
On 2-Subcolourings of Chordal Graphs

Juraj Stacho

School of Computing Science, Simon Fraser University
8888 University Drive, Burnaby, B.C., Canada V5A 1S6

jstacho@cs.sfu.ca

Abstract. A 2-subcolouring of a graph is a partition of the vertices
into two subsets, each inducing a P3-free graph, i.e., a disjoint union
of cliques. We give the first polynomial time algorithm to test whether
a chordal graph has a 2-subcolouring. This solves (for two colours) an
open problem of Broersma, Fomin, Nešetřil, and Woeginger, who gave an
O(n5) time algorithm for interval graphs. Our algorithm for the larger
class of chordal graphs has complexity only O(n3).

1 Introduction

A k-subcolouring of a graph G is a partition of the vertices of G into k

subsets V (G) = V1∪V2∪. . .∪Vk, such that each Vi induces a disjoint union
of cliques (complete graphs) in G, i.e., each Vi induces a P3-free graph.
A graph G is called k-subcolourable if there exists a k-subcolouring of
G. The smallest integer k such that G is k-subcolourable is called the
subchromatic number of G, and is denoted by χs(G).

The k-subcolourings and the subchromatic number were first intro-
duced by Albertson, Jamison, Hedetniemi and Locke in [1]. Initially, the
main focus was on bounds for χs(G). More recently, the complexity of
recognizing k-subcolourable graphs has become a focus of attention. It
follows from the result in [2] that for k ≥ 2 this problem is NP -complete
for general graphs. In [3] (and also in [4]) the authors show that it remains
NP -complete for k ≥ 2 even if the graph is triangle-free and of maximum
degree four. On the other hand, there are several natural classes of graphs
for which the problem has a polynomial time solution for any fixed k, e.g.,
graphs of bounded treewidth [3]. In another paper [5], the authors show
that the problem is NP -complete for k ≥ 2 when restricted to the class
of comparability graphs, whereas for interval graphs there is an O(n2k+1)
time algorithm. In fact, it is easy to check that their algorithm also works
for the case of list k-subcolouring, where each vertex of the input graph
G has a list of admissible colours and the task is to determine whether
or not there exists a k-subcolouring of G that obeys these lists. In this
paper, we also deal with list k-subcolourings.



In [5], the authors formulated the following open problem. Determine
the complexity of the k-subcolouring problem for the class of chordal
graphs. This seems interesting, since the class of chordal graphs is strictly
between the class of perfect graphs (for which the problem is NP -complete)
and the class of interval graphs (for which the problem is polynomial time
solvable), and colouring problems for chordal graphs often lead to inter-
esting insights [6–8]. In this paper, we develop a novel technique that
allows us to extract the essential properties of a 2-subcolouring, to solve
this problem for k = 2.

In the following, we give a polynomial time algorithm for testing list
2-subcolourability of chordal graphs. In fact, our algorithm is O(n3); that
also improves the complexity of the algorithm from [5] for the smaller
class of interval graphs.

Instead of considering a k-subcolouring of G as a partition V (G) =
V1 ∪ V2 ∪ . . .∪ Vk, one can view it as a mapping c : V (G) → {1, 2, . . . , k},
where for every i ∈ {1, 2, . . . , k}, the vertices of Vi are mapped to i.
Therefore we shall employ the terminology of colourings and refer to c as
a colouring of G, and refer to the elements of {1, 2, . . . , k} as colours. (Note
that c is not necessarily a proper colouring.) For a 2-subcolouring V (G) =
Vr ∪ Vb, the associated colouring c is a mapping c : V (G) → {r, b}, and
we refer to the elements of Vr and Vb as red and blue vertices respectively.

A graph is chordal if it does not contain an induced cycle of length
more than three [8, 9]. A clique-tree T of a chordal graph G is a tree with
the following properties [8, 9].

(i) Each vertex u in T corresponds to a maximal clique Cu of G

(ii) For every edge ab ∈ E(G), there exists a vertex u ∈ V (T ) such that
a, b ∈ Cu

(iii) For every vertex a ∈ V (G), the set of vertices u of V (T ) such that
a ∈ Cu induces a connected subgraph of T .

