
Turning the Tortoise to the Hare:
An Alternative Perspective on Event Handling in SDN

Soheil Hassas Yeganeh and Yashar Ganjali
Department of Computer Science, University of Toronto

Toronto, Canada
soheil@cs.toronto.edu, yganjali@cs.toronto.edu

ABSTRACT
OpenFlow, the most popular software-defined networking
proposal, decouples control from data path, and pushes
control functionality to a software-based controller with a
centralized view of the network. Such a design enables
change and innovation by simplifying the implementation
of control applications. A historically narrow interpretation
of control and data planes, however, has led to unnecessary
limitations on network applications that can be supported
by OpenFlow. More specifically, applications handling fre-
quent events are pushed outside the scope of SDN as: i) the
controller cannot tolerate the high load; and ii) changing
data path ASIC is an extremely costly and long process.

In this paper, we present our perspective on this challenge.
We believe these are non-intrinsic limitations that can
simply be viewed as design challenges in areas such as state
abstraction, event propagation, parallelism, and placement
of network applications. We show how a consolidated
software platform can be used to address these challenges,
and how this design leads to a cohesive framework capable
of accommodating applications with frequent events.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Network
Architecture and Design

Keywords
Software-Defined Networking; Distributed Control Plat-
forms; OpenFlow

1. INTRODUCTION
Software-Defined Networking (SDN) is an attempt to

overcome the rigidity of today’s networks and to simplify
change and innovation. It has been studied in the research
community for some time [6, 1, 2], but started to gain attrac-
tion from industry after the introduction of OpenFlow [9].
OpenFlow was designed based on three premises: (i) control
plane must be decoupled from the data path elements; (ii)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BigSystem 2014, June 23, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2909-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2609441.2609642.

control applications can be moved to a (logically) centralized
controller; and (iii) the controller communicates with data
path elements using well-defined APIs.

Separating control plane and data path elements allow the
two to evolve independently. With a centralized controller,
the design and implementation of control applications be-
comes very simple, as we do not need to worry about
the complications of distributed systems. With a well-
defined API for packet forwarding, data path functionality
can be realized using a simple, low cost, and vendor-
agnostic hardware substrate. Together, all these factors
make innovation possible, and allow networks to evolve
easily to match external requirements.

Data Path and Packet Forwarding. Traditionally,
network routers and switches are composed of two main
components: (i) a hardware-based forwarding fabric that
forwards packets at line rate based on a set of rules, and (ii)
a control software that installs and updates forwarding rules
on the forwarding fabric. Different routers coordinate using
messages exchanged between the control plane applications.

The initial design of OpenFlow adopts the definition and
responsibilities of control plane and data path elements from
their traditional counterparts in routers and switches. Data
path elements are responsible for packet forwarding, which
happens through a Forwarding Information Base (FIB). The
controller updates the FIB and therefore manages how the
network handles individual packets.

Where Can We Handle Frequent Events? OpenFlow’s
centralized control plane and its narrow interpretation of
data path as a packet forwarding substrate impose strict
limitations on network applications. Any functionality that
requires frequent events (such as per packet processing)
imposes a prohibitively large overhead on the control plane,
and therefore cannot be implemented as a control applica-
tion. On the other hand, changing the data path ASIC to
add any new functionality for handling frequent events can
be extremely costly, may take a very long time, and obviates
most advantages of SDN.

In practice, these limitations have lead to the implicit
assumption that any functionality requiring high frequency
events must be pushed outside SDN.

Example 1: Elephant Flow Detection. Let us as-
sume we are interested in identifying elephant flows in an
OpenFlow network (in order to route them through a fat
optical pipe, for instance). Implementing such a function in
the control plane would require constant polling of network
switches, which can put an extremely high load on the
controller and control channels. DevoFlow [4] suggests

29

changes to the forwarding ASIC in order to identify potential
elephant flows on the switch and therefore to limit the
overhead imposed on the control plane.

