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Goals

• Awareness: Inter-comparability of machine learning weather 
forecasting studies

• Crowdsourced science: WeatherBench dataset 

• Physics / Machine learning baselines: numerical weather prediction 
models, neural network models, etc
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How weather forecasting is done today

Traditional weather forecasting involves:
• Observation gathering

• Data assimilation

• Numerical weather prediction

• Forecast post-processing and evaluation

Concern:
• computationally expensive

• Poor performance on extreme events 
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Data-driven weather forecasting
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Data-driven weather forecasting: SOTA?

Recent studies:

• NNs to predict 500 hPa geopotential 1 hour ahead (Dueben and Bauer, 2018)

• CNNs to predict GCM outputs 14 days ahead (Scher, 2018; Scher & Messori, 2019)

• CNNs to predict reanalysis derived Z500 at different lead times (Weyn et al., 2019)

Concern:

• different settings of general circulation models as ground truth

• different spatial and temporal resolutions

• different neural network architectures evaluated using different metrics
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WeatherBENCH dataset

Goal: Evaluate deep learning models for global medium range 
weather forecasting

Data: ERA5 reanalysis dataset for training and evaluation

Spatial resolution: 40 years of hourly data (1979-2018) 

Temporal resolution: Data re-gridded to 5.625°, 2.8125° and 1.40525°
Selected 10 vertical levels between 1 and 1000 hPa
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WeatherBENCH dataset
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3-D fields 2-D fields Time-invariant fields

Geopotential 2-meter temperature Land-sea mask

Temperature 10-meter wind Soil type

Humidity Total cloud cover Orography

Wind Precipitation Latitude, longitude

Top-of-atmosphere incoming 
solar radiation 



WeatherBENCH evaluation

Target fields: 500 hPa geopotential and 850 hPa temperature

Years: 2017-2018

Resolution: 5.625°

Metric:
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Meaningful baselines

Persistence: Tomorrow’s weather is today’s weather

Climatology: Mean over 1979 – 2016

Operational NWP model: Operational IFS (Integrated Forecast 
System) from the ECMWF

Linear regression

Convolutional neural network: Five layer CNN with a filter size of 5
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Meaningful baselines
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Climate forecasts
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Conclusion

We hope the benchmark can provide a starting point for:

• Scientific understanding

• Challenge for data science

• Clear metric for success

• Quick start

• Reproducibility and citability

• Communication platform
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The end

For more details, see: 

WeatherBENCH: A benchmark dataset for data-driven weather forecasting

https://arxiv.org/abs/2002.00469

The benchmark development is ongoing and we encourage you to develop 
and evaluate your own solutions!

https://mediatum.ub.tum.de/1524895

https://github.com/pangeo-data/WeatherBench
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