As usual, we denote by n and m the number of vertices and edges of
an input graph G respectively. It is known [9] that recognizing a chordal
graph, and constructing a clique-tree of a (connected) chordal graph, can
both be performed in time O(n + m).

The paper is structured as follows. Before describing our algorithm
we investigate, in sections 2 and 3, the general properties of subcolour-
ings of chordal graphs. In particular, in section 2, we introduce the key
structure, called the subcolouring digraph, that encodes important prop-
erties of a given subcolouring of a chordal graph G (based on a fixed
clique-tree of G). In section 3, we describe the necessary conditions for



a 2-subcolouring c implied by the structure of its subcolouring digraph.
Finally, in section 4, we describe our algorithm, which uses dynamic pro-
gramming on the subcolouring digraph, and we discuss the complexity
and efficient implementation of our algorithm.

2 The Subcolouring Digraph

Observe first that G is k-subcolourable if and only if each component of G

is k-subcolourable. Throughout the paper, unless otherwise indicated, we
shall always deal with a connected chordal graph G, a fixed clique-tree
T of G, and with c, a colouring of the vertices of G (not necessarily a
subcolouring or a proper colouring).

Therefore, let G be a connected chordal graph, and let T be a fixed
clique-tree of G. Let Cu for u ∈ V (T ) denote the maximal clique of G

associated with u, and let C(X) denote the union of cliques associated
with the vertices of a set X ⊆ V (T ), i.e., C(X) =

⋃

u∈X Cu. In this
section, we shall not consider T to be rooted. We shall use parentheses
(, ) to denote the edges of T , to distinguish them from the edges of G. The
removal of an edge (u, v) splits T into two subtrees; we shall denote by Tu,v

the subtree containing the vertex v, and by Tv,u the subtree containing
the vertex u. We denote Gu,v = C(Tu,v) and Gv,u = C(Tv,u).

Observe that in any k-subcolouring c of G, a vertex a in a clique
C of G can have neighbours of the same colour as a in at most one
connected component of G\C. Based on this, we construct a multidigraph
Dc(G) with coloured edges to capture the properties of the colouring c. We
shall refer to Dc(G) as a subcolouring digraph for c. To avoid ambiguity,
the edges of Dc(G) shall be referred to as arcs and denoted using angle
brackets 〈, 〉 to distinguish them from the edges of T and the edges of G.
In particular, 〈u, v〉i shall denote an arc from u to v coloured i, and we
shall write 〈u, v〉 for an arc from u to v (of some colour). The digraph
Dc(G) is constructed as follows (cf. Figure 1). The vertices of Dc(G) are
the vertices of T , and for vertices u, v that are adjacent in T , there is an
arc 〈u, v〉i in Dc(G), if there exist vertices a ∈ Cu and b ∈ Gu,v \Cu such
that ab ∈ E(G) and both a and b have the same colour i in c. Note that
we have arcs in Dc(G) only between vertices that are adjacent in T .

Formally, we define Dc(G) as follows.

(i) V (Dc(G)) = V (T )

(ii) E(Dc(G)) =







〈u, v〉i

∣

∣

∣

∣

∣

∃ a ∈ Cu

∃ b ∈ Gu,v \ Cu

(u, v) ∈ E(T )
ab ∈ E(G)
c(a) = c(b) = i









Fig. 1. Illustrating the case when there is an arc 〈u, v〉 in Dc(G)

We have the following observations about Dc(G).

Proposition 1. Let u, v,w be vertices of Dc(G) and let i be a colour from
{1, 2, . . . , k}. If c is a k-subcolouring then Dc(G)

(i) cannot contain both the arc 〈u, v〉i and the arc 〈v, u〉i,
(ii) cannot contain both the arc 〈u, v〉i and the arc 〈u,w〉i,
(iii) cannot contain all of the arcs 〈u, v〉1 , 〈u, v〉2 , . . . , 〈u, v〉k.

