
IEEE Communications Magazine • February 2013136 0163-6804/13/$25.00 © 2013 IEEE

INTRODUCTION

Moving the control function out of data plane
elements is the common denominator among
software-defined networking (SDN) proposals in
the research community. This decoupling enables
both planes to evolve independently, and brings
about numerous advantages such as high flexibil-
ity, being vendor-agnostic, programmability, and
the possibility of realizing a centralized network
view. Despite all these advantages, there have
always been concerns about performance and
scalability since its inception.

The common perception that control in SDN
is centralized leads to concerns about SDN scal-
ability and resiliency. After all, regardless of the
controller capability, a central controller does
not scale as the network grows (increase the
number of switches, flows, bandwidth, etc.) and
will fail to handle all the incoming requests while
providing the same service guarantees. Addition-
ally, early benchmarks on NOX (the first SDN
controller), which showed it could only handle
30,000 flow initiations per second [1] while main-
taining a sub-10 ms flow install time, intensified
such concerns. Moreover, since most early SDN
proposals were flow-based, additional flow initia-
tion delay became a concern.

We argue that there is no inherent bottleneck
to SDN scalability; that is, these concerns stem
from implicit and extrinsic assumptions. For
instance, the low flow setup throughput in NOX
is shown to be an implementation artifact; and
the control plane being centralized was simply
due to the historical evolution of SDN. Without
such assumptions, similar to any distributed sys-
tem, one can design a scalable SDN control
plane [2].

We believe there are legitimate concerns for
SDN scalability. Interestingly, we argue that

these scalability limitations are not restricted to
SDN; traditional control protocol design also
faces the same challenges. While this does not
address these scalability issues, it shows that we
do not need to worry about scalability in SDN
more than we do for traditional networks.

ROOTS OF
SCALABILITY CONCERNS IN SDN

What fundamentally differentiates SDN from
traditional data networks is the separation of
control from the forwarding plane. This decou-
pling leads to interesting properties. Most impor-
tant, as exemplified in Fig. 1, data and control
plane components can evolve independently, as
long as we define a standard application pro-
gramming interface (API) between the two. For-
warding elements are responsible for switching
and are usually built from highly specialized
application-specific integrated circuits (ASICs),
which evolve significantly slower than control
plane components written in software. Also, the
possibility of creating a centralized view of the
network creates tremendous potential opportu-
nities for simplifying the control applications,
and therefore accelerating change and innova-
tion in the control plane.

This decoupling, however, has its own pitfalls
too. First, defining a standard API between the
two planes is absolutely nontrivial. Technically,
this API should be able to handle the needs of
various architectures, and should be able to
facilitate the independent evolution of both
planes. Also, all or a majority of switch vendors
should adopt the same standard API for it to be
useful; otherwise, networks will be tied to specif-
ic vendors, which might lead to proprietary lay-
ers, preventing rapid change and innovation in
networks. Second, decoupling data and control
planes brings about scalability concerns. Moving
traditionally local control functionalities to a
remote controller can potentially result in new
bottlenecks. It can also lead to signaling over-
heads that can be significant depending on the
type of network and associated applications.

In what follows, we first discuss SDN con-
troller scalability, outlining why it has been a
concern, and recent works in this domain. Then
we review some other often voiced SDN scalabil-
ity concerns including the flow setup overhead
and resilience to failures. We argue that, even

ABSTRACT

In this article, we deconstruct scalability con-
cerns in software-defined networking and argue
that they are not unique to SDN. We explore
the often voiced concerns in different settings,
discuss scalability trade-offs in the SDN design
space, and present some recent research on
SDN scalability. Moreover, we enumerate over-
looked yet important opportunities and chal-
lenges in scalability beyond the commonly used
performance metrics.

SOFTWARE DEFINED NETWORKS

Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali, University of Toronto

On Scalability of
Software-Defined Networking

YEGANEH LAYOUT_Layout 1 1/28/13 3:43 PM Page 136

IEEE Communications Magazine • February 2013 137

though these concerns are not specific to SDN,
they can be alleviated with an alternative design
(some of which are now commonplace).

