
Algorithmica manuscript No.
(will be inserted by the editor)

3-colouring AT-free graphs in polynomial time
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Abstract Determining the complexity of the colouring problem on AT-free graphs is
one of long-standing open problems in algorithmic graph theory. One of the reasons
behind this is that AT-free graphs are not necessarily perfect unlike many popular
subclasses of AT-free graphs such as interval graphs or co-comparability graphs. In
this paper, we resolve the smallest open case of this problem, and present the first
polynomial time algorithm for the 3-colouring problem on AT-free graphs.

Keywords graph colouring· asteroidal triple· AT-free · structural decomposition·
polynomial time algorithm

1 Introduction

In theCOLOURINGproblem, we are asked to colour the vertices of a given graph with
the smallest possible number of colours so that no two adjacent vertices receive the
same colour. If such a colouring withk colours exists, the graph isk-colourable.

The COLOURING problem is one of the most studied problems on graphs. It is
also one of the first problems known to beNP-hard [10]. In other words, it is unlikely
that there is a polynomial time algorithm for solving this problem. This is true even in
very special cases such as in planar graphs [9], line graphs [15], regular graphs [7] or
if the number of coloursk is fixed and at least three [9] (known as thek-COLOURING

problem). On the other hand, fork ≤ 2 the problem is polynomially solvable, as is
the general problem for many structured classes of graphs such as interval graphs
[11], chordal graphs [11], comparability graphs [11], and more generally for perfect
graphs [12]. In these cases, the special structure of the classes in question allows for
polynomial algorithms.
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Fig. 1.1 The triangular strip of orderk.

We study the colouring problem in the class ofAT-free graphs, i.e., graphs with
no asteroidal triple (a triple of vertices such that between any two vertices of the
triple there is a path disjoint from the closed neighbourhood of the third vertex). This
class is a generalization of interval and co-comparabilitygraphs as well as some non-
perfect graphs such as the complements of triangle-free graphs. Unlike other standard
optimization problems such asINDEPENDENT SETor CLIQUE whose complexity on
AT-free graphs is known (the former is solvable in polynomial time, while the latter
is NP-hard [3]), the complexity ofCOLOURING is not known on AT-free graphs.

As a first step towards resolving this, we propose in this paper a polynomial time
algorithm for 3-COLOURING of AT-free graphs. We prove the following theorem.

Theorem 1.1 There is an O(n2m) time algorithm to decide, given an AT-free graph
G with n vertices and m edges, whether or not G is 3-colourable and to also construct
a 3-colouring of G if it exists.

We show this in three stages:

(1) we reduce the problem to AT-free graphs with no induced diamonds (Fig. 1.2a),
(2) we show how to decompose every AT-free graph with no induced diamond and

no K4 (Fig. 1.2b) into triangular strips (Fig. 1.1) using stable cutsets, and
(3) we prove that we are allowed to contract minimal stable separators without chan-

ging the answer to the problem.

This reduces the problem to graphs whose each block is a triangular strip or has
at most two vertices; all such graphs are easily seen to be 3-colourable. If at any
stage we encounter aK4, a complete subgraph on four vertices, we declare the graph
not 3-colourable. A sketch of an algorithm resulting from this is presented below
as Algorithm 1. (Note thatG/S denotes the graph we obtain fromG by contracting
(identifying) the vertices ofS into a single vertex.)
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Fig. 1.2 a) diamond,b) K4, c) 5-cycle,d) 5-wheel.
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Input: An AT-free graphG.
Output: A 3-colouring ofG or “G is not 3-colourable”.

1 if G containsK4 then
2 return “G is not 3-colourable”

/* Now G contains no K4 */

3 if G contains adjacent verticesu,v with |N(u)∩N(v)| ≥ 2 then
4 Recursively find a 3-colouring ofG/N(u)∩N(v).

/* Now G contains no induced diamond and no K4 */

5 if G contains a minimal stable separatorS with |S| ≥ 2 then
6 Recursively find a 3-colouring ofG/S.

/* Now each block of G is a triangular strip or has at most 2 vertices */

7 Construct a 3-colouring ofG.

Algorithm 1: Find a 3-colouring of an AT-free graph

Note that, in this algorithm, once Line 5 is reached, the graph is guaranteed to be
3-colourable. This follows from the fact that AT-free graphs with no induced diamond
and noK4 are 3-colourable (we prove this as Theorem 1.3). Consequently, to obtain
a decision algorithm, one can modify the procedure in Algorithm 1 to announce that
“G is 3-colourable” once Line 5 is reached.

In light of this algorithm, we remark that there are also other non-perfect classes
of graphs, such as the graphs with no induced path on five [20] or six [19] vertices, for
which 3-COLOURING is known to be polynomially solvable even thoughCOLOUR-
ING is NP-complete [16]. (In fact, in the former case,k-COLOURING for every fixed
k is polynomially solvable [14].) In these cases, we are essentially able to reduce
the problem to 2-SATISFIABILITY which is solvable in polynomial time [1]. Our
approach for AT-free graphs differs from this in that it instead focuses on efficient
decompositions of AT-free graphs to graphs for which 3-COLOURINGcan be decided
in polynomial time. This is akin to and largely inspired by the celebrated decomposi-
tion of perfect graphs [4] even though this decomposition does not (as of yet) yield a
polynomial time algorithm forCOLOURING of perfect graphs; note that, however, a
recent progress towards this goal has been made [23].

In the following sections, we examine the main ingredients to the proof of cor-
rectness of our algorithm which are summarized in the following two theorems.

Theorem 1.2 Let G be an AT-free graph with at least three vertices and with no
induced diamond and no K4. Then either

(i) G is a triangular strip, or
(ii) G contains a stable cutset.

Theorem 1.3 Every AT-free graph G with no induced diamond and no K4 is 3-
colourable. Moreover, if G contains a minimal stable separator S, then there exists a
3-colouring of G in which all vertices of S have the same colour.
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Afterwards, in the subsequent two sections, we explain implementation details
needed to guarantee the running timeO(n2m). In particular, we prove some interest-
ing properties of minimal stable separators of AT-free graphs.