Example 2: Traffic Classification. Traffic classification
is a complex network function with applications in QoS, se-
curity, and accounting. Most advanced traffic classification
engines require Deep Packet Inspection (DPI) which clearly
requires line rate packet processing, and therefore, cannot be
handled in the OpenFlow control plane. On the other hand,
the complex and dynamic nature of traffic classification
techniques make it extremely costly, if not impossible, to
push them to the ASIC as data path functionalities. As
a result, it is commonly assumed that traffic classification
must be handled outside SDN, for example as a middlebox.

In this paper, we portray a paradigm that enables us
to handle frequent events within the scope of SDN. We
associate the perceived limitations of SDN to a narrow
interpretation of control plane and data path elements, and
challenge the common belief that frequent events are either
handled in data path, or they have to be rendered as “out-
of-scope” for SDN.

In our view, rather than thinking about control vs. data
path, we need to focus on development cycle, or simply
software vs. hardware. We believe, new functions – even
the ones dealing with frequent events – should emerge
in software to reap the benefits of SDN including rapid
innovation. This is, in essence, an established practice in
the networking industry, shadowed by the control vs. data
path design in oOpenFlow. Any efficiency drawbacks of
such a design are non-intrinsic and must simply be viewed
as design challenges in areas such as state abstraction,
event propagation, parallelism, and placement of network
applications. Here, we sketch the design landscape for a
consolidated software a platform that can address these
challenges.

2. PROBLEM STATEMENT
While SDN promises to enable innovation in networks,

it is not clear where and how a non-forwarding networking
function can handle frequent events. In essence, thinking
of SDN within the confines of the original OpenFlow (i.e.,
limiting networks to connectivity and forwarding) can be
quite limiting when adopting SDN in new domains. In this
section, we first elaborate on this argument and then present
an objective methodology on how to introduce and evolve
new networking functions in SDN that can handle frequent
events at scale.

In Control Plane. The easiest way to implement any
new function in SDN is to develop the function as a control
application running on the controller. With a centralized
view of the networks, developing control applications be-
come profoundly simpler than developing a similar logic as
a colony of fully distributed agents running on routers. This
simplicity makes this option the most natural path to enable
innovation and change in SDN.

Unfortunately, this simplicity can come at a high cost:
providing a centralized view can be quite challenging large-
scale networks, especially if updates are frequent. No matter
how powerful the controller is, processing frequent events in
a centralized manner can create scaling bottlenecks. This
can be a significant barrier for introducing any new function
in the control plane, and is the reason why some proposals
(such as DIFANE [11] and DevoFlow [4]) introduce new

frequent event processing functionalities into the forwarding
ASICs.

In Forwarding Silicone. Processing frequent events
using hardware primitives in forwarding silicone can result
in considerably better efficiency and lower costs at scale
compared to a centralized controller. This method, however,
comes with its own pitfalls: (i) Designing a special purpose
hardware for a new function imposes a rigid structure;
hence, that function cannot evolve frequently. If we need
to update the design design (say to fix an error, or to
improve performance) we need to wait for a considerably
long time for the next development cycle. (ii) Design,
development, and manufacturing special purpose hardware
is quite costly (orders of magnitude more expensive than
software), which increases the risk for already risk-averse
ASIC manufacturers.

Because of these pitfalls, silicone is not the best way
for introducing new network functions, where chances of
change is not negligible. In essence, it would make sense
to use silicone for implementing a specific function only
when (i) the function is mature enough (i.e., applied and
tested in real-world for quite some time), and (ii) we have
hit a performance barrier on commodity hardware. This
explains OpenFlow’s focus on forwarding as the main data
path functionality.

Outside the Scope of SDN. Looking at the drawbacks of
the two options of silicone and centralized controller, one can
argue that a network function should be introduced outside
the scope of SDN if it is both complex (i.e., difficult to
implement inside silicone) and requires processing frequent
events (e.g., per packet processing).

