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Goals

 Awareness: Inter-comparability of machine learning weather
forecasting studies

 Crowdsourced science: WeatherBench dataset

* Physics / Machine learning baselines: numerical weather prediction
models, neural network models, etc



How weather forecasting is done today

Traditional weather forecasting involves:
* Observation gathering
* Data assimilation
* Numerical weather prediction
* Forecast post-processing and evaluation

Weather forecast modeling
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Data-driven weather forecasting

a) Direct prediction
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Data-driven weather forecasting: SOTA?

Recent studies:

* NNs to predict 500 hPa geopotential 1 hour ahead (bueben and Bauer, 2018)

* CNNs to predict GCM outputs 14 days ahead (Scher, 2018; Scher & Messori, 2019)

* CNNs to predict reanalysis derived Z500 at different lead times (Weyn et al., 2019)

Concern:

 different settings of general circulation models as ground truth
 different spatial and temporal resolutions

e different neural network architectures evaluated using different metrics



WeatherBENCH dataset

Goal: Evaluate deep learning models for global medium range
weather forecasting

Data: ERAS reanalysis dataset for training and evaluation

Spatial resolution: 40 years of hourly data (1979-2018)

Temporal resolution:  Data re-gridded to 5.625°, 2.8125° and 1.40525°
Selected 10 vertical levels between 1 and 1000 hPa



WeatherBENCH dataset
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WeatherBENCH evaluation

Target fields: 500 hPa geopotential and 850 hPa temperature
Years: 2017-2018
Resolution: 5.625°

Metric:
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Meaningful baselines

Persistence: Tomorrow’s weather is today’s weather
Climatology: Mean over 1979 — 2016
Operational NWP model: Operational IFS (Integrated Forecast

System) from the ECMWF

Linear regression

Convolutional neural network: Five layer CNN with a filter size of 5



Meaningful baselines
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Climate forecasts

Truth +5d CNN +5d
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Conclusion

We hope the benchmark can provide a starting point for:

* Scientific understanding

* Challenge for data science

* Clear metric for success

* Quick start

* Reproducibility and citability
* Communication platform



The end

For more details, see:
WeatherBENCH: A benchmark dataset for data-driven weather forecasting
https://arxiv.org/abs/2002.00469

The benchmark development is ongoing and we encourage you to develop
and evaluate your own solutions!

https://mediatum.ub.tum.de/1524895
https://github.com/pangeo-data/WeatherBench
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