CONTROLLER SCALABILITY
One possible SDN design is to push all the con-
trol functionality to a centralized controller.
Empowered with a complete network-wide view,
developing control applications and enforcing
policies become much easier in this setting. Nev-
ertheless, controllers can potentially become the
bottleneck in the network operation. As the size
of a network grows, more events and requests
are sent to the controller, and at some point, the
controller cannot handle all the incoming
requests. Early benchmarks of an SDN con-
troller (NOX) showed that it can handle 30k
requests/s [1]. Even though this may be sufficient
for a sizeable enterprise network, it could be a
major problem for data-center-like environments
with high flow initiation rates [3].

One way to alleviate this concern is to level
parallelism in multicore systems and improve IO
performance. Tootoonchian et al. [4] showed
that simple modifications to the NOX controller
boosts its performance by an order of magnitude
on a single core. It means that a single controller
can support a far larger network, given sufficient
controller channel bandwidth with acceptable
latency. We can also reduce the number of
requests forwarded to the controller. DIFANE
[5] proactively pushes all state to the data path
(addressing the scarcity of data path memory in
a scalable manner). In DevoFlow [6], with sup-
port from an ASIC, short-lived flows are han-
dled in the data path, and only larger flows are
forwarded to the controller, effectively reducing

the load on the controller and improving scala-
bility. Therefore, we can say that DevoFlow
trades fine-grained flow-level visibility in the
control plane with scalability, which can be rea-
sonable depending on the setting and constraints
of the underlying network.

Alternatively, one can distribute the state
and/or computation of the control functionality
over multiple controllers. Having a centralized
controller is by no means an intrinsic character-
istic of SDN. All we need is a unified network-
wide view to reap the benefits of SDN. We note
that, similar to any distributed system, providing
a strictly consistent centralized view can hinder
response time and throughput as the network
scales. As stated in [7], it is not always feasible
to achieve strong consistency while maintaining
availability and partition tolerance. Therefore,
selecting an apt consistency level is an important
design trade-off in SDN. To preserve scalability,
one should design control applications with the
weakest possible consistency level.

There are solutions where we can physically
distribute the control plane elements, yet main-
tain the network-wide view. Onix [2], for exam-
ple, is a distributed control platform that
facilitates implementation of distributed control
planes. It provides control applications with a set
of general APIs to facilitate access to network
state (NIB), which is distributed over Onix
instances. HyperFlow [8], on the other hand,
synchronizes network state among multiple con-
troller instances, giving the control applications
(running on every controller instance) an illusion
of control over the whole network. This keeps
the simplicity of developing the control plane on
a central controller while alleviating a class of

Figure 1. Decoupled data and control planes in SDN can have different topologies, use different technolo-
gies, and, more important, evolve independently.

Data plane

Control plane

Standard A
PI (e.g., O

penFlow
)

Switch
Switch

Switch
Switch

A
pplication

A
pplication

Switch
Switch

Switch

ControllerController

Controller

A
pplication

A
pplication

A
pplication

A
pplication

What fundamentally

differentiates SDN

from traditional data

networks is the

separation of control

from forwarding

plane. This decou-

pling leads to inter-

esting properties.

Most importantly,

data and control

plane components

can evolve

independently, as

long as we define a

standard API

between the two.

YEGANEH LAYOUT_Layout 1 1/28/13 3:43 PM Page 137

IEEE Communications Magazine • February 2013138

scalability issues associated with a centralized
controller, albeit for a more restricted set of
control applications satisfying certain properties.

Kandoo [9] takes a different approach to dis-
tributing the control plane. It defines a scope of
operations to enable applications with different
requirements to coexist: locally scoped applica-
tions (i.e., applications that can operate using
the local state of a switch) are deployed close to
the data path in order to process frequent
requests and shield other parts of the control
plane from the load. A root controller, on the
other hand, takes charge of applications that
require network-wide state, and also acts as a
mediator for any coordination required between
local controllers.

An interesting observation is that control
plane scalability challenges in SDN (e.g., conver-
gence and consistency requirements) are not
inherently different than those faced in tradi-
tional network design. SDN, by itself, is neither
likely to eliminate the control plane design com-
plexity or make it more or less scalable.1 SDN,
however:

• Allows us to rethink the constraints tradi-
tionally imposed on control protocol designs
(e.g., a fixed distribution model) and decide
on our own trade-offs in the design space

• Encourages us to apply common software
and distributed systems development prac-
tices to simplify development, verification,
and debugging

Unlike traditional networks, in SDN, we do not
need to address basic but challenging issues like
topology discovery, state distribution, and
resiliency over and over again. As demonstrated
in Onix, control applications can rely on the con-
trol platform to provide these common func-
tions; functions such as maintaining a cohesive
view of the network in a distributed and scalable
fashion. In fact, it is significantly easier to devel-
op applications for such cohesive distributed
control platforms than a swarm of autonomous
applications running on heterogeneous forward-
ing elements.

