Maximum Flow Problems IV.

Review: G = (V, E); edge capacity u; (s, t)-flow x; Max-Flow Min-Cut Theorem

1 Implementation and complexity

To find an x-augmenting path \Rightarrow an auxiliary graph G(x) defined as:

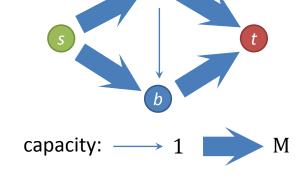
$$V(G(x)) = V \qquad E(G(x)) = \left\{ vw \mid \text{or } wv \in E \text{ and } x_{vw} < u_{vw} \right\}$$
$$wv \in E \text{ and } x_{wv} > 0$$

By definition, any st-path in G(x) is x-augmenting (any path in G(x) is x-increasing) Conversely, any x-augmenting path is an st-path in G(x).

Augmenting Path algorithm:

- 1. Initialize x = 0
- 2. find an st-path P in G(x);
- 3. if P exists \Rightarrow augment x along Pand go to 2.
- 4. else return x (a **maximum flow**)

Possibly exponential number of iterations \dots see the example on the right \rightarrow



a

Starting with x = 0, alternately use augmenting paths s, a, b, t and s, b, a, t, both of x-width one $\Rightarrow 2 \times M$ iterations to reach maximum flow (M can be exponentially large)

Rule: (Edmonds-Karp) Always choose an augmenting path with smallest number of edges

Theorem 1. [Edmonds-Karp 1972] If each augmentation uses a shortest augmenting path, then there are at most $|V| \cdot |E|$ augmentations before a maximum flow is found.

Complexity of the Augmenting Path algorithm: $O(|V| \cdot |E|^2)$

- construction of an auxiliary graph G(x) in O(|E|)
- finding an st-path in G(x) with smallest # of edges \Rightarrow by Breadth-First search O(|E|)
- augmenting x in O(|V|) time (the path has always < |V| edges)

- repeating $|V| \cdot |E|$ times

2 Sample Application

Transportation problem (special case: Maximum matching in bipartite graphs)

Theorem 2. (Kőnig's Theorem) For a bipartite graph G, the maximum size of a matching equals the minimum size of a vertex cover.

... consequence of the Max-Flow Min-Cut Theorem