Proof. Suppose that (i) is false. Let a, b and a′, b′ be the vertices of G

that caused the arcs 〈u, v〉i and 〈v, u〉i respectively to appear in Dc(G).
It is not difficult to see that a, a′ ∈ Cu ∩ Cv and bb′ 6∈ E(G). Hence
the graph induced on a, b, a′, b′ must contain an induced P3 coloured i,
a contradiction. One can easily repeat this same argument for pairs a, b

and a′, b′ that falsify (ii).
Finally, let a1, b1, a2, b2, . . . , ak, bk be the pairs of vertices that falsify

(iii). Since Cu and Cv are two different maximal cliques of G, there exists
a vertex d ∈ Cu \ Cv. Again, it is not difficult to see that ai ∈ Cu ∩ Cv

for all i, and d is not a neighbour of any bi. Now clearly, any colour j

assigned to d creates an induced P3 coloured j on vertices d, aj , bj , yielding
a contradiction. �

3 2-Subcolourings

From now on we focus on the case k = 2, i.e., 2-subcolourings. In what
follows, we shall assume that G is a connected 2-subcolourable chordal
graph, T a fixed clique-tree of G, and c is a 2-subcolouring of G. As
remarked earlier, for a 2-subcolouring c of G, we shall refer to the vertices
of G as red and blue vertices and use letters r and b respectively to denote
the two colours.



We shall call an edge (u, v) in T a strong edge of T if Dc(G) contains
both 〈u, v〉

r
and 〈v, u〉

b
, or both 〈u, v〉

b
and 〈v, u〉

r
. We shall call an edge

(u, v) in T a weak edge of T if there is at most one arc between u and
v in Dc(G). It follows from Proposition 1 that every edge in T must be
either strong or weak.

Let u, v be adjacent vertices in T . Let Iu,v = Cu ∩ Cv, and let Nu,v

be the set of all vertices of Gu,v \ Cu which are neighbours of Cu ∩ Cv.
Furthermore, let Lu,v = Gv,u \ Cv and Ru,v = Gu,v \ (Iu,v ∪ Nu,v). (Note
that Cv ⊆ Iu,v ∪ Nu,v.) We have the following observation.

Proposition 2. Let u, v be adjacent vertices in T .

(i) If 〈u, v〉
r
∈ E(Dc(G)), or 〈u, v〉

b
∈ E(Dc(G)), then the vertices of

Cu \ Cv are all blue, or all red, respectively.
(ii) If 〈u, v〉 6∈ E(Dc(G)) then the vertices of Iu,v and Nu,v are all red

and all blue respectively, or all blue and all red respectively.
(iii) G has no induced P3 having both a vertex of Lu,v and a vertex of Ru,v.

Proof. For (i) suppose that 〈u, v〉
r
∈ E(Dc(G)) (the other case is clearly

symmetric), and let a, b be the red vertices that caused this arc. It is easy
to see, that a ∈ Cu ∩ Cv and b is not adjacent to any vertex in Cu \ Cv.
Hence, no vertex d of Cu \ Cv can be red, since otherwise d, a, b is an
induced red P3.

For (ii) let a ∈ Iu,v and b ∈ Nu,v be adjacent. Then a and b must have
different colours, since otherwise we would have an arc 〈u, v〉 ∈ E(Dc(G)).
Since Cu and Cv are different maximal cliques, there exists d ∈ Cv \ Cu.
Now the claim follows, because d is adjacent to all vertices of Iu,v, and
hence any a′ ∈ Iu,v must have different colour from d.

Finally, for (iii) let b, a, d be an induced P3 in G with edges ba and
ad, that contains both a vertex of Lu,v and a vertex of Ru,v. Now since
Lu,v and Ru,v are completely non-adjacent, it follows that a 6∈ Lu,v∪Ru,v.
Hence we can assume that b ∈ Lu,v and d ∈ Ru,v. Now if a ∈ Iu,v then we
must have d ∈ Nu,v but Nu,v ∩Ru,v = ∅. Hence a ∈ Nu,v and b ∈ Iu,v but
Lu,v ∩ Iu,v = ∅. Therefore no such vertices b, a, d exist in G. �

Note that it follows from the above observation that for an edge (u, v)
in T , the 2-subcolourings induced by the fixed c on Lu,v and Ru,v, are
independent of each other in the sense that they only depend on the
colours assigned to Iu,v ∪Nu,v. Furthermore, if (u, v) is a weak edge such
that 〈u, v〉 6∈ E(Dc(G)), then the 2-subcolouring of Iu,v ∪ Nu,v is unique
(up to exchanging the colours red and blue). That allows one to consider
independently the subgraphs of T that no longer contain any weak edges.