OTHER SDN SCALABILITY CONCERNS
Increased load on the controller is only one of
the voiced concerns about SDN scalability. Here,
we briefly explain other causes of concern, along
with potential solutions.

Flow Initiation Overhead — Ethane [10], an
early SDN security system, puts a controller in
charge of installing forwarding state on switches
on a per-flow basis. Even though this reactive
form of flow handling introduces a great degree
of flexibility (e.g., easy fine-grained high-level
network-wide policy enforcement in the case of
Ethane), it introduces a flow setup delay and,
depending on implementation, may limit scala-
bility. Early designs, such as Ethane and NOX,
lead to the widespread assumption that all SDN
systems are reactive. In reality, however, proac-
tive designs — in which forwarding entries are
set up before the initiation of actual flows — are
perfectly acceptable in SDN, and can avoid the
flow setup delay penalty altogether.

Let us review the flow setup process to
explain the bottlenecks and show how a good
design can avoid them. As illustrated in Fig. 2,
the flow setup process has four steps:
• A packet arrives at the switch that does not

match any existing entry in the flow table.
• The switch generates a new flow request to

the controller.
• The controller responds with a new for-

warding rule.
• The switch updates its flow table.
The performance in the first three steps and par-
tially the last depends on the switch capabilities
and resources (management CPU, memory, etc.)
and the performance of its software stack. The
delay in the third step is determined by the con-
troller’s resources along with the control pro-
gram’s performance. Finally, the switch’s FIB
update time contributes to the delay in complet-
ing the flow setup process.

Assuming controllers are placed in close
proximity of switches, the controller-switch com-
munication delay is negligible. On the controller
side, even on a commodity machine with a single
CPU core, state-of-the-art controllers are well
capable of responding to flow setup requests

Figure 2. The four steps in the flow setup process.

Rule

Rule

Packet
Miss inflow table

Switch updates

the flow table.

Sw
itch

4

1

Flow
 table

New rule
32

C
ontroller sends a new

forw
arding rule.

Controller

Flow
 request is sent to

the controller.

1 After all, one can repli-
cate a traditional network
design with SDN by collo-
cating equal numbers of
forwarding and control
elements. Even though
this obviates the benefits
of SDN, it is technically
possible.

YEGANEH LAYOUT_Layout 1 1/28/13 3:43 PM Page 138

within a millisecond when the flow initiation
requests are on the order of several hundred
thousand per second.

While Open vSwitch — an OpenFlow-enabled
software switch — is capable of installing tens of
thousands of flows per second with sub-millisec-
ond latency, hardware switches only support a few
thousand installations per second with a sub-10 ms
latency at best. This poor performance is typically
attributed to lack of resources on switches (weak
management CPUs), poor support for high-fre-
quency communication between the switching
chipset and the management CPU, and non-opti-
mal software implementations. We expect these
issues to be resolved in a few years as more spe-
cialized hardware is built. It is foreseeable that the
FIB update time will become the main factor in
the switch-side flow setup latency.

While we argue that controllers and, in the
near future, switches would be able to sustain
sufficient throughput with negligible latency for
reactive flow setup, in the end the control logic
determines the scalability of a reactive design. A
control program installing an end-to-end path on
a per-flow basis does not scale, because the per-
switch memory is fixed but the number of for-
warding entries in the data path grows with the
number of active flows in the network. However,
the control program may install aggregate rules
matching a large number of micro-flows (thereby
facing the same scalability challenges as a proac-
tive design), or proactively install rules in the
network core to provide end-to-end connectivity
and identify quality of service (QoS) classes,
while classifying and reactively labeling flows at
the edge. A viable solution to the scalability
challenges of the proactive designs in the former
class due to data path memory scarcity is pro-
posed in DIFANE [5]; while the scalability of
the latter class follows from the observation that
the fanout of an edge switch and thus the num-
ber of flows initiated there is bounded (just add
edge controllers as the network grows in size).

