CS 137 - Graph Theory - Lecture 3 February 18, 2012

1.1. Review

- walk, path, cycle
- connected, disconnected

Lemma 1. If every vertex in G has degree at least two, then G contains a cycle.

1.2. Summary

- Trees
- Prüfer's code, Cayley's formula

2. Trees

A graph G is a tree if it is connected and contains no cycles. A leaf is a vertex of degree 1.

Lemma 2. Every tree with at least 2 vertices has at least one leaf. Removing it (and the incident edge) yields again a tree.

Proof. A consequence of Lemma 1 (use the contrapositive).

Theorem 3. Let G be a graph with n vertices. Then the following are equivalent.

- (i) G is a tree
- (ii) G is connected and has exactly n 1 edges
- (iii) G has exactly n 1 edges and no cycles
- (iv) G is minimally connected
- (v) G is maximally acyclic

(G is connected and removing any edge disconnects the graph) (G has no cycles and adding any additional edge creates a cycle)

(G is connected and has no cycles)

Proof. (i) \Rightarrow (ii) Assume (i): *G* is a tree. By Lemma 2, *G* has a leaf *u*. Remove *u* to get a tree *G'*. Note that *G'* has n - 1 vertices; by induction *G'* has n - 2 edges and so *G* has n - 1 edges.

(ii) \Rightarrow (iii) Assume (ii): *G* is connected, with n-1 edges. If *G* has a cycle, then remove any edge of this cycle; the resulting graph is still is connected. Repeat until no more cycles; let *G'* be the resulting graph; *G'* is connected and has no cycles, so it has n-1 edges (by (i) \Rightarrow (ii)), but then G = G' since $n-1 = |E(G)| \ge |E(G')| = n-1$.

(iii) \Rightarrow (iv) Remove any edge. Let G' be the resulting graph. Clearly G' has no cycles since G has no cycles. If G' is connected, then G' is a tree and so it has n - 1 edges (by (i) \Rightarrow (ii)), but then G has more than n - 1 edges.

 $(iv) \Rightarrow (v)$ If G has a cycle, remove any edge of the cycle and the resulting graph is connected, impossible. So G has no cycle and is connected, is a tree. Add an edge $\{u, v\}$ to G; let G' be the result. Since G is connected, there is a path from u to v in G; thus G' contains a cycle.

 $(v) \Rightarrow$ (i) Asssume (v). So *G* has no cycles. If (i) fails, then *G* is disconnected; i.e. there are vertices *u*, *v* such that there is no path from *u* to *v* in *G*; adding the edge $\{u, v\}$ does not create a cycle; this contradicts (v).

Note: we can go from one tree to another by swapping edges such that all intermediate graphs are also trees.

3. Prüfer's code, Cayley's formula

Recall that for a set A and integer n, we write $A^n = A \times A \times \cdots \times A$. In other words, A^n denotes the set of all sequences of size n formed using elements from A. Also, recall that by Lemma 1 every tree with at least two vertices has a leaf. This is the basis of the following encoding of trees.

n times

Algorithm: Prüfer's code

Input: A tree *T* with vertex set $S \subseteq \mathbb{N}$ where $|S| \ge 2$. **Output:** A sequence $f(T) = (a_1, a_2, \dots, a_{|S|-2}) \in S^{|S|-2}$ **let** $T_1 = T$ **for** each i = 1 to |S| - 2 **do let** v be the leaf of T_i with smallest label **set** a_i to be the unique neighbour of v in T **construct** T_{i+1} from T_i by removing the vertex v and the edge $\{v, a_i\}$ **end for**

Note: If |S| = 2, the algorithm outputs the empty sequence.

Example of a tree T for which the algorithm produces f(T) = (1, 2, 1, 3, 3, 5). Reconstruction of T from the sequence f(T) is shown below the theorem.

Theorem 4. Let $S \subseteq \mathbb{N}$ with $|S| \ge 2$. There is a bijection between $S^{|S|-2}$ and the set of all trees with vertex set S.

Proof. Let n = |S|. Consider the function f produced by the above algorithm. We show that f is the desired bijection. This will follow if we show that every sequence $(a_1, \ldots, a_{n-2}) \in S^{n-2}$ defines a unique tree T such that $f(T) = (a_1, \ldots, a_{n-2})$. If n = 2, then there is exactly one tree on 2 vertices and the algorithm always outputs the empty sequence, the only such sequence. So the claim clearly holds for n = 2.

Now assume n > 2 and the claim by induction holds for all sets S' of size less than n. Consider a sequence $(a_1, \ldots, a_{n-2}) \in S^{n-2}$. We need to show that (a_1, \ldots, a_{n-2}) can be uniquely produced by the algorithm.

Let us analyze this situation. Suppose that the algorithm produces $f(T) = (a_1, \ldots, a_{n-2})$ for some tree T. Then none of a_1, \ldots, a_{n-2} is a leaf of T. Indeed, when a vertex is set to be a_i it is adjacent to a leaf in T_i . So if a_i is a leaf of T_i , then T_i has only 2 vertices. However T_i has |S| - i + 1 vertices, which is ≥ 3 , since $i \leq |S| - 2$.

This implies that the label of the first leaf removed from (the hypothetical tree) T is precisely the minimum element of the set $S \setminus \{a_1, \ldots, a_{n-2}\}$. Let v be this element. In other words, in every tree T such that $f(T) = (a_1, \ldots, a_{n-2})$ the vertex v is a leaf whose unique neighbour is a_1 .

By induction, there is a unique tree T' with vertex set $S \setminus \{v\}$ such that $f(T') = (a_2, \ldots, a_{n-2})$. Adding the vertex v and the edge $\{a_1, v\}$ to T' yields the desired unique tree T with $f(T) = (a_1, \ldots, a_{n-2})$.

This theorem yields the following formula counting the number of labelled trees.

Theorem 5 (Cayley's formula). The number of labelled trees on n vertices is n^{n-2} .