For strong edges in T we have the following observations.

Observation 3. Every vertex of T has at most two incident strong edges,
i.e., the connected components formed by the strong edges of T are paths.

Proof. It is not difficult to see that if a vertex u in T has three adjacent
strong edges, then for at least two of them, say (u, v) and (u,w), we have
arcs 〈u, v〉 and 〈u,w〉 of the same colour in Dc(G). By Proposition 1(ii)
this is not possible. �

Proposition 4. Let u be a vertex in T with distinct neighbours v,w, z.

(i) If (v, u) is a strong edge and 〈w, u〉 6∈ E(Dc(G)), then (z, u) is not
a strong edge.

(ii) If (v, u) is a strong edge, 〈w, u〉 6∈ E(Dc(G)), and 〈z, u〉 6∈ E(Dc(G)),
then Iu,w = Iu,z.

(iii) If 〈v, u〉 6∈ E(Dc(G)), 〈w, u〉 6∈ E(Dc(G)), and 〈z, u〉 6∈ E(Dc(G)),
then Iu,v = Iu,w or Iu,w = Iu,z or Iu,z = Iu,v.

Proof. For (i) suppose that the edges (v, u) and (z, u) are strong and that
〈w, u〉 6∈ E(Dc(G)). Since G is connected, there exists a ∈ Iu,w. Without
loss of generality we may assume that 〈u, z〉

r
∈ E(Dc(G)). Hence by

Proposition 2(i) we obtain that Cz \ Cv is all red, Cv \Cz is all blue and
Cu ⊆ Cv ∪Cz. Also since Cu, Cz and Cv are different maximal cliques we
have d ∈ Cz \ Cu and b ∈ Cv \ Cu. Now clearly, a ∈ Cv ∪ Cz hence if a

is red then a ∈ Cz and hence 〈w, u〉
r
∈ E(Dc(G)), and if a is blue then

a ∈ Cv and hence 〈w, u〉
b
∈ E(Dc(G)), a contradiction.

For (ii) suppose that (v, u) is strong, 〈w, u〉 6∈ E(Dc(G)), and 〈z, u〉 6∈
E(Dc(G)) but Iu,w 6= Iu,z. Without loss of generality we may assume that
Iu,w 6⊆ Iu,z and that 〈u, v〉

r
, 〈v, u〉

b
∈ E(Dc(G)). Hence there must exist a

vertex a ∈ Iu,w\Iu,z, a vertex b ∈ Iu,z (since G is connected), and a vertex
d ∈ Cv \Cu (since the cliques are maximal). Clearly, c(a) 6= c(b) otherwise
we have 〈z, u〉 ∈ E(Dc(G)). Now since 〈v, u〉

b
∈ E(Dc(G)) it follows that

the vertex d is red. Similarly, since 〈u, v〉
r
∈ E(Dc(G)) we have that Cu\Cv

is all blue, hence if a is red then a ∈ Iu,v and hence 〈w, u〉
r
∈ E(Dc(G)),

and if b is red then b ∈ Iu,v and hence 〈z, u〉
r
∈ E(Dc(G)), a contradiction.