Resiliency to Failures — Resiliency to failures
and convergence time after a failure have always
been a key concern in network performance.
SDN is no exception, and, with the early systems
setting an example of designs with a single cen-
tral control, resiliency to failures has been a
major concern. A state-synchronized slave con-
troller would be sufficient to recover from con-
troller failures, but a network partition would
leave half of the network brainless. In a multi-
controller network, with an appropriate con-
troller discovery mechanisms, switches can
always discover a controller if one exists within
their partition. Therefore, given a scalable dis-
covery mechanism, controller failures do not
pose a challenge to SDN scalability.

Let us decompose the process of repairing a
broken link or switch to see how it is different
from the traditional networks. As shown in Fig. 3,
convergence in response to a link failure has five
steps. The switch detects a change. Then the
switch notifies the controller. Upon notification,
the control program computes the repair actions
and pushes updates to the affected data path ele-
ments, which, in turn, update their forwarding
tables.2 In traditional networks, link failure noti-

fications are flooded across the network, where-
as with SDN, this information is sent directly to
a controller. Therefore, the information propa-
gation delay in SDN is no worse than in tradi-
tional networks. Also, as an advantage for SDN,
the computation is carried out on more capable
controller machines as opposed to weak man-
agement CPUs of all switches, regardless of
whether they are affected by the failure or not.

Note that the above argument was built on the
implicit assumption that the failed switch or link
does not affect the switch-controller communica-
tion channel. The control network itself needs to
be repaired first if a failed link or switch was part
of it. In that case, if the control network — built
with traditional network gear — is running an
IGP, the IGP needs to converge first before
switches can communicate with the controller to
repair the data network. In this corner case,
therefore, convergence may be slower than in tra-
ditional networks. If this proves to be a problem,
the network operator should deploy an out-of-
band control network to alleviate this issue.

Overall, the failure recovery process in SDN
is no worse than in traditional networks. Conse-
quently, similar scalability concerns exist, and
the same techniques used to minimize downtime
in traditional networks are applicable to SDN.
For instance, SDN design can and should also
leverage local fast failover mechanisms available
in switches to transiently forward traffic toward
preprogrammed backup paths while a failure is
being addressed. We stress that, as demonstrat-
ed in Onix [2], the control platform provides the
essential failover and recovery mechanisms that
control applications can reuse and rely upon.

IEEE Communications Magazine • February 2013 139

Figure 3. The five steps when converging on a link failure.

Switch

A switch detects
a link failure.

C
ontroller pushes

update to sw
itches.

Switch

4

Then notifies the
controller about
the failure.

2
1

Controller
computes the
required updates.

3

Switches update
their forwarding
table.

5

Switch

Controller

2 For switch failures, the
process is very similar with
the exception that the con-
troller itself detects the
failure.

YEGANEH LAYOUT_Layout 1 1/28/13 3:43 PM Page 139

IEEE Communications Magazine • February 2013140

SCALABILITY IN
DIFFERENT NETWORK SETTINGS

So far we have explored the most important scal-
ability concerns in SDN by identifying various
metrics that can potentially be affected as the
network grows. In this section, we take a differ-
ent approach by explaining scalability patterns
and pitfalls in different types of networks. We
have chosen data center and service provider
networks as examples since they present diverse
settings and different requirements. We do not
aim at providing an exhaustive list of networks
here. The goal is to identify patterns that can be
generalized and used as references in under-
standing scalability issues in other networks.

Data Centers — A typical data center network
has tens of thousands of switching elements and
can grow at a fast pace. The sheer number of con-
trol events generated in any network at that scale
is enough to overload any centralized controller.
One way to tackle that problem is to proactively
install rules on switches, effectively eliminating
most control requests before they enter the con-
trol plane. The obvious cost here is, of course, loss
of precision and reactivity in the controller.

When an application requires accurate flow
statistics and/or reactivity, one can deploy the
application close to the switches. For instance,
frequent events can be delegated to processes
running on end hosts as long as access to global
state is minimized. Given the availability of pro-
cessing resources throughout data center net-
works, solutions such as Kandoo [9] can be used
to reach arbitrary scalability levels. Distributed
controllers (e.g., HyperFlow or Onix) can also
be reasonable solutions in data center networks.
Given the low latency in such networks, syn-
chronization of state and flow setup latencies

would be minimal and acceptable for most appli-
cations.

