
CS 137 - Graph Theory - Lecture 3
February 18, 2012

1.1. Review

• walk, path, cycle
• connected, disconnected

Lemma 1. If every vertex in G has degree at least two, then G contains a cycle.

1.2. Summary

– Trees
– Prüfer’s code, Cayley’s formula

2. Trees
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A graphG is atree if it is connectedand contains no cycles. A leaf is a vertex of degree 1.

Lemma 2. Every tree with at least 2 vertices has at least one leaf. Removing it (and the incident edge) yields
again a tree.

Proof. A consequence of Lemma1 (use the contrapositive). �

Theorem 3. Let G be a graph with n vertices. Then the following are equivalent.
(i) G is a tree (G is connected and has no cycles)

(ii) G is connected and has exactly n − 1 edges
(iii) G has exactly n − 1 edges and no cycles
(iv) G is minimally connected (G is connected and removing any edge disconnects the graph)
(v) G is maximally acyclic (G has no cycles and adding any additional edge creates a cycle)
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adding {4,7} creates a cycle removing {1,3} makes the graph disconnecteda tree

Proof. (i)⇒ (ii) Assume (i): G is a tree. By Lemma2, G has a leafu. Removeu to get a treeG′. Note thatG′

hasn − 1 vertices; by inductionG′ hasn − 2 edges and soG hasn − 1 edges.

(ii)⇒ (iii) Assume (ii): G is connected, withn− 1 edges. IfG has a cycle, then remove any edge of this cycle;
the resulting graph is still is connected. Repeat until no more cycles; letG′ be the resulting graph;G′ is connected
and has no cycles, so it hasn− 1 edges (by (i)⇒(ii)), but thenG = G′ sincen− 1 = |E(G)| ≥ |E(G′)| = n− 1.

(iii)⇒(iv) Remove any edge. LetG′ be the resulting graph. ClearlyG′ has no cycles sinceG has no cycles. If
G′ is connected, thenG′ is a tree and so it hasn − 1 edges (by (i)⇒(ii)), but thenG has more thann − 1 edges.

(iv)⇒(v) If G has a cycle, remove any edge of the cycle and the resulting graph is connected, impossible. So
G has no cycle and is connected, is a tree. Add an edge{u, v} to G; let G′ be the result. SinceG is connected,
there is a path fromu to v in G; thusG′ contains a cycle.

(v)⇒ (i) Asssume (v). SoG has no cycles. If (i) fails, thenG is disconnected; i.e. there are verticesu, v such
that there is no path fromu to v in G; adding the edge{u, v} does not create a cycle; this contradicts (v). �
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Note: we can go from one tree to another by swapping edges such that all intermediate graphs are also trees.
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3. Prüfer’s code, Cayley’s formula

Recall that for a setA and integern, we write An =

n times
︷ ︸︸ ︷

A × A × · · · × A. In other words,An denotes the set of
all sequences of sizen formed using elements fromA. Also, recall that by Lemma1 every tree with at least two
vertices has a leaf. This is the basis of the following encoding of trees.

Algorithm: Prüfer’s code

Input: A treeT with vertex setS ⊆ N where|S| ≥ 2.
Output: A sequencef (T) = (a1, a2, . . . , a|S|−2) ∈ S|S|−2

let T1 = T
for eachi = 1 to |S| − 2 do

let v be the leaf ofTi with smallest label
set ai to be the unique neighbour ofv in T
construct Ti+1 from Ti by removing the vertexv and the edge{v, ai}

end for

Note: If |S| = 2, the algorithm outputs the empty sequence.

Example of a treeT for which the algorithm producesf (T) = (1, 2, 1, 3, 3, 5). Reconstruction ofT from the
sequencef (T) is shown below the theorem.
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Theorem 4. Let S ⊆ N with |S| ≥ 2. There is a bijection between S|S|−2 and the set of all trees with vertex set S.

Proof. Let n = |S|. Consider the functionf produced by the above algorithm. We show thatf is the desired
bijection. This will follow if we show that every sequence(a1, . . . , an−2) ∈ Sn−2 defines a unique treeT such
that f (T) = (a1, . . . , an−2). If n = 2, then there is exactly one tree on 2 vertices and the algorithm always outputs
the empty sequence, the only such sequence. So the claim clearly holds forn = 2.

Now assumen > 2 and the claim by induction holds for all setsS′ of size less thann. Consider a sequence
(a1, . . . , an−2) ∈ Sn−2. We need to show that(a1, . . . , an−2) can be uniquely produced by the algorithm.

Let us analyze this situation. Suppose that the algorithm producesf (T) = (a1, . . . , an−2) for some treeT.
Then none ofa1, . . . , an−2 is a leaf ofT. Indeed, when a vertex is set to beai it is adjacent to a leaf inTi. So if
ai is a leaf ofTi, thenTi has only 2 vertices. HoweverTi has|S| − i + 1 vertices, which is≥ 3, sincei ≤ |S| − 2.

This implies that the label of the first leaf removed from (thehypothetical tree)T is precisely the minimum
element of the setS \ {a1, . . . , an−2}. Let v be this element. In other words, in every treeT such thatf (T) =
(a1, . . . , an−2) the vertexv is a leaf whose unique neighbour isa1.

By induction, there is a unique treeT′ with vertex setS \ {v} such thatf (T′) = (a2, . . . , an−2). Adding the
vertexv and the edge{a1, v} to T′ yields the desired unique treeT with f (T) = (a1, . . . , an−2). �
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This theorem yields the following formula counting the number of labelled trees.

Theorem 5 (Cayley’s formula). The number of labelled trees on n vertices is nn−2.

2


	Review
	Summary
	Trees
	Prüfer's code, Cayley's formula