In the final section, we discuss some generalizations and other cases of AT-free
graphs with polynomial complexity of theCOLOURING problem.

2 Notation

In this paper, a graph is always simple, undirected, and loopless.
For a vertexv of a graphG, we denote byNG(v) the set of vertices adjacent to

v in G, and writeNG[v] = NG(v)∪ {v}. We drop the indexG and writeN(v) and
N[v] whenever it is clear from the context. ForX ⊆ V (G), we write G[X ] for the
subgraph ofG induced byX , and writeG− X for the subgraph ofG induced by
V (G)\X . A setX ⊆V (G) is stable, if G[X ] contains no edges. As usual,Kn denotes
the complete graph (i.e., the graph with all possible edges)onn vertices, anddiamond
is the (unique) graph on 4 vertices with 5 edges (see Fig. 1.2).

We say that a pathP of a graphG is missed by a vertexx if no vertex ofP is
adjacent tox. A triple of verticesx,y,z of a graphG is asteroidal if between any two
vertices of the triple there exists a path missed by the thirdvertex.

We writeG/S for the graph we obtain fromG by contracting (i.e., identifying) all
vertices ofS into a single vertex (while supressing parallel edges and loops). That is,

V (G/S) = (V (G)\ S)∪{s} wheres 6∈V (G),

E(G/S) =
{

xy ∈ E(G)
∣

∣

∣
x,y 6∈ S

}

∪
{

sy
∣

∣

∣
xy ∈ E(G) ∧ x ∈ S ∧ y 6∈ S

}

.

A setS ⊆V (G) disconnects verticesa,b in G if a andb are in different connected
components ofG− S. We say thatS is a cutset of G if it disconnects some vertices
a,b. We say thatS is aminimal separator of G if there exist verticesa andb such that
S disconnectsa andb, but no proper subset ofS disconnects them. Acutpoint of G
is a vertexv such that{v} is a cutset. Ablock of G is a maximal connected induced
subgraph ofG having no cutpoints.

Note that a minimal separator is not necessarily an inclusion-wise minimal cutset.
For example, consider the 4-cyclea,b,c,d with a pendant edgede. The set{b,d} is
a minimal separator, since it disconnectsa from c while no proper subset of{b,d}
disconnectsa from c. However,{b,d} is not an inclusion-wise minimal cutset since
{d} ⊆ {b,d} is also a cutset.

Further note that we sometimes allowG to be disconnected; in that case, any set
S ⊆V (G) is a cutset ofG unlessS includes all but at most one connected component
K of G andS∩V (K) is not a cutset ofK. In particular, the empty set is a cutset ofG
and it is also a minimal separator ofG. On the other hand, a non-empty setS ⊆V (G)
is a minimal separator ofG if and only if it is a minimal separator of some connected
component ofG. Indeed, ifS 6= /0 disconnects some verticesa,b and no proper subset
of S disconnecta,b, then there is a connected componentK of G that contains botha
andb. This implies thatS∩V (K) is a minimal separator ofK. In fact,S ⊆ V (K) by
the minimality ofS. The converse is immediate.

For a complete terminology, see [11,24].
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3 Removing diamonds

In this section, we explain how to reduce the problem to the case of AT-free graphs
with no induced diamonds. We show that if we have a diamond inG, i.e., we have ad-
jacent verticesu,v such that their common neighbourhood contains two non-adjacent
vertices, then we can contract any maximal setS of pair-wise non-adjacent common
neighbours ofu,v and the resulting graph remains AT-free. It is also 3-colourable if
and only ifG is, since in any 3-colouring ofG all vertices ofS must have the same
colour. Thus we show the following.

Theorem 3.1 If u,v are adjacent vertices of an AT-free graph G and S is a maximal
stable set in N(u)∩N(v), then G/S is AT-free. Moverover, G is 3-colourable if and
only if G/S is.

To prove this, we use a more general tool that allows contracting specific sets
in G without creating asteroidal triples. We say that a setS ⊆ V (G) is externally
connected in G, if for eachx ∈ V (G) with N[x]∩ S = /0, the setS is contained in a
(single) connected component ofG−N[x].

Lemma 3.2 Let G be an AT-free graph and S ⊆V (G) be an externally connected set
in G. Then G/S is AT-free.

Proof. Let s denote the vertex ofG/S to which we contracted the vertices ofS, and
suppose thatG/S contains an asteroidal triple{x,y,z}. Let P be a path inG/S from
y to z missed byx. If s is not onP, thenP is also a path inG, and if x = s, then
every vertex ofS missesP in G. So, suppose thats belongs toP and is not one of the
endpoints ofP. Let u,v be the two neighbours ofs on P. By the construction ofG/S,
there exist verticesa,b ∈ S, such thatua,vb ∈ E(G). Sincexs 6∈ E(G/S), we have
NG[x]∩ S = /0, and sinceS is externally connected inG, we conclude thata andb,
and hence,u andv are in the same connected component ofG−NG[x]. Consequently,
there is a path inG from y andz missed byx. Similarly, if s is one of the endpoints of
P, sayy = s, then we conclude that there exists a path inG missed byx betweenz and
each vertex ofS. This proves that ifs is not one ofx,y,z, thenx,y,z is an asteroidal
triple of G, and otherwise, if sayx = s, thena,y,z is an asteroidal triple ofG for every
a ∈ S. But this is a contradiction, sinceG is AT-free. Thus the claim is proved. ⊓⊔

From this lemma, we immediately obtain a proof of Theorem 3.1as well as two
other corollaries that we shall make use of later.

Lemma 3.3 If G is AT-free and G[S] is connected, then G/S is AT-free.