Finally, for (iii) suppose that none of 〈v, u〉,〈w, u〉, and 〈z, u〉 is in
E(Dc(G)), but the three sets Iu,v, Iu,w and Iu,z are pairwise different.
Without loss of generality we may assume that Iu,v 6⊆ Iu,w 6⊆ Iu,z and
either Iu,v 6⊆ Iu,z or Iu,v 6⊇ Iu,z. If Iu,v 6⊆ Iu,z suppose first that J 6= ∅
where J = Iu,v\(Iu,w∪Iu,z). It follows that we must have a vertex a ∈ J , a



vertex b ∈ Iu,w\Iu,z and a vertex c ∈ Iu,z. Now at least two of the vertices
a, b, c must have the same colour and that gives us one of the edges 〈v, u〉,
〈w, u〉, 〈z, u〉 in E(Dc(G)), a contradiction. If J = ∅ we similarly obtain
a contradiction for vertices a ∈ (Iu,w ∩ Iu,v) \ Iu,z, b ∈ (Iu,z ∩ Iu,v) \ Iu,w

and c ∈ Cu \ Cv. Now if Iu,v 6⊇ Iu,z it follows that we have a vertex
a ∈ Iu,v \ Iu,w, a vertex b ∈ Iu,w \ Iu,z and c ∈ Iu,z \ Iu,v and again a
contradiction follows. �

Let Pu,v denote the (unique) path from u to v in T . We shall call
the path Pu,v strong if it is formed only by strong edges of T . Note that
we also allow paths of zero length (i.e., paths Pu,v with u = v); all such
paths are trivially strong. A strong path is maximal if it is not properly
contained in another strong path. A vertex z in T adjacent to a vertex u

is a special neighbour of u if 〈z, u〉 6∈ E(Dc(G)). The following claim is a
direct consequence of Proposition 4.

Lemma 5. For any strong path Pu,v in T (possibly with u = v) there
exist sets Au,v and A′

u,v (both possibly empty) such that for any special
neighbour s of some t ∈ Pu,v we have Is,t = Au,v or Is,t = A′

u,v.

Proof. If u 6= v then by Proposition 4(i) only u and v can have special
neighbours. Hence, if u has a special neighbour z, we let Au,v = Iz,u and
Au,v = ∅ otherwise. If v has a special neighbour w, we let A′

u,v = Iw,v and
A′

u,v = ∅ otherwise. Now the claim follows from Proposition 4(ii).
If u = v and u has two special neighbours z and w with Iz,u 6= Iw,u,

we define Au,v = Iz,u, A′

u,v = Iw,u. Otherwise, we let Au,v = Iz,u and
A′

u,v = ∅ if u has a special neighbour z but does not satisfy the previous
condition. Finally, we let Au,v = A′

u,v = ∅ if u has no special neighbours.
Now the claim follows from Proposition 4(iii). �

Let Bu,v and B′

u,v denote the sets of neighbours of Au,v and A′

u,v

in C(Pu,v) respectively. We now give a complete characterisation of the
structure of the colouring c on the vertices of C(Pu,v).

Theorem 6. For any strong path Pu,v in T (possibly with u = v) we have

(i) C(Pu,v) = Cu ∪ Cv,
(ii) the vertices of Cu\Cv and Cv\Cu are all red and all blue respectively,

or all blue and all red respectively,
(iii) for every weak edge (s, t) incident to Pu,v the vertices of Is,t are all

red or all blue,
(iv) the vertices of Au,v ∪ B′

u,v and A′

u,v ∪ Bu,v are all red and all blue
respectively, or all blue and all red respectively, and



(v) if in addition Pu,v is maximal, then any colouring c′ of C(Pu,v) sat-
isfying (ii)− (iv) is a 2-subcolouring of C(Pu,v) and can be extended
to a 2-subcolouring of G.

Proof. We prove (i) and (ii) by induction on the length of the path Pu,v.
If u = v then there is nothing to prove. Hence, let w be the neighbour of
v on Pu,v and assume that C(Pu,w) = Cu ∪ Cw and that the vertices of
Cu \ Cw and Cw \ Cu are all red and all blue respectively. Since (w, v) is
a strong edge, by Proposition 2(i) we have that Cv \ Cw is all blue and
Cw \ Cv is red. From that we deduce Cw \ (Cu ∪ Cv) = ∅ which implies
Cw ⊆ Cu ∪ Cv and the claim follows.

