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Abstract

In many applications of widely recognized technique, DEA, finding the most efficient DMU is desirable for decision
maker. Using basic DEA models, decision maker is not able to identify most efficient DMU. Amin and Toloo [Gholam R.
Amin, M. Toloo, Finding the most efficient DMUs in DEA: an improved integrated model. Comput. Ind. Eng. 52 (2007)
71–77] introduced an integrated DEA model for finding most CCR-efficient DMU. In this paper, we propose a new inte-
grated model for determining most BCC-efficient DMU by solving only one linear programming (LP). This model is useful
for situations in which return to scale is variable, so has wider range of application than other models which find most
CCR-efficient DMU. The applicability of the proposed integrated model is illustrated, using a real data set of a case study,
which consists of 19 facility layout alternatives.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric linear programming based technique for measuring
the relative efficiency of a set of similar units, usually referred to as decision making units (DMUs). It was
introduced by Charnes et al. [1] based on Farrell’s pioneering work. They generalized the single-output to sin-
gle-input ratio definition of efficiency to multiple inputs and outputs. In their original DEA model, Charnes,
Cooper and Rhodes (CCR model) proposed that the efficiency of a DMU can be obtained as the maximum of
a ratio of weighted outputs to weighted inputs, subject to the condition that the same ratio for all DMUs must
be less than or equal to one. The DEA model must be run n times, once for each unit, to get the relative effi-
ciency of all DMUs. The CCR model evaluates both technical and scale efficiencies via the optimal value of
the ratio form. The envelopment in CCR is constant returns to scale meaning that a proportional increase in
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inputs results in a proportionate increase in outputs. Banker et al. [2] developed the BCC model to estimate the
pure technical efficiency of decision making units with reference to the efficient frontier. It also identifies
whether a DMU is operating in increasing, decreasing or constant returns to scale. So CCR models are a spe-
cific type of BCC models.

DEA has gained too much attention by researchers because of its successful applications and case studies.
Assessment of bank branch performance [3], examining bank efficiency [4], analyzing firm’s financial state-
ments [5], measuring the efficiency of higher education institutions [6], solving facility layout design (FLD)
problem [7] and measuring the efficiency of organizational investments in information technology [8] are
examples of using DEA in various areas.

In many applications, finding most efficient DMU is required, particularly when decision maker wants to
select only one DMU among proposed DMUs. Some studies have been done in this area. For instance, Ertay
et al. [7] integrated DEA and analytic hierarchy process (AHP) and presented a decision-making methodology
for evaluating FLDs. In the last step of their methodology, they extended minimax DEA model to identify
single most efficient DMU. Amin and Toloo [9] extended their work and proposed an integrated DEA model
in order to detect the most CCR-efficient DMU. It was able to find the most CCR-efficient DMU without
solving the model n times (one linear programming (LP) for each DMU) and therefore allowed the user to
get faster results. It is notable that the proposed model is useful for situations that return to scale is constant.
On account of the fact that of their model is based on CCR, it is not capable for situations in which DMUs are
operating in increasing or decreasing returns to scale.

In this paper, we try to fill the gap by proposing a new model for finding most BCC-efficient DMU. The
proposed model is capable for situations in which return to scale is variable. This model also is computation-
ally efficient, because it detects the most BCC-efficient DMU by solving only one LP.

The rest of this paper is organized as follows: In Section 2, we describe the BCC model and the model pro-
posed by Amin and Toloo [9] as background models. A new model for finding most BCC-efficient DMU is
proposed in Section 3. In Section 4 applicability of proposed model is illustrated. The paper is closed with
some concluding remark in Section 5.
2. Background models

DEA is commonly used to evaluate the relative efficiency of a number of DMUs. The basic DEA model in
Charnes et al. [1], called the CCR model, has lead to several extensions, most notably the BCC model of
Banker et al. [2]. Assume that there are n DMUs, (DMUj: j = 1,2, . . . ,n) which consume m inputs (xi:
i = 1,2, . . .,m) to produce s outputs (yr: r = 1,2, . . . ,s). The BCC input oriented (BCC-I) model evaluates
the efficiency of DMUo, DMU under consideration, by solving the following linear program:
max
Xs