Proof. By Lemma 3.2, it suffices to show thatS is externally connected. This is
obvious, sinceS induces a connected subgraph inG−N[x] for N[x]∩S = /0. ⊓⊔

Lemma 3.4 If G is AT-free and S is a minimal separator, then G/S is AT-free.
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Proof. Again, it suffices to show thatS is externally connected. Considerx ∈ V (G)
with N[x]∩S = /0, and letK denote the connected component ofG−S that containsx.
SinceS is a minimal separator, there is a connected componentK′ of G− S different
from K such that each vertex ofS has a neighbour inK′. Therefore,G[V (K′)∪ S] is
connected, and so,S belongs to a connected component ofG−N[x], since clearly
N[x]∩ (V (K′)∪S) = /0. This proves thatS is externally connected.

The claim now follows from Lemma 3.2. ⊓⊔

Proof of Theorem 3.1. For the first part of the claim, it again suffices to prove that
S is externally connected. Considerx ∈ V (G) with N[x]∩ S = /0. Thereforex is not
adjacent to any vertex ofS implying thatS∪{x} is a stable set. By the maximality
of S, x is non-adjacent to one ofu,v. By symmetry, suppose thatxu 6∈ E(G). Then
S∪{u} is in a connected component ofG−N[x] sinceG[S∪{u}] is connected. So,
we conclude thatS is indeed externally connected.

For the second part of the claim, lets be the vertex ofG/S to which we contracted
S. If we have a 3-colouring ofG/S, then we can extend this colouring ofG by colour-
ing all vertices ofS with the colour ofs. Conversely, if we have a 3-colouring ofG,
thenu,v have different colours in this colouring, and hence, all vertices ofS must
have the same colour. So, we use this colour fors and colour all other vertices ofG/S

as inG. This clearly yields a 3-colouring ofG/S. ⊓⊔

4 Structural decomposition

In this section, we prove Theorem 1.2 asserting that every AT-free graph with no
induced diamond and noK4 decomposes into triangular strips via stable cutsets.

The triangular strip of orderk is the graph formed by taking three disjoint paths
P1 = v1

1,v
1
2, . . . ,v

1
k , P2 = v2

1,v
2
2, . . . ,v

2
k , P3 = v3

1,v
3
2, . . . ,v

3
k and adding a triangle on

v1
i ,v

2
i ,v

3
i for eachi = 1. . .k. In other words, the triangular strip of orderk is the

cartesian product of an induced path onk vertices and a triangle. (See Fig. 1.1 for an
illustration.) We say that the trianglesv1

1,v
2
1,v

3
1 andv1

k,v
2
k ,v

3
k of the triangular strip of

orderk are theend-triangles.
We say thatG is a triangular strip ifG is isomorphic to the triangular strip of

orderk for somek. Clearly, every triangular strip is AT-free and contains noinduced
diamond orK4. Note also that triangular strips have no stable cutsets; inother words,
the two conditions of Theorem 1.2 are mutually exclusive.

Let G be an AT-free graph with|V (G)| ≥ 3, no induced diamond, and noK4. First,
we observe that it suffices to prove Theorem 1.2 for 2-connected graphsG, since any
cutpoint (and also the empty set ifG is disconnected) forms a stable cutset ofG.

SinceG contains no diamond and noK4, no two triangles ofG share an edge. We
show that, actually, no two triangles share a vertex provided G is 2-connected.

Lemma 4.1 Let G be a 2-connected AT-free graph with no induced diamond and no
K4. Then every vertex of G is in at most one triangle.

Proof. Let x be a vertex that belongs to two different triangles, namely,a triangle
x,a,b and a trianglex,u,v. Clearly,{u,v}∩ {a,b} = /0, since otherwisex,u,v,a,b
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induces a diamond or aK4 in G. For the same reason, there is no edge between the
verticesu,v anda,b.

SinceG is 2-connected,G− x is connected, and hence, there is a path between
the verticesu,v and a,b in G − x. Let P be a shortest such path. Without loss of
generality,P is a path fromu to a. Let y be the second vertex onP (afteru). Clearly,
yv 6∈ E(G) andxy 6∈ E(G), since otherwisey,v,u,x induces a diamond or aK4. Also,
y is non-adjacent to at least one ofa,b, since otherwisey,a,b,x induces a diamond.
In particular,yb 6∈ E(G), since otherwiseya 6∈ E(G) andu,y,b is a shorter path from
u,v to a,b contradicting the minimality ofP.

We now show that{y,v,b} is an asteroidal triple ofG. Indeed,v,x,b is a path
from v to b missed byy, andv,u,y is a path fromv to y missed byb. Finally, P′ =
P\{u}∪{b} is a path fromy tob missed byv, sincevy 6∈E(G) andv has no neighbour
on P\ {u,y} by the minimality ofP. ⊓⊔

By the above lemma, every vertex ofG is in at most one triangle. If some vertex
v is in no triangle, thenN(v) is a stable cutset ofG unlessV (G) = N[v] in which case
v is a cutpoint becauseG is assumed to have at least three vertices.

This implies that we may assume that every vertex ofG is in exactly one triangle.
In other words,G contains a triangular strip (of order 1). We show that by taking a
maximal such strip, we either get the whole graphG or find a stable cutset inG, thus
proving Theorem 1.2. To simplify the proof of this, we need the following lemma.

Lemma 4.2 Let G be an AT-free graph with no induced diamond and no K4, and
let H be a (not necessarily induced) subgraph of G isomorphic to a triangular strip.
Then

(i) H is induced in G, and
(ii) no vertex of H has a neighbour in G−V(H) except for end-triangles of H.

Proof. Let vi
j for i= 1,2,3 andj = 1. . .k for somek be the vertices ofH. Suppose that

H is not induced inG, and letvi
jv

i′
j′ be an edge ofG not inH such thatj < j′ and j′− j

is smallest possible. By symmetry, we assumei′ = 1, andi ∈ {1,2}. Clearly, j 6= j′.
First, we observe thatvi

j is non-adjacent tov2
j′ andv3

j′ , otherwisevi
j,v

1
j′ ,v

2
j′ ,v

3
j′

induces a diamond orK4 in G. This also impliesj′− j ≥ 2. By the choice ofj, j′ and
the fact thatj′− j ≥ 2, we conclude thatvi

j is non-adjacent tov3
j+1,v

3
j+2, . . . ,v

3
j′ , and

v3
j+1 is non-adjacent tov1

j′ . By the same token,v2
j′ is non-adjacent tov1

j+1 andv3
j+1.

