CS 137 - Graph Theory - Lecture 3
February 18, 2012

1.1. Review

e walk, path, cycle
e connected, disconnected

Lemma 1. If every vertexin G has degree at least two, then G containsa cycle.

1.2. Summary

— Trees
— Prifer's code, Cayley’s formula

2. Trees

e

A graphG is atreeif it is connectedand contains no cycle#\ leaf is a vertex of degree 1.

Lemma 2. Every tree with at least 2 vertices has at least one leaf. Removing it (and the incident edge) yields
again atree.

Proof. A consequence of Lemnia(use the contrapositive). O

Theorem 3. Let G be a graph with n vertices. Then the following are equivalent.
(i) Gisatree (G is connected and has no cycles)
(if) G isconnected and has exactly n — 1 edges

(iii) G hasexactly n — 1 edges and no cycles

(iv) G isminimally connected (G is connected and removing any edge disconnects the graph)
(v) G ismaximally acyclic (G hasno cycles and adding any additional edge creates a cycle)
atree adding {4,7} creates a cycle removing {1,3} makes the graph disconnected

Proof. (i)=- (ii) Assume (i): G is a tree. By Lemma&, G has a leafi. Removeu to get a treeG’. Note thatG’
hasn — 1 vertices; by inductiorG’ hasn — 2 edges and s hasn — 1 edges.

(i) = (iii) Assume (ii): G is connected, witlk — 1 edges. If{G has a cycle, then remove any edge of this cycle;
the resulting graph is still is connected. Repeat until noaycles; leG’ be the resulting graplg;’ is connected
and has no cycles, so it has- 1 edges (by (= (ii)), butthenG = G’ sincen —1 = |E(G)| > |E(G')| =n —1.

(iii) =(iv) Remove any edge. L&’ be the resulting graph. Clearty’ has no cycles sincé has no cycles. If
G' is connected, the@’ is a tree and so it has— 1 edges (by (i (ii)), but thenG has more than — 1 edges.

(iv)=-(v) If G has a cycle, remove any edge of the cycle and the resultinngsaconnected, impossible. So
G has no cycle and is connected, is a tree. Add an ddge} to G; let G’ be the result. Sincé& is connected,
there is a path from to v in G; thusG’ contains a cycle.

(V)= (i) Asssume (v). S@ has no cycles. If (i) fails, thet is disconnected; i.e. there are vertices such
that there is no path fromto v in G; adding the edgé¢u, v} does not create a cycle; this contradicts (v). O



Note: we can go from one tree to another by swapping edges suchlitireemediate graphs are also trees.
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3. Prifer's code, Cayley’s formula

n times

—_—
Recall that for a seA and integem, we write A" = A X A x --- x A. In other words, A" denotes the set of
all sequences of size formed using elements from. Also, recall that by Lemma every tree with at least two
vertices has a leaf. This is the basis of the following encgdif trees.

Algorithm: Prifer's code
Input: A treeT with vertex setS C IN where|S| > 2.
Output: A sequence(T) = (ay,az,...,a5_,) € SI5I72
let Ty =T
for eachi = 1to|S| —2do
let v be the leaf off; with smallest label
set a; to be the unique neighbour ofin T
construct T; ;1 from T; by removing the vertex and the edggv, a; }
end for

Note: If |S| = 2, the algorithm outputs the empty sequence.

Example of a tred’ for which the algorithm produce§ T) = (1,2,1,3,3,5). Reconstruction of from the
sequencg (T) is shown below the theorem.
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Theorem 4. Let S C IN with |S| > 2. Thereisa hijection between $/5/~2 and the set of all trees with vertex set S.

Proof. Letn = |S|. Consider the functiorf produced by the above algorithm. We show tfias the desired
bijection. This will follow if we show that every sequente, ..., a,_») € S"~2 defines a unique tre® such
thatf(T) = (ay,...,a,—2). If n = 2, then there is exactly one tree on 2 vertices and the algoafivays outputs
the empty sequence, the only such sequence. So the clairtydields forn = 2.

Now assume: > 2 and the claim by induction holds for all sef5of size less tham. Consider a sequence
(a1,...,a,_2) € $"~2. We need to show thaty, ..., a,_») can be uniquely produced by the algorithm.

Let us analyze this situation. Suppose that the algorithodycesf (T) = (ay,...,a,_») for some treeTl.
Then none ofiy,...,a,,_» is a leaf of T. Indeed, when a vertex is set to beit is adjacent to a leaf iff;. So if
a; is a leaf ofT;, thenT; has only 2 vertices. Howevéi has|S| — i 4 1 vertices, which is> 3, sincei < |S| —

This implies that the label of the first leaf removed from (bypothetical treeY is precisely the minimum
element of the sef \ {ay,...,a,_7}. Letv be this element. In other words, in every tfBesuch thatf(T) =
(ay,...,a,_2) the vertexv is a leaf whose unique neighbouwis

By induction, there is a unique tr&& with vertex setS \ {v} such thatf(T’) = (ay,...,a,—>). Adding the

vertexv and the edgéay, v} to T' yields the desired unique tr@ewith f(T) = (ay,...,a,-2). O
4 is smallest in 6 is smallest in 2is smallest in 7 is smallest in remaining
{1,.,.8\{1,2,1,3,3,5} {1,.,81\{4,2,1,3,3,5} {1,. 8}\(4,6,1,3,3,5) {1,..,81\{4,6,2,1,3,5} vertex
: : : | ‘ ‘ ‘ 4" vertex ‘ ‘ | ‘ ‘ ‘ 6" vertex ‘ ‘ | ‘
1" vertex in 2" vertex 37 vertex 1|s smallest in 3is smallest in 6" vertex
the sequence ,--81\{4,6,2,3,3,5} {1,..,.81\{4,6,2,1,7,5}

This theorem yields the following formula counting the nwenbf labelled trees.

Theorem 5 (Cayley’s formula) The number of labelled trees on 1 verticesis n” 2.
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