Service Provider Networks — Typically, service
provider networks do not have as many
switches/routers as data center networks; however,
nodes in such networks are usually geographically
distributed. The large diameter of these networks
exacerbates controller scalability concerns, flow
setup and state convergence latencies, and consis-
tency requirements. We might be able to take
advantage of the physical distribution of the net-
work to partition it into separate regions; each
partition can be controlled by an independent
controller, and these controllers can exchange only
the required state changing events, effectively hid-
ing most events from external controllers. Given
the intrinsic delay in such networks, all the control
applications should be latency tolerant and have
weak consistency requirements.

In addition to high latencies, service provider
networks usually have larger numbers of flows
than other networks. As a result, data path
resource limits are also of concern here. Aggre-
gation of flows is the simple solution, which
comes at the cost of granularity in control. We
note that these concerns are also present in tra-
ditional networks, and are not unique to SDN.

OPPORTUNITIES AND CHALLENGES
Traditionally, scalability of a network is studied
based on performance metrics, that is, how a
certain performance measure changes as we
scale the network along a given dimension. In
practice, there are other orthogonal aspects that
profoundly affect how a system can accommo-
date growth. For instance, manageability (how
convenient it is to manage a network when net-
working elements are added, removed, or modi-
fied at large scales) and functional scalability

Figure 4. SDN requires more productive management APIs that does not leak the complexities of south
bound standard APIs to control applications and other management systems.

Switch
Switch

− Network state abstraction
− Protocol-agnostic APIs
− Productive programming model

Data plane

Control plane

Behavioral abstra
ctio

n

Switch

ControllerController

− Error handling
− Version support
− Device specific workarounds
− State synchronization

A
pplication

A
pplication

A
pplication

A typical data center

network has tens of

thousands of switch-

ing elements and

can grow at a fast

pace. The sheer

number of control

events generated in

any network with

that scale is enough

to overload any cen-

tralized controller.

One way to tackle

that problem is to

proactively install

rules on switches.

YEGANEH LAYOUT_Layout 1 1/28/13 3:43 PM Page 140

IEEE Communications Magazine • February 2013 141

(how much effort it takes to add a new function-
ality to the network) are as important as perfor-
mance for network scalability, and should not be
overlooked. Preliminary results on behavioral
and programming abstractions, testing, and veri-
fication, as well as extensibility of SDN show this
is an area in which we believe SDN presents a
significant opportunity. Clearly, we still have
major challenges in each of these aspects before
we can reach the full potential of SDN.

Behavioral and Programming Abstractions —
Almost all SDN controllers provide interfaces that
expose the details embedded in the API between
the data and control planes. That level of detail is
essential for implementing a controller, but not
generally required for managing a network. Net-
work operators and programmers instead require
an abstraction through which they can specify the
required behavior from the network with minimal
effort. To that end, as shown in Fig. 4, most details
and complexities should be handled by the con-
trollers and hidden from management interfaces.
Such an interface will accommodate network
growth and ease management at scale. This is a
major challenge for the future of SDN, and (ini-
tial) solutions such as Frenetic [11] are only a
glimpse of what is to come.

Testing and Verification — Without the right
tools in place, troubleshooting becomes a major
problem for networks as they grow. This is a
major challenge for all types of networks, includ-
ing SDN. The good news is that SDN provides
building blocks for network testing that are not
readily available in traditional networks. More-
over, given a control application, one can model
its behavior and analytically verify it for an arbi-
trary network. Having said that, considering the
complexity of networks, it is not trivial to realize
a tool that can test and verify at scale. Header-
Space Analysis [12, 13] is an example of efforts
moving in that direction. Given the gap between
the tools and the requirements, this topic
remains a challenging problem.

Extensibility — Current SDN implementations
take a pragmatic approach in supporting only
well-known popular protocols that are readily
supported by most equipment and chip vendors.
As SDN scales, new protocols, or new versions
of existing protocols, will get in the way. To sup-
port those new protocols, one needs to modify
existing APIs. A solution for this problem would
be a more extensible and expressive API between
the control and data planes, which is quite chal-
lenging. The challenge is to design expressive
constructs that can be implemented in ASICs,
and support unforeseen future protocols and
requirements. Even though this is not a direct
scalability problem, it can have major impact on
the growth and extensibility of SDN in practice.