We show that{vi
j,v

3
j+1,v

2
j′} is an asteroidal triple inG. Indeed, the pathvi

j,v
1
j′ ,v

2
j′ is

missed byv3
j+1, and the pathv3

j+1,v
3
j+2, . . . ,v

3
j′ ,v

2
j′ is missed byvi

j. Finally,v2
j′ is non-

adjacent to at least one ofv1
j ,v

3
j otherwisev1

j ,v
2
j ,v

3
j ,v

2
j′ induces a diamond orK4 in G.

If v3
jv

2
j′ 6∈ E(G), then the pathvi

j,v
3
j ,v

3
j+1 is missed byv2

j′ . Otherwise,v1
jv

2
j′ 6∈ E(G) in

which casevi
j,v

1
j ,v

1
j+1,v

3
j+1 is a path (or walk) missed byv2

j′ . This proves (i).

For (ii), let x 6∈ V (H) be a vertex adjacent tovi
j for somei ∈ {1,2,3} and some

j ∈ {2. . .k−1}. By symmetry, we may assumei = 1. Then, clearly,x is non-adjacent
to bothv2

j andv3
j , since otherwisex,v1

j ,v
2
j ,v

3
j induces a diamond orK4 in G.

First, suppose thatx is also adjacent tov1
j+1. Thenx is non-adjacent to bothv2

j+1

and v3
j+1, since otherwisex,v1

j+1,v
2
j+1,v

3
j+1 induces a diamond or aK4. But now
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{x,v3
j ,v

2
j+1} is an asteroidal triple inG. Indeed, the pathx,v1

j ,v
3
j is missed byv2

j+1,

the pathv3
j ,v

3
j+1,v

2
j+1 is missed byx, and the pathv2

j+1,v
1
j+1,x is missed byv3

j . So,

we may assumexv1
j+1 6∈ E(G), and by symmetry, alsoxv1

j−1 6∈ E(G).

Suppose thatx is non-adjacent to bothv2
j+1 and v3

j−1. Then{x,v2
j+1,v

3
j−1} is

an asteroidal triple inG. Indeed, the pathx,v1
j ,v

2
j ,v

2
j+1 is missed byv3

j−1, the path

v2
j+1,v

2
j ,v

3
j ,v

3
j−1 is missed byx, and the pathv3

j−1,v
3
j ,v

1
j ,x is missed byv2

j+1. So x

has at least one neighbour amongv2
j+1,v

3
j−1. By the same token,x has at least one

neighbour amongv3
j+1,v

2
j−1. Clearly,x cannot be adjacent to bothv2

j+1,v
3
j+1 or to

both v2
j−1,v

3
j−1, since we get an induced diamond inG on x,v1

j+1,v
2
j+1,v

3
j+1, or on

x,v1
j−1,v

2
j−1,v

3
j−1. So, by symmetry, we may assume thatx is adjacent tov2

j−1 and

v2
j+1 and non-adjacent tov3

j−1 andv3
j+1. But then{x,v3

j−1,v
3
j+1} is an asteroidal triple

in G. Indeed, the pathx,v2
j+1,v

3
j+1 is missed byv3

j−1, the pathv3
j+1,v

3
j ,v

3
j−1 is missed

by x, and the pathv3
j−1,v

2
j−1,x is missed byv3

j+1. That concludes the proof of (ii). ⊓⊔

Now, we are finally ready to prove Theorem 1.2.

Proof of Theorem 1.2. As remarked in the discussion above, we may assume thatG
is 2-connected, and contains a triangle (triangular strip).

Let H be the largest triangular strip induced inG. If V (H) = V (G), thenG is a
triangular strip, and we are done. Otherwise, there exists avertexv ∈ V (G) \V (H)
adjacent to a vertex ofH. By Lemma 4.2,v is adjacent to a vertexc of an end-triangle
of H; let a,b be the other two vertices of this triangle. Clearly,va,vb 6∈ E(G) since
otherwisev,a,b,c induces a diamond orK4 in G.

First, we note thatN(b)\{a} andN(a)\{b} are stable sets, since otherwisea or b
is in two triangles which is not possible by Lemma 4.1. Therefore, alsoN(a)∩N(v)
and N(b)∩ N(v) are stable sets ofG, sincea,b 6∈ N(v). Moreover, we prove that
there are no edges between the two sets. Suppose otherwise, and letu ∈ N(a)∩N(v)
andw ∈ N(b)∩N(v) be adjacent. We observe that ifu ∈ V (H), thenu belongs to a
triangle inH and the triangleu,v,w. But these triangles are different sincev 6∈V (H),
contradicting Lemma 4.1. Hence,u 6∈V (H), and by the same token,w 6∈V (H). Thus
G[V (H)∪ {u,v,w}] contains a spanning triangular strip which is, by Lemma 4.2,
induced inG. This, however, contradicts the maximality ofH.

Now, suppose that there are no edges betweenN(b) \ {a} andN(a)∩N(v). In
other words,S = (N(b) \ {a})∪ (N(a)∩N(v)) is a stable set. We show thatS is a
stable cutset ofG separatinga from v. Suppose otherwise, and letP be a shortest path
in G−S from a to v. Let z be the second vertex onP (aftera). SinceN(a)∩N(v)⊆ S,
we concludezv 6∈ E(G). Also, zc 6∈ E(G), since otherwisea,b,c,z induces a diamond
or K4 in G. By the same token,zb 6∈ E(G). This implies that{b,v,z} is an asteroidal
triple in G. Indeed, the pathv,c,b is missed byz, the pathz,a,b is missed byv, and
P\{a} is a path fromz to v missed byb, since all neighbours ofb except fora are inS.