Now claims (iii) and (iv) follow directly from Proposition 2(ii) and
Lemma 5 since for any special neighbour s of t ∈ Pu,v we have Is,t = Au,v

and Ns,t ∩ C(Pu,v) = Bu,v or Is,t = A′

u,v and Ns,t ∩ C(Pu,v) = B′

u,v.
Finally, let c′ be any colouring of C(Pu,v) satisfying (ii) − (iv). Let

c′′ be a colouring of G constructed from the colouring c as follows. First
we exchange the colours red and blue on the vertices of Gt,s for each
neighbour s 6∈ Pu,v of t ∈ Pu,v such that the colours of Is,t match the
colouring c′. (Note that since Pu,v is maximal, the edge (s, t) is weak.)
Then we replace the colours of C(Pu,v) by c′. Clearly, c′′ extends c′. We
show that c′′ is a 2-subcolouring of G. Suppose otherwise and let b, a, d be
an induced P3 in G with edges ba and ad such that c′′(b) = c′′(a) = c′′(d).
If b, a, d ∈ C(Pu,v) then by (i) and (ii) it follows that the vertices b, a, d

are all in Cu or all in Cv, but that is not possible since bd 6∈ E(G). On the
other hand, if a 6∈ C(Pu,v) then it follows from the construction of c′′ that
c(b) = c(a) = c(d) which is not possible since c is a 2-subcolouring. Hence
for some neighbour s 6∈ Pu,v of t ∈ Pu,v we have that a ∈ It,s and b ∈ Nt,s

and d ∈ Ns,t∩C(Pu,v). Now if 〈t, s〉 6∈ E(Dc(G)) then by Proposition 2(ii)
we have that c(a) 6= c(b) hence c′′(a) 6= c′′(b) because a, b ∈ Gt,s. On the
other hand, if 〈t, s〉 ∈ E(Dc(G)), then s must be a special neighbour of
t but then by (iv) we have that a ∈ Au,v and d ∈ Bu,v or a ∈ A′

u,v and
d ∈ B′

u,v and hence c′′(a) 6= c′′(d), a contradiction. �

4 The algorithm

Now we are ready to describe the algorithm for deciding (list) 2-subco-
lourability for chordal graphs. We assume that we are given a chordal
graph G and a fixed clique-tree T of G, and we want to decide whether or
not G is 2-subcolourable. Later, we describe how to obtain a list version
of the algorithm.



This time, we consider T rooted at an arbitrary fixed vertex r. There-
fore, we write p[v] to denote the parent of a vertex v in T . For a vertex v

in T , we denote by Tv the subtree of T rooted at v.

We shall say that Tv is (−) colourable if there exists a 2-subcolouring
cv of C(Tv) such that the vertices of Ip[v],v are all red or all blue. Similarly,
Tv is (+) colourable if there exists a 2-subcolouring cv of C(Tv) such that
the vertices of Ip[v],v and Np[v],v are all red and all blue respectively, or
all blue and all red respectively. In the special case of the root r, when
p[v] does not exist, we shall say that Tr is (−) colourable if there exists a
2-subcolouring cr of C(Tr) = G.

Note that by Lemma 5, for every strong path, we only need to consider
up to two special neighbours z and w. In case that the path has only one
(or none), we use nil as the value of z or w. Therefore, we always view a
path Pu,v having two special neighbours z and w of u and v respectively,
but allow one (or both) of z and w to be nil. We shall say that the path
Pu,v is (z,w)-colourable if there exists a 2-subcolouring cu,v of C(Pu,v)
such that for every incident edge (s, t) of Pu,v in T , the vertices of Is,t

are all red or all blue, and such that if z is not nil (w is not nil) then the
vertices of Nz,u (Nw,v respectively) in C(Pu,v) are all red or all blue.

The algorithm works as follows. It processes the vertices of T in a
bottom-up order and identifies which edges of T could be weak, for some
2-subcolouring of G. This is done by testing and recording for every vertex
v in T , whether or not the subtree Tv is (+) colourable, and whether or
not the subtree Tv is (−) colourable. (Note that Tv must be either (+)
colourable or (−) colourable if (v, p[v]) is a weak edge in T for some
2-subcolouring of G.)

