. While not the usual focus, a recent
work [16] on space complexity of the CSP on graphs suggests a finer classification
than the usual P/NP-hard. A natural question is to investigate how this applies to
counting quantifiers. In particular, the following seem like reasonable questions.

Question 3. Is {2}-CSP(K4) in L, or is it NL-complete, or perhaps P-complete?

Question 4. Let T be a fixed tree. Is {1, 2}-CSP(T) in L, or is it NL-complete,
or perhaps P-complete?

Finally, can we uncover a P/ NP-hard dichotomy for X-CSP(H) for graphs with
any given subset X? This may be achievable, though to then separate the NP-hard
from the Pspace-complete would incorporate the open question for QCSP(H), and
should be considered challenging.
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