By the same token, if there are no edges betweenN(a) \ {b} andN(b)∩N(v),
we conclude thatG contains a stable cutset. So, we may now assume that there exists
x ∈ N(a)∩N(v) adjacent to somey ∈ N(b) \ {a}, andx′ ∈ N(b)∩N(v) adjacent to
somey′ ∈ N(a) \ {b}. We show that this is impossible. Clearly,y,y′ 6∈ N(v), since
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there are no edges betweenN(a)∩N(v) andN(b)∩N(v). Also, y is non-adjacent
to a,c,x′, since otherwiseb is in two triangles which is impossible by Lemma 4.1.
By the same token,y′ is non-adjacent tob,c,x while x is non-adjacent tob,c and
x′ is non-adjacent toa,c. In particular, this shows thatx,x′,y,y′ are distinct vertices
different froma,b,c,v. We now show thatG contains an asteroidal triple.

Suppose thatyy′ 6∈ E(G). Then{y,y′,v} is an asteroidal triple ofG. Indeed, the
path y,x,v is missed byy′, the pathy′,x′,v is missed byy, and the pathy,b,a,y′

is missed byv. Hence, we may assumeyy′ ∈ E(G) in which case{x,c,x′} is an
asteroidal triple ofG. Indeed, the pathx,a,c is missed byx′, the pathc,b,x′ is missed
by x, and the pathx,y,y′,x′ is missed byc.

That concludes the proof. ⊓⊔

5 Proof of Theorem 1.3

The proof is by induction on|V (G)|. Let G be an AT-free graph with no induced
diamond and noK4. If G has at most 2 vertices, the claim is trivially satisfied.

Therefore, we may assume|V (G)| ≥ 3. If G has a stable cutset, then by (possibly)
removing some of its vertices, we can find a minimal stable separator inG. So, if G
has no minimal stable separator, then it must be, by Theorem 1.2, a triangular strip
with verticesvi

j for i = 1,2,3 and j = 1. . .k for somek. We obtain a 3-colouring of
G by assigning eachvi

j the colour((i+ j) mod 3)+1.
So, we may assume thatG contains a minimal stable separatorS. If S is empty,

thenG is disconnected and we obtain a 3-colouring ofG by independently colouring
its connected components by induction. IfS has one element, thenG has a cutpoint
and we obtain a 3-colouring ofG by 3-colouring its blocks by induction, and permut-
ing the colours in blocks so that they match on cutpoints. In both cases, all vertices
in S have the same colour. So, we may assume|S| ≥ 2.

To prove the claim, it now suffices to show that for every connected component
K of G− S, there exists a 3-colouring ofG[V (K)∪S] in which all vertices ofS have
the same colour.

Let K be a (fixed) connected component ofG−S. Let S′ denote the set of vertices
of S with at least one neighbour inK. If S′ 6= S, thenS′ is a minimal stable separator in
G′ = G− (S \ S′). By induction, there exists a 3-colouring ofG′ in which all vertices
of S′ have the same colour. By restricting this colouring toV (K)∪S and colouring the
vertices ofS\S′ with the common colour of the vertices ofS′, we obtain the required
3-colouring. (Note that the vertices ofS \ S′ are isolated inG[V (K)∪S].)

Hence, we may assume that every vertex ofS has a neighbour inK. Further, since
S is a minimal separator, there exists a connected componentK′ of G− S different
from K such that each vertex ofS also has a neighbour inK′. Let G′ denote the graph
G[V (K)∪V (K′)∪S]/V (K′), and letx denote the vertex ofG′ to which we contracted
V (K′). By Lemma 3.3,G′ is AT-free. Moreover,G′ contains no induced diamond or
K4, since any such subgraph is either inG, or containsx, butx belongs to no triangle of
G′. Also,S is a minimal separator inG′. Hence, ifG′ has fewer vertices thanG, then,
by induction, there exists a 3-colouring ofG′ in which all vertices ofS have the same
colour. This colouring when restricted toV (K)∪S yields the required 3-colouring.
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It follows that we may assume thatG−S has exactly two connected components,
one of which isK, the other consists of a single vertexx, and every vertex ofS is
adjacent tox and has a neighbour inK.

Now, letS∗ be a smallest subset ofS such that
⋃

u∈S∗ N(u) =
⋃

u∈S N(u). Suppose
that S∗ contains three distinct verticesu,v,w. By the minimality ofS∗, there exist
verticesu′,v′,w′ such thatu′ ∈ N(u)\ (N(v)∪N(w)), v′ ∈ N(v)\ (N(u)∪N(w)) and
w′ ∈ N(w)\ (N(u)∪N(v)). Clearly,u′,v′,w′ ∈V (K) sinceS is a stable set andu,v,w
are adjacent tox. Suppose thatu′v′ 6∈ E(G). Then{u′,v′,x} is an asteroidal triple inG.
Indeed, the pathu′,u,x is missed byv′, the pathv′,v,x is missed byu′, andx misses
any path inK betweenu′ andv′. Hence, we must concludeu′v′ ∈ E(G), and by the
same token,u′w′,v′w′ ∈ E(G). However, then{u,v,w} is an asteroidal triple inG.
Indeed, the pathu,u′,v′,v is missed byw, the pathu,u′,w′,w is missed byv, and the
pathv,v′,w′,w is missed byu. Hence, we conclude|S∗| ≤ 2.

If S∗ 6= S, we consider the graphG′ = G − (S \ S∗). Clearly, S∗ is a minimal
separator inG′, and hence, there exists, by induction, a 3-colouring ofG′ in which
all vertices ofS∗ have the same colour. We extend this colouring toG by assigning
the vertices ofS\S∗ the common colour of the vertices ofS∗. By the definition ofS∗,
this gives the required 3-colouring.