r¼1

uryrj � u0

s:t:
Xm

i¼1

wixio ¼ 1

Xs

r¼1

uryrj � u0 �
Xm

i¼1

wixij 6 0; j ¼ 1; 2; . . . ; n

u0; free

wi P e; i ¼ 1; 2; . . . ;m

ur P e; r ¼ 1; 2; . . . ; s

ð1Þ
where xij and yrj (all nonnegative) are the inputs and outputs of the jth DMU, wi and ur are the input and
output weights (also referred to as multipliers). xio and yro are the inputs and outputs of DMUo. Also, e is
non-Archimedean infinitesimal value for forestalling weights to be equal to zero. On account of the fact that
basic DEA models identify more than one DMU as efficient units, finding the most efficient DMU is an issue.
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Amin and Toloo [9] proposed an integrated model for finding most CCR-efficient DMU, as follows:
M� ¼ min M

s:t: M � dj P 0; j ¼ 1; 2; . . . ; n
Xm

i¼1

wixij 6 1; j ¼ 1; 2; . . . ; n

Xs

r¼1

uryrj �
Xm

i¼1

wixij þ dj � bj ¼ 0; j ¼ 1; 2; . . . ; n

Xn

j¼1

dj ¼ n� 1

0 6 bj 6 1; dj 2 f0; 1g; j ¼ 1; 2; . . . ; n

wi P e; i ¼ 1; 2; . . . ;m

ur P e; r ¼ 1; 2; . . . ; s

ð2Þ
where dj as a binary variable represents the deviation variable of DMUj. DMUj is most CCR-efficient if and
only if dj = 0. The constraint

Pn
j¼1dj ¼ n� 1 forces among all the DMUs for only single most CCR-efficient

unit.
This model proposed to overcome drawbacks of its previous model which was proposed by Ertay et al. [7].

Ertay et al. [7] model was a parametric extended minimax DEA model to identify single most CCR-efficient
DMU. Ertay et al. [7] model requires to be solved n times for n DMUs. In addition this model uses trial and
error method in objective function. Through an example, Amin and Toloo [9] showed that their DEA trial and
error approach may not converge to a single CCR-efficient DMU. So, Ertay et al. [7] minimax DEA procedure
does not terminate to a single CCR-efficient alternative in all situations. Consequently, Amin and Toloo [9]
proposed non-parametric integrated Model (2) which finds most CCR-efficient DMU without solving the
LP n times.
3. Proposed model

The model proposed by Amin and Toloo [9] is based on CCR model and is not useful for situations in
which DMUs operating in variable return to scale. In this paper we propose a new integrated model which
is useful for these situations. The model proposes as:
M� ¼ min M

s:t: M � dj P 0; j ¼ 1; 2; . . . ; n
Xm

i¼1

wixij 6 1; j ¼ 1; 2; . . . ; n

Xs

r¼1

uryrj � u0 �
Xm

i¼1

wixij þ dj � bj ¼ 0; j ¼ 1; 2; . . . ; n

Xn

j¼1

dj ¼ n� 1

0 6 bj 6 1; dj 2 f0; 1g; j ¼ 1; 2; . . . ; n

M ; u0; free

wi P e�; i ¼ 1; 2; . . . ;m

ur P e�; r ¼ 1; 2; . . . ; s

ð3Þ
DMUj is most BCC-efficient if and only if dj = 0. Similar to Amin and Toloo [9], the main idea of Model (3) is
trying to find only one most efficient DMU, but in situations in which return to scale is variable. Adding free
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variable uo, enhance the capability of model to situations in which DMUs act in variable return to scale, meaning
that most BCC-efficient can be found using Model (3). The constraint

Pn
j¼1dj ¼ n� 1 forces among all the

DMUs for only single most BCC-efficient unit.
Indeed, Model (3) is an extended version of Amin and Toloo [9] model. Hence, the following LP, which is

extended version of Amin and Toloo [9] epsilon model, is proposed to determine the non-Archimedean
epsilon:
e� ¼ max e

s:t:
Xm

i¼1

wixij 6 1; j ¼ 1; 2; . . . ; n ð4:1Þ

Xs

r¼1

uryrj � u0 �
Xm

i¼1

wixij 6 0; j ¼ 1; 2; . . . ; n ð4:2Þ

wi � e P 0; i ¼ 1; 2; . . . ;m ð4:3Þ
ur � e P 0; r ¼ 1; 2; . . . ; s ð4:4Þ

ð4Þ
Theorem 1. In Model (4), (4.2) and (4.4) are redundant.