CONCLUSION
Scalability has been a major concern since the
introduction of SDN. The current body of
research on SDN scalability shows that:
• These concerns are neither caused by nor

fundamentally unique to SDN.

• Most of these issues can be addressed with-
out losing the benefits of SDN.

Current warehouse scale SDN deployments sup-
port this argument.

What is usually overlooked in this domain is
the impact of SDN on other limiting factors for
the growth of networks such as network pro-
gramming and management complexity. Soft-
ware-defined networking adds a level of
flexibility that can accommodate network pro-
gramming and management at scale. Traditional
networks have historically failed in this area.
Recent attempts in this direction are very
promising, even though many challenges remain
for the future.

REFERENCES
[1] A. Tavakkoli et al., “Applying NOX to the Datacenter,”

Proc. ACM HotNets-VIII Wksp., 2009.
[2] T. Koponen et al., “Onix: A Distributed Control Platform

for Large-Scale Production Networks,” Proc. 9th USENIX
OSDI Conf., 2010, pp. 1–6.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic
Characteristics of Data Centers in the Wild,” Proc. ACM
IMC, 2010, pp. 267–80.

[4] A. Tootoonchian et al., “On Controller Performance in
Software-Defined Networks,” Proc. USENIX Hot-ICE ’12,
2012, pp. 10–10.

[5] M. Yu et al., “Scalable Flow-Based Networking with DIFANE,”
Proc. ACM SIGCOMM 2010 Conf., 2010, pp. 351–62.

[6] A. R. Curtis et al., “DevoFlow: Scaling Flow Manage-
ment for High-Performance Networks,” Proc. ACM SIG-
COMM ’11, 2011, pp. 254–65.

[7] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-Tolerant
Web Services,” ACM SIGACT News, vol. 33, no. 2,
2002, pp. 51–59.

[8] A. Tootoonchian and Y. Ganjali, “Hyperflow: A Dis-
tributed Control Plane for OpenFlow,” Proc. 2010 INM
Conf., 2010, pp. 3–3.

[9] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework
for Efficient and Scalable Offloading of Control Applica-
tions,” Proc. HotSDN ’12 Wksp., 2012, pp. 19–24.

[10] M. Casado et al., “Ethane: Taking Control of the
Enterprise,” Proc. 2007 Conf. Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
mun., 2007, pp. 1–12.

[11] N. Foster et al., “Frenetic: A Network Programming
Language,” Proc. ACM ICFP Conf., 2011, pp. 279–91.

[12] P. Kazemian, G. Varghese, and N. McKeown, “Header
Space Analysis: Static Checking for Networks,” Proc.
USENIX NSDI ’12, 2012, pp 9–9.

[13] N. Handigol et al.,” Where is the Debugger for My
Software-Defined Network?,” Proc. ACM HotSDN’12
Wksp., 2012, pp. 55–60.

BIOGRAPHIES
SOHEIL HASSAS YEGANEH is a Ph.D. student in the Department
of Computer Science at the University of Toronto. His
research interests are in software-defined networking, net-
work virtualization, and congestion control.

AMIN TOOTOONCHIAN is a Ph.D. candidate in the Department
of Computer Science at the University of Toronto, and a vis-
iting graduate student at the University of California, Berke-
ley and the International Computer Science Institute. He is
broadly interested in the design and implementation of net-
worked systems, especially software-defined networks,
information-centric networks, and online social networks.

YASHAR GANJALI is an associate professor of computer sci-
ence at the University of Toronto. His research interests
include packet switching architectures/algorithms, software
defined networks, congestion control, network measure-
ments, and online social networks. He has received several
awards including an Early Researcher Award, Cisco Research
Award, best paper award at the Internet Measurement
Conference 2008, best paper runner up at IEEE INFOCOM
2003, best demo runner up at ACM SIGCOMM 2008, and
first and second prizes in the NetFPGA Design Competition
2010.

Software-defined

networking adds a

level of flexibility that

can accommodate

network program-

ming and manage-

ment at scale.

Traditional networks

have historically

failed in this area.

Recent attempts in

this direction are very

promising, even

though many chal-

lenges remain for

the future.

YEGANEH LAYOUT_Layout 1 1/28/13 3:43 PM Page 141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