For a vertex x of T , the test for colourability of Tx is done as fol-
lows. First, if we are testing (−) colourability, we precolour the vertices
of Ip[x],x red or blue, otherwise we precolour the vertices of Ip[x],x and
Np[x],x red and blue respectively, or blue and red respectively. Then we
choose a strong path Pu,v in Tx that passes through x and we choose spe-
cial neighbours z and w of u and v respectively. (See the above remark
about special neighbours.) Then we test for colourability of Pu,v with re-
spect to the chosen special neighbours by applying Theorem 6. Finally,
we recursively test, for every special neighbour y of Pu,v, whether or not
the corresponding tree Ty is (−) colourable or (+) colourable, and for all
other neighbours of Pu,v, whether or not their corresponding trees are (+)
colourable. We declare Tx (−) colourable (or (+) colourable, depending
on the particular case) if and only if the above tests succeed for some
choice of u, v and some choice of special neighbours of u and v. Note that



since we process the vertices in a bottom-up order, each recursive call
amounts to a constant time table look-up.

If the algorithm succeeds to declare Tr (−) colourable then the graph
G is 2-subcolourable, otherwise G is not 2-subcolourable. The correctness
can be shown to follow from Proposition 2 and Theorem 6. A more precise
description of an efficient implementation of the algorithm can be found
on pages 11-12. Below, we discuss some details of this implementation.

Note that in the procedure for testing colourability of a strong path
Pu,v (see Algorithm 2 on page 11), instead of independently precolouring
the sets Is,t either red or blue, for each incident edge of Pu,v (as follows
from Theorem 6), we construct a collection of sets L containing the unions
of the sets Is,t that intersect. Note that if sets Is,t and Is′,t′ intersect,
their union must also be all red or all blue. After constructing L we can
independently decide the colours of the sets in L, since they no longer
intersect. To find L we use an efficient variant of the Union-Find algorithm
which has time and space complexity O(n).

It is not difficult to see that this algorithm can be easily extended
to solve the list 2-subcolouring problem. Recall that this is the problem
where each vertex has a list of admissible colours and the task is to decide
whether G has a 2-subcolouring that obeys these lists. Whenever in the
algorithm a vertex is being precoloured by some colour, this colour is
checked against the list of that vertex and if it is not in the list, we exit the
current procedure with a negative answer. (Note that this only happens
in the procedure for testing strong paths, see Algorithm 2 on page 11.)

The following theorem summarizes the complexity of the above algo-
rithm and is followed by its formal description.

Theorem 7. There exists an O(n3) time algorithm deciding for a given
chordal graph G, whether G admits a (list) 2-subcolouring; the algorithm
also constructs a 2-subcolouring of G if one exists.

Proof. As noted before, one can determine the maximal cliques of G and
construct a clique-tree T of G in time O(n+m). It follows from the remark
above that for any pair of vertices u, v and choice of special neighbours
z,w of u, v respectively, one can determine (z,w)-colourability of the path
Pu,v in time O(n2). In the first part of the algorithm, this test is performed
for every pair of vertices (including the choice of their special neighbours).
This step can be implemented more efficiently by reusing the results for
the subpaths, i.e., starting from some vertex v and computing all paths
from v, altogether in time O(n2). Therefore the total running time for the
first part of the algorithm is O(n3). In the second part, note that during



the course of the algorithm (in the procedures for testing the colourability
of a subtree Tx, see Algorithms 3,4 on page 12), we consider every path
(including the choice of special neighbours) in T only once. Each path
is processed in time O(n), so in total we have O(n3) time. Finally, a 2-
subcolouring can be easily found by keeping track of which paths were
used to colour the subtrees of T and backtracking from the root r. �

Input: A chordal graph G and a clique tree T of G rooted at r

Output: Decide whether G is 2-subcolourable

for every two vertices u, v in T do1

for every neighbour z and w (including nil) of u and v respectively do2

test and record whether Pu,v is (z, w)-colourable3

initialize S ← ∅ (S is the set of processed vertices)4

while S 6= V (T ) do5

pick a vertex v 6∈ S whose all children are in S6

test and record whether Tv is (−) colourable7

test and record whether Tv is (+) colourable (if v 6= r)8

S ← S ∪ {v}9

if Tr is (−) colourable then10

return “G is 2-subcolourable”