Hence, we may assume thatS consists of exactly two verticesu andv. We let
A = N(u) \N(v), B = (N(u)∩N(v)) \ {x}, andC = N(v) \N(u). By the minimality
of S∗, we haveA 6= /0 andC 6= /0. Moreover, each vertexa ∈ A is adjacent to every
vertexc ∈ C, since otherwise{a,c,x} is an asteroidal triple ofG. Indeed, the path
a,u,x is missed byc, the pathc,v,x is missed bya, and any path betweena andc in
K is missed byx. Further,A is a stable set inG, since any adjacenta,a′ ∈ A yield an
induced diamondu,a,a′,c for anyc ∈C. By the same token,C is a stable set. Finally,
B is a stable set, since any adjacentb,b′ ∈ B yield an induced diamondb,b′,u,v in G.

Suppose that there isb ∈ B adjacent to somea ∈ A, and letc ∈ C. We show that
N(b)\{u}⊆N(c). Suppose otherwise and letw∈N(b)\{u} be such thatwc 6∈E(G).
Clearly,bc 6∈ E(G) since otherwiseu,a,b,c induces a diamond inG. Also, wu,wa 6∈
E(G) since otherwisew,a,b,u induces a diamond orK4 in G. Finally, wx 6∈ E(G),
sincew is not one ofu,v andx is only adjacent tou,v. It follows that {w,x,c} is
an asteroidal triple inG. Indeed, the pathw,b,a,c is missed byx, the pathc,a,u,x is
missed byw, and the pathx,u,b,w is missed byc. This proves thatN(b)\{u}⊆N(c).

Now, by induction, there exists a 3-colouring ofG− b in which u andv have the
same colour. We extend this colouring toG by assigningb the colour ofc. Clearly,
b andu have different colours in this colouring, since otherwisec,u,v have the same
colour, impossible sincecv is an edge inG− b. Also, b has colour different from its
other neighbours, sinceN(b)\ {u} ⊆ N(c). So, this gives the required 3-colouring.

It follows that we may assume that there are no edges betweenA andB. In other
words,A∪B is a stable set. It is also a minimal separator ofG[V (K)∪ {u,v}] that
disconnectsu from v, sinceu,a,c,v andu,b,v are paths fromu to v for eacha ∈ A,
b∈ B, andc ∈C. So, by induction, there is a 3-colouring ofG[V (K)∪{u,v}] in which
all vertices ofA∪B have the same colour. IfB 6= /0, then recolouringu with the colour
of v yields the required 3-colouring. Thus, we may assumeB = /0.

Now, suppose that there isa ∈ A with N(a) ⊆ C∪{u}. If |A| ≥ 2, then{u,v} is
a minimal separator inG− a, and hence, there exists, by induction, a 3-colouring
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of G − a in which u,v have the same colour. Recall thatN(a′) ⊇ C ∪ {u} for all
a′ ∈ A. So, by assigninga the colour of any vertex inA\ {a}, we obtain the required
3-colouring. Hence, we may assumeA = {a}, and we observe thatC is a minimal
separator ofG− u that disconnectsa from v. By induction, there is a 3-colouring
of G − u in which all vertices ofC have the same colour. To obtain the required
3-colouring, we colouru with the colour ofv and recoloura with the colour different
from the colour ofu and the common colour of the vertices ofC.

Hence, we may assume that there existsw ∈ N(a) \ (C ∪ {u}) for somea ∈ A,
and by symmetry, we also havez ∈ N(c)\ (A∪{v}) for somec ∈C. We show that in
this caseG contains an asteroidal triple. Clearly,w andz are both different from and
non-adjacent to all ofu,v,x. If wc ∈ E(G) or wz ∈ E(G), then{w,u,v} is an asteroidal
triple. Indeed, the pathw,a,u is missed byv, the pathw,c,v or w,z,c,v is missed byu,
and the pathu,x,v is missed byw. So,wc,wz 6∈ E(G), and by symmetry,za 6∈ E(G).
But now{z,w,x} is an asteroidal triple. Indeed, the pathw,a,c,z is missed byx, the
pathw,a,u,x is missed byz, and the pathz,c,v,x is missed byw.

That concludes the proof. ⊓⊔

6 Minimal separators

In this section, we focus on some properties of minimal stable separators of AT-free
graphs. These properties will be used in the next section to construct an efficient
implementation of Algorithm 1 as promised by Theorem 1.1.

As remarked in Section 4, if the neighbourhood of some vertexx is a stable set,
then eitherN(x) is a stable cutset ofG, or x is a cutpoint ofG, or |V (G)| ≤ 2. It turns
out that a partial converse of this is also true as shown in thefollowing lemma.

Lemma 6.1 If S is a minimal stable separator of an AT-free graph G, then there
exists a vertex x ∈V (G) with N(x)⊇ S.

Proof. Let S be a counterexample to the claim and letS∗ be a smallest subset ofS for
which there is no vertexx with N(x) ⊇ S∗. Clearly,|S∗| ≥ 2.

First, suppose that|S∗| = 2. Hence,S∗ = {x,y} for some verticesx,y. SinceS is
a minimal separator, there are connected componentsK,K′ of G− S such that each
vertex ofS has a neighbour in bothK andK′. In particular, we haveu ∈ N(x)∩V (K)
andv ∈ N(x)∩V (K′). Clearly,uy,vy 6∈ E(G) by the minimality ofS∗. This implies
that{u,v,y} is an asteroidal triple ofG. Indeed, the pathu,x,v is missed byy. Also,
sinceS is a minimal separator, we have a pathP in G[V (K)∪{y}] from y to u, and a
pathP′ in G[V (K′)∪{y}] from y to v. Clearly,P is missed byv andP′ is missed byu.

Therefore, we may assume|S∗| ≥ 3, and we letx,y,z be any three vertices ofS∗.
By the minimality ofS∗, there exist verticesa,b,c such thatN(a)⊇ S∗ \{x}, N(b)⊇
S∗ \{y}, andN(c)⊇ S∗ \{z}, and alsoax,by,cz 6∈ E(G). But this implies that{x,y,z}
is an asteroidal triple ofG. Indeed, the pathx,c,y is missed byz, the pathy,a,z is
missed byx, and the pathz,b,x is missed byy.