Proof. The dual of Model (4) is as follows:
min
Xn

j¼1

dj

s:t:
Xn

j¼1

xijdj �
Xn

j¼1

xijbj � ci ¼ 0; i ¼ 1; . . . ;m

Xn

j¼1

yrjbj � gr ¼ 0; r ¼ 1; . . . ; s

Xn

j¼1

bj ¼ 0

Xm

i¼1

ci þ
Xs

r¼1

gr ¼ 1

dj P 0; bj P 0; j ¼ 1; 2; . . . ; n

ci P 0; gr P 0; i ¼ 1; 2; . . . ; n; r ¼ 1; . . . ; s

ð5Þ
Considering the structure of Model (5), "j,r: bj = 0, gr = 0. Because,
Xn

j¼1

bj ¼ 0 & 8j : bj P 0) 8j : bj ¼ 0) 8r : gr ¼ 0
So, the dual of Model (4) is simplified as follows:
d� ¼ min
Xn

j¼1

dj

s:t:
Xn

j¼1

xijdj � ci ¼ 0; i ¼ 1; . . . ;m

Xm

i¼1

ci ¼ 1

dj P 0; j ¼ 1; 2; . . . ; n

ci P 0; i ¼ 1; 2; . . . ; n

ð6Þ
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But the dual of Model (6) is Model (7):
e� ¼ max e

s:t:
Xm

i¼1

wixij 6 1; j ¼ 1; 2; . . . ; n

wi � e P 0; i ¼ 1; 2; . . . ;m

ð7Þ
The dual of the dual is the primal, hence the proof is completed. h

Lemma 1. Model (7) is feasible.

Proof. Let e = 0, "i: wi = 0. Clearly (e, w) is a feasible solution of Model (7). h

Lemma 2. Model (6) is feasible.

Proof. Let
8j : dj ¼
1

n
Pm

i¼1xij
and 8i : ci ¼

1

n
�
Xn

j¼1

xijPm
k¼1xkj

� �
Clearly (d, c) is a feasible solution of Model (6). h

Lemma 3. 0 < e* < +1

Proof. On the contrary, assume that e* = 0. Hence, d� ¼
Pn

j¼1d
�
j ¼ 0. On the other hand, 8j : d�j P 0, implies

that 8j : d�j ¼ 0) c�j ¼ 0)
Pn

j¼1c
�
j ¼ 0 which contradicts to the last constraint of Model (6), so e* = d* > 0.

According to Lemma 1 and Lemma 2, Model (7) and Model (6) are feasible, respectively. Therefore,
e* = d* < +1. h

Lemma 4. Let (e*, w*) be an optimal solution of Model (7) and J ¼ fj :
Pn

j¼1w�i xij ¼ 1g, then jJj > 0.

Proof. On the contrary, assume that jJj = 0. The complementary slackness conditions imply that d* = 0,
which contradicts to Lemma 3. This implies that jJj > 0. h

Theorem 2. Model (3) is feasible.

Proof. Suppose that (e*, w*, u*, u0) is an optimal solution of Model (4) and w*xp = 1 (according to Lemma 4
such index exists, ties are broken arbitrary). Let M = 1, w = w*, u = u*, u0 ¼ u�0, dp = 0, "j 6¼ p: dj = 1,
8j : bj ¼ u�yj � u�0 � w�xj � dj, d = (d1, . . ., dn), b = (b1, . . ., bn).

Clearly (M, w, u, u0, d, b) is a feasible solution of Model (3). h

Lemma 5. M* = 1.

Proof. Model (3) implies that M� ¼ minfmaxfdj : j ¼ 1; 2; . . . ngg, dj 2 f0; 1g,
Pn

j¼1dj ¼ n� 1. This com-
pletes the proof. h
4. Illustrative example

To operate production and service systems efficiently, systems should not only have to be operated with
optimal planning and operational policies, but also be well designed. FLD has a very important effect on
the performance of a manufacturing system. The concept of FLD is usually considered as a multi objective
problem. For this reason, a layout generation and its evaluation are often challenging and time consuming
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due to their inherent multiple objectives in nature and their data collection process. In addition, an effective
facility layout evaluation procedure necessitates the consideration of qualitative criteria, e.g., flexibility in vol-
ume and variety and quality related to the product and production, as well as quantitative criteria such as
material handling cost, adjacency score, shape ratio, and material handling vehicle utilization in the decision
process. The criteria that are to be minimized are viewed as inputs whereas the criteria to be maximized are
considered as outputs ([7]). We are to select the most BCC-efficient FLD.