else return “G is not 2-subcolourable”11

Algorithm 1: The test for 2-subcolourability of G

Input: Vertices u, v of T , vertices z, w neighbours of u, v respectively or nil

Output: Decide whether Pu,v is (z, w)-colourable

compute C(Pu,v)1

if C(Pu,v) 6= Cu ∪ Cv then return “Pu,v is not (z, w)-colourable”2

precolour the vertices of Cu \ Cv and Cv \ Cu by red and blue respectively3

(or blue and red respectively)
if z 6= nil then precolour the vertices of Nz,u red (or blue)4

if w 6= nil then precolour the vertices of Nw,v blue (or red)5

initialize the set L ← ∅6

for each edge (s, t) incident to Pu,v do7

compute the set Ls consisting of those sets from L which intersect Is,t8

L ← L \ Ls ∪



Is,t ∪
“

S

L∈Ls

L
”

ff

9

if some L ∈ L contains both a precoloured red and a precoloured blue vertex10

then return “Pu,v is not (z, w)-colourable”
else return “Pu,v is (z, w)-colourable”11

Algorithm 2: The test whether Pu,v is (z,w)-colourable.



Input: A vertex x in T

Output: Decide whether Tx is (−) colourable

for each u, v ∈ Tx such that x ∈ Pu,v do1

for every child z and w (including nil) of u and v respectively do2

if Pu,v is (z, w)-colourable3

and for each child s 6= w, z of Pu,v the tree Ts is (+) colourable
and either z = nil (resp. w = nil) or Tz (resp. Tw) is (+) or (−)
colourable then return “ Tx is (−) colourable”

return “ Tx is not (−) colourable”4

Algorithm 3: The test whether Tx is (−) colourable.

Input: A vertex x in T

Output: Decide whether Tx is (+) colourable

for each u ∈ Tx do1

for every child z (including nil) of u do2

if Pu,x is (z, p[x])-colourable3

and for each child s 6= z of Pu,x the tree Ts is (+) colourable
and either z = nil or Tz is (+) or (−) colourable
then return “ Tx is (+) colourable”

return “ Tx is not (+) colourable”4

Algorithm 4: The test whether Tx is (+) colourable.

Acknowledgements

The author would like to thank his advisor Pavol Hell for directing this
research and for his help with the preparation of this paper.

Note added in proof

The algorithm presented in this paper answers an open question from [5]
for the case k = 2 while it also extends a result from [5] and improves the
complexity for the larger class of chordal graphs. Recently, we were able
to show that for all other values of k ≥ 3, the problem of k-subcolouring
of chordal graphs is NP -complete, thus completely answering the open
question of Broersma et al. [5].

References

1. M. O. Albertson, R. E. Jamison, S. T. Hedetniemi, S. C. Locke: The sub-

chromatic number of a graph, Discrete Mathematics 74 (1989), 33–49.



2. D. Achlioptas: The complexity of G-free colorability, Discrete Mathematics
165/166 (1997), 21–30.

3. J. Fiala, K. Jansen, V. B. Le, and E. Seidel: Graph subcoloring: Complexity and

algorithms, In: Graph-Theoretic Concepts in Computer Science (WG 2001), Springer,
Berlin, 2001, 154–165.

4. J. Gimbel, C. Hartman: Subcolorings and the subchromatic number of a graph,
Discrete Mathematics 272 (2003), 139–154.

5. H. Broersma, F. V. Fomin, J. Nešetřil, G. J. Woeginger: More about sub-

colorings, Computing 69 (2002), 187–203.
6. P. Hell, S. Klein, L.T. Nogueira, F. Protti: Partitioning chordal graphs into

independent sets and cliques, Discrete Applied Mathematics 141 (2004), 185–194.
7. T. Feder, P. Hell, S. Klein, L.T. Nogueira, F. Protti: List matrix partitions

of chordal graphs, Theoretical Computer Science 349 (2005), 52–66.
8. M. C. Golumbic: Algorithmic Graph Theory and Perfect Graphs, Academic

Press, New York, 1980.
9. J. P. Spinrad: Efficient Graph Representations, American Mathematical

Society, 2003.