That concludes the proof. ⊓⊔

We further need the following two observations.



12 Juraj Stacho

Lemma 6.2 If S is a stable cutset of a connected graph G, and S′ ⊇ S is a stable set,
then S′ is also a stable cutset of G.

Proof. SinceS is a cutset ofG, let K,K′ be two different connected components of
G−S. Recall thatG is connected; thus there exist verticesa ∈V (K), b ∈V (K′) with
neighbours inS. This implies thata,b 6∈ S′, sinceS′ is a stable set containingS. Now,
if G− S′ is connected, there exists a pathP in G− S′ betweena andb, and clearly,P
is also a path inG− S, sinceS ⊆ S′. But this is impossible, sincea,b are in different
connected components ofG−S. Hence, we must conclude thatS′ is a cutset ofG. ⊓⊔

Lemma 6.3 A set S ⊆V (G) is a minimal separator of a graph G with |S| ≥ 2 if and
only if there exists a block B of G such that S is a minimal separator of B.

Proof. Let S be a minimal separator ofG with |S| ≥ 2. This implies that there exist
connected componentsK,K′ of G−S such that each vertex inS has both a neighbour
in K and inK′. Thus, for each distinctx,y∈ S, there exist two internally vertex disjoint
pathsP,P′ betweenx andy, namely the shortest path betweenx andy in G[V (K)∪
{x,y}]− xy and inG[V (K′)∪{x,y}]− xy, respectively. In particular,G[P∪P′] is a
2-connected subgraph ofG, and hence, it belongs to a block ofG. Consequently, this
block contains bothx andy as well as a vertex ofK and a vertex ofK′.

Since|S| ≥ 2, this proves that there exists a blockB of G with S ⊆ V (B) and
such thatV (B)∩V (K) 6= /0, andV (B)∩V (K′) 6= /0. Considera ∈ V (B)∩V (K) and
b ∈ V (B)∩V (K′). Firstly, note thatS disconnectsa,b in B, since if there is a path
in B− S betweena andb, then this is also a path inG− S betweena,b which is
impossible sincea ∈V (K), b ∈V (K′) andK,K′ are connected components ofG−S.

Secondly, suppose that a proper subsetS′ of S disconnectsa,b in B. Consider
x ∈ S \ S′, and recall thatx has both a neighbour inK and a neighbour inK′. Thus,
there exists a pathP betweena andx in G[V (K)∪{x}] and a pathP′ betweenx andb
in G[V (K′)∪{x}]. We claim that bothP andP′ completely lie inB. This follows easily
from the observation that if two vertices belong toB, then any path between them
also belongs toB. Thus,P∪P′ is a path betweena andb in B− S′, contradicting the
assumption thatS′ disconnectsa fromb in B. So,S is indeed a minimal separator ofB.

Conversely, suppose thatS is a minimal separator of a blockB of G. That is,
there are verticesa,b in B such thatS disconnectsa,b in B and no proper subset ofS
disconnectsa,b in B. Clearly,S disconnectsa,b in G, since every path betweena,b in
G−S is also a path inB−S. For this recall that if the endpoints of a path belong toB,
then the whole path belongs toB. Further, if a proper subsetS′ of S disconnectsa,b in
G, thenS′ does not disconnecta,b in B because of the minimality ofS. Consequently,
there is a path inB− S′ betweena andb which is also a path inG− S′, contradicting
the assumption thatS′ disconnectsa,b in G. So,S is indeed a minimal separator ofG.

Finally, observe that|S| ≥ 1, sinceB is connected. Moreover, ifS = {v} for some
vertexv, thenv is a cutpoint ofB, since{v} separatesa from b in B. But this is
impossible, since, by definition, no vertex ofB is a cutpoint ofB. Thus,|S| ≥ 2.

That concludes the proof. ⊓⊔
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7 The algorithm

Finally, we are ready to prove Theorem 1.1. To do this, we showthat Algorithm 1 is
correct and can be implemented to run in timeO(n2m) on a given an AT-free graphG
with n vertices andm edges. The correctness follows easily from Theorems 1.2, 1.3,
3.1 and Lemma 3.4. We therefore focus on the details ofO(n2m) implementation.

First, we note that the complexity is easily seen to be polynomial, since all the
tests in Algorithm 1 are polynomial, including the test in Line 5 which follows from
[2]. Also, the algorithm makes at mostn recursive calls, since each call reduces the
graph by at least one vertex. Further, contracting a set before a recursive call and
extending the colouring toG from the contracted graph is easily implementable in
time O(n+m). Thus to get the running timeO(n2m), it suffices to explain how to
implement each test of the algorithm in timeO(nm).

The test in Line 3 has a direct implementation of complexityO(nm); we try each
edgeuv of G and constructN(u)∩N(v) by exploring the neighbourhoods ofu andv
in time O(n).

For Line 7, if G is a triangular strip, we 3-colourG in time O(m) by iteratively
removing triangles on vertices of degree 3. IfG is not a triangular strip, but the blocks
of G are triangular strips or have at most two vertices, we construct the block-cutpoint
decomposition ofG in time O(n+m) by the standard algorithm of [21]. Then we 3-
colour all blocks in timeO(n+m) by applying the previous argument to each block.
Finally, using the block-cutpoint tree ofG, we obtain in timeO(n) a 3-colouring ofG
by combining the 3-colourings of the blocks by (possibly) permuting the colours so
they match on the cutpoints ofG. This yields anO(n+m) implementation of Line 7.

For the test in Line 1, we do the following. If we execute Line 1for the first time,
we test ifG contains aK4 in time O(m2) = O(n2m) by trying all possible pairs of
disjoint edges ofG. If we reach Line 1 by recursion toG/S, ands is the vertex ofG/S

to which we contractedS, then we only test if the neighbourhood ofs in G/S contains
a triangle. This requires onlyO(nm) time by trying each vertex-edge pair ofG, and it
is enough to verify thatG/S contains noK4, since before contractingS, the graphG
was assumed to contain noK4 (we reached at least Line 3 before the recursive call).

