How much CO₂ can accumulate in the atmosphere before we cross 2°C warming?

- Global warming target of 2015 Paris Agreement: 2°C
- How much CO₂ can accumulate in the atmosphere before this threshold is crossed?
- No certain answer
- Answers vary from 400 ppm in 2030, to 600 ppm after 2060 (Schneider et al., 2017a).

- Estimated economic value of an accurate answer:
 -$10 trillion in savings (Hope, 2015).

PARAMETRISATION SCHEMES

- Typical GCM grid scale: 10 to 150 km.
- Cloud formation scales: ~2 km or less.
- Clouds cannot be resolved by current climate models.
- Clouds modeled by heuristically approximated parameterisation schemes.

RELATED WORK

- Learn cloud parameterisations from cloud resolving model simulation data using:
 - Single-layer feed-forward neural networks (Brenowitz et al., 2018; Brenowitz and Bretherton, 2018)
 - Ensemble Kalman inversion model (Schneider et al., 2017a)
 - Random forest model (Gorman and Dwyer, 2018)
 - Multi-layer feed-forward neural network (Brenowitz et al., 2018)

- But...

OBJECTIVE

Want:
- A climate model which can objectively zoom in on clouds.

Where does ML fit in?
- Can a deep learning model recover the parameters underlying a cloud parameterisation scheme?

Objective:
- Recover the parameters underlying the chaotic behavior of the Lorenz-96 model.

Lorenz-96 Model

Slow large-scale variables $x_i([1,2,...,L])$:

\[
\frac{dx_i}{dt} = -x_{i-1}(x_{i-1} - x_{i+1}) - x_i + F - bx_i^eta \\
\frac{d^2x_i}{dt^2} = \beta x_{i-1}(x_{i-1} - x_{i+1}) - x_i + \frac{F}{\beta}
\]

Fast small-scale variables $y_{ij}([1,2,...,L][1,2,...,L])$:

\[
\frac{dy_{ij}}{dt} = -b x_{ij}(y_{ij} - y_{ij-1}) - y_{ij} + \frac{F}{\beta}
\]

Learning Models

- Learning algorithms:
 - Fully connected with 3 layers
 - 1D convolutional with 2 layers (each with 32 filters of size 3) followed by 3 FC layers
 - 2D convolutional with 1 layer (32 filters of size 3x3) followed by 3 FC layers

RESULTS

Test Mode	Model Train Loss Test Loss Train R² Test R²			
LR	1.7512	1.7600	0.7588	0.8578
FC	0.6531	0.6714	0.9004	0.9074
Conv1D	0.6682	0.6412	0.9079	0.9060
Conv2D	0.6502	0.6461	0.9073	0.9054

Lorenz-96 Phase Diagram of the First Three Densities X and Y Variables using the Observed Parameters

Figure 7. Errors between the Lorenz-96 model with the FC model trained on the Y variables with test, mode set to Alert (top row) and using the Conv1D model trained on Y variables with test, mode set to True (bottom row).

References