As Ertay et al. [7], we use a real data set of 19 FLDs which consume 2 inputs, cost and adjacency score, to
produce four outputs, shape ration, flexibility, quality and hand-carry utility. This data are presented in
Table 1.
Table 1
Inputs and outputs of DEA

DMU DEA Inputs DEA Outputs

Cost Adjacency Shape ratio Flexibility Quality Hand-carry utility

1 20309.56 6405.00 0.4697 0.0113 0.0410 30.89
2 20411.22 5393.00 0.4380 0.0337 0.0484 31.34
3 20280.28 5294.00 0.4392 0.0308 0.0653 30.26
4 20053.20 4450.00 0.3776 0.0245 0.0638 28.03
5 19998.75 4370.00 0.3526 0.0856 0.0484 25.43
6 20193.68 4393.00 0.3674 0.0717 0.0361 29.11
7 19779.73 2862.00 0.2854 0.0245 0.0846 25.29
8 19831.00 5473.00 0.4398 0.0113 0.0125 24.80
9 19608.43 5161.00 0.2868 0.0674 0.0724 24.45
10 20038.10 6078.00 0.6624 0.0856 0.0653 26.45
11 20330.68 4516.00 0.3437 0.0856 0.0638 29.46
12 20155.09 3702.00 0.3526 0.0856 0.0846 28.07
13 19641.86 5726.00 0.2690 0.0337 0.0361 24.58
14 20575.67 4639.00 0.3441 0.0856 0.0638 32.20
15 20687.50 5646.00 0.4326 0.0337 0.0452 33.21
16 20779.75 5507.00 0.3312 0.0856 0.0653 33.60
17 19853.38 3912.00 0.2847 0.0245 0.0638 31.29
18 19853.38 5974.00 0.4398 0.0337 0.0179 25.12
19 20355.00 17402.00 0.4421 0.0856 0.0217 30.02

Table 2
BCC-I efficiency scores of DMUs

Rank DMU BCC-I efficiency score

1 19 1
1 1 1
1 17 1
1 16 1
1 15 1
1 5 1
1 14 1
1 7 1
1 12 1
1 9 1
1 10 1
12 13 0.998526
13 11 0.998326
14 3 0.998281
15 8 0.997871
16 18 0.996468
17 6 0.996457
18 2 0.995887
19 4 0.989942



Table 3
Comparison results of proposed model with Amin and Toloo’s model

Variable Model (3) Amin and Toloo’s Model

d�j d�14 ¼ 0, d�j 6¼14 ¼ 1 d�16 ¼ 0, d�j 6¼16 ¼ 1
w�1 0.000025 0.000026
w�2 0.000028 0.328456
u�1 0.556423 0.000026
u�2 0.860412 0.020036
u�3 0.000025 0.000027
u�4 0.026153 0.000026
u�o1 0.458908 –
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Using DEA-Solver, the basic BCC-I model is solved and results are presented in Table 2. Solving 19 LP
models, there are 11 BCC-efficient DMUs. Obviously, in this situation decision maker is not able to select
most BCC-efficient FLD. In this situation, Model (3) is applicable.

Solving Model (7) for the real data regarding to 19 FLDs shown in Table 1, optimal value is: e* = 0.000025.
There also exists a polynomial time algorithm, Epsilon algorithm, which introduced by Amin and Toloo [10].
Applying this algorithm, resulted in same value as received from solving Model (7).

Using this value and solving Model (3), DMU14 is identified as most BCC-efficient DMU. It should be
noted that Model (3) for this FLD problem includes 83 constraints. To provide some further insights, a com-
parison of results from Model (3) and Amin and Toloo’s model is presented in Table 3.

As Table 3 indicates DMU14 is most BCC-efficient unit whereas DMU16 is most CCR-efficient unit.

5. Conclusion

In this paper, we proposed a new integrated model for finding the most BCC-efficient DMU. Using the pro-
posed model, decision maker is able to find most BCC-efficient DMU by solving only one LP, rather than n

LPs, so can get faster results. The proposed model is computationally efficient and also has wider range of
application than models which find most CCR-efficient DMU, because is capable for situation in which return
to scale is variable. It also has another merit in comparison to basic DEA models. This model compares all
DMUs by a single formulation and common set of weights. It should be noted that depend on number of
DMUs the proposed model could be large because it includes 4n + m + s + 1 constraints, respect to BCC
model which contains n + m + s + 1 constraint. It is worthwhile mentioning here that the model developed
in this paper is input-oriented, but can be extended to output-oriented.
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