It remains to show how to implement the test in Line 5 in timeO(nm). By Lemma
6.3, it suffices to check every blockB of G for a minimal stable separator. By Lemma
6.1, if such a separatorS of B exists, it is also a stable cutset ofB, and hence, there is a
vertexx with NB(x)⊇ S. Also, |V (B)| ≥ 3, sinceS disconnects at least two vertices in
B, and|S| ≥ 2 by Lemma 6.3. Thus,B is 2-connected, and also contains no diamond
and noK4, sinceG does (we reached Line 5) and sinceB is an induced subgraph ofG.
Consequently,NB(x) contains, by Lemma 4.1, at most two maximal stable sets one
of which containsS. But then this set is also a stable cutset ofB by Lemma 6.2.

Thus, we proceed as follows. First, we compute the block-cutpoint decomposition
of G in time O(n +m), again by the algorithm of [21]. Then we try each vertex
x ∈ V (G) and each blockB of G that containsx and has at least three vertices. For
each such choice, we test ifNB(x) or NB(x)\{u} or NB(x)\{v} is a stable cutset ofB
whereuv (if exists) is the unique edge inG[NB(x)]. This can be accomplished in time
O(|V (B)|+ |E(B)|) by the standard graph search. Since|V (B)| ≥ 3 andB is a block
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of G, we have|V (B)| ≤ |E(B)|, and hence, summing over all choices ofB yields the
complexityO(m). Thus, over all choices ofx, the complexity isO(nm).

If a stable cutsetS of some blockB is found, we reduce it to a minimal stable
separator ofB by iteratively removing vertices ofS and testing if the resulting set is
a still a cutset ofB. Again,O(nm) time, since it suffices to test each vertex ofS once.
By Lemma 6.3, the resulting setS is a minimal separator ofG and satisfies|S| ≥ 2.

8 Concluding remarks

In this paper, we have shown how to find in polynomial time a 3-colouring of a given
AT-free graph if one exists. To this end, we used a nice structural decomposition of
AT-free graphs without diamonds. Note that similar structural results are also known
for other restrictions of AT-free graphs [6,13].

For the more general case, we have recently learned that Haiko Müller et al.
announced that for every fixedk, thek-COLOURING problem on AT-free graphs is
also solvable in polynomial time [18]. Their result is yet tobe published. This leaves
open only the case of theCOLOURING problem on AT-free graphs where the number
of colours is unbounded.

We remark that there are special cases of AT-free graphs in which we can solve
COLOURING in polynomial time, for instance, in interval, co-comparability, and more
generally in perfect AT-free graphs [12]. This is also true for some non-perfect AT-
free graphs. For instance, ifG is the complement of a triangle-free graph, then any
colour class in a colouring ofG has at most two vertices. Therefore, to find an optimal
colouring ofG we need to pack as many stable sets of size two intoG as possible. This
is solvable in polynomial time [8,17], since it is preciselythe problem ofMAXIMUM

MATCHING on the complement ofG.
What about AT-free graphs that are not complements of triangle-free graphs ?

It turns out that every connected AT-free graph decomposes into complements of
triangle-free graphs by means of star cutsets, i.e., cutsets having a vertex adjacent to
all other vertices of the cutset. This can be seen as follows:if a connected AT-free
graph contains a stable set of size three, then the closed neighbourhood of at least
one of the three vertices disconnects the other two, that is,the closed neighbourhood
of one of the three vertices is a star cutset.

Theorem 8.1 If G is a connected AT-free graph, at least one of the following is true:

(i) G is the complement of a triangle-free graph.
(ii) G contains a star cutset.

Note the similarity with Theorem 1.2. This tells us that to find a polynomial time
algorithm for colouring AT-free graphs, it suffices to find a way to combine colourings
of AT-free graphs through star cutsets. Recall that this is possible in perfect graphs [5].

Finally, we remark that there exists a similar decomposition of another subclass of
AT-free graphs, namely for AT-free graphs with no induced 4-cycles. The following
theorem is from [6]. Athick 5-cycle is any graph we obtain by substituting complete
graphs (of arbitrary sizes) for the vertices of a 5-cycle (Fig. 1.2c), and athick 5-wheel
is obtained by substituting complete graphs for the vertices of a 5-wheel (Fig. 1.2d).



3-colouring AT-free graphs in polynomial time 15

Theorem 8.2 [6] If G is a connected AT-free graph with no induced 4-cycle, then at
least one of the following is true:

(i) G is an interval graph.
(ii) G is a thick 5-cycle or a thick 5-wheel.

(iii) G contains a clique cutset.

Observe that the complement of every thick 5-cycle (thick 5-wheel) is triangle-
free. Also, recall that we can optimally colour interval graphs in polynomial time [11]
and it is possible to find all clique cutsets also in polynomial time by the algorithm
of Tarjan [22]. Further, to get a colouring of a graph with a clique cutset, it suffices
to colour the pieces individually and then permute the colours on the pieces so that
they match on the cutset. Thus it follows that theCOLOURING problem is solvable in
polynomial time on AT-free graphs with no induced 4-cycles.
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5. Chvátal, V.: Star-cutsets and perfect graphs. Journal of Combinatorial Theory B39, 189–199 (1985)
6. Corneil, D., Stacho, J.: The structure and recognition ofC4-free AT-free graphs (2010). Manuscript
7. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete.

Discrete Mathematics30, 289–293 (1980)
8. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics11, 449–467 (1965)
9. Garey, M.R., Johnson, D., Stockmeyer, L.: Some simplifiedNP-complete graph problems. Theoretical

Computer Science1, 237–267 (1976)
10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Complete-

ness. W. H. Freeman (1979)
11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. North Holland (2004)
12. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial

optimization. Combinatorica1, 169–197 (1981)
13. Hemper, H., Kratsch, D.: On claw-free asteroidal triple-free graphs. Discrete Applied Mathematics

121, 155–180 (2002)
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