Based on this orgument, some proposals introduce packet
processing in software modeled as black-boxes sitting either
at the core or at the edge of the network. Other proposals
focus on processing resources available inside switches such
as co-processors and FPGAs. The common trait among
these proposals is that they all rely on SDN solely for
steering packets through black-boxes and packet processing
units.

Furthermore, we can also handle frequent events in end-
hosts if we have access to them and the functionality can
be implemented without significant coordination overhead.
This is, for example, the path taken by Open vSwitch [10].
This is a viable option for networking environments such
as a data center, but it would not be applicable in other
environments such a carrier or an enterprise network.

To compare these alternative solutions, let us see how
they can be used to implement a simple DPI-based Traffic
Classification.

Traffic Classification on a Controller. To classify traffic
in a control application, we need to process the payload of
the first few packets of each flow in the control plane. Note
that by the first few packets, we mean packets after the
transport protocol handshake (e.g., after TCP SYN-ACK).
To do so, we need to install flow-entries in switches only
if a flow is already classified. Even if we assume that a
centralized controller has enough capacity to process packets
at scale, sending the first packets of all flows to a centralized
controller results in a huge load on the control channels and
adds a considerable latency to all network flows.

Traffic Classification in Silicone. Traffic classification is
a complicated task and implementing it purely in hardware
would be quite challenging for many reasons. First of all, to

30

match a flow against a set of regular expressions, we need
to preserve a large state for each flow since the matching
part of the payload can be split between two packets. Even
if we relax this constraint and match regular expressions
only on single packets (i.e., a stateless classification), we
need to limit the size of the payload and also limit the
number of regular expressions. Otherwise, the cost of
manufacturing a hardware that can match large packets
against an arbitrarily number of regular expressions can
be sky rocketing. Due to these limitations, in practice,
all ASICs with DPI capabilities are stateless and can only
inspect the first few bytes of the payload (e.g., roughly the
first 100 bytes) against a few regular expressions (e.g., tens
of simplified regular expressions).

Traffic Classification outside SDN. The other alterna-
tive is to implement traffic classification in software running
on either commodity hardware (e.g., x86) or programmable
hardware (e.g., FPGA) in the data path. Such a software
is fed with a set of protocol signatures to match against
flows, and a set of actions to apply on the packets once the
flow is classified. Flows that are required to be classified
will be steered through these classifiers by a SDN control
application. Moreover, the output of the classifier is also
inspected to take further forwarding actions.

Although prevalent in traditional networks, this approach
has profound pitfalls. Forwarding decisions are subpar and
are coupled with the physical placement of middleboxes.
That is, the physical topology of these classifiers dictates
how the flows should be steered by SDN. Moreover, it is
difficult to coordinate different classifiers in a large-scale
network due to the lack of control over middleboxes. In
essence, opting for this solution means losing the ability
to refactor and optimize network services, and difficulties
in troubleshooting and management, since we have poor
visibility over a middlebox.

Traffic Classification in the End-Hosts. The best
option for implementing traffic classification might be in
the end-host, assuming it can keep up with the required
processing at line rate. Unfortunately, this option does not
exist when we do not have access to end-hosts in the network.

In a truly software-defined network, these alternatives
(Figure 1) should be limited to a straightforward selection
between silicone and software. On a retrospective, these
solutions are still around just because of the historic evo-
lution and limited scope of existing SDN proposals. Based
on this view, we propose a methodology that moves in that
direction.

EndHost

Switch

MiddleBox

Controller

Switch

On the Controller

In Forwarding Silicone

At Network Edge

In Middleboxes

Figure 1: There are three major alternatives to
implement new functions in SDN: (i) On the
controller as a control application; (ii) In forwarding
silicone inside switches; (iii) Outside SDN (e.g., On
middle boxes or on end-hosts).

3. AN ALTERNATIVE PERSPECTIVE
We believe one needs to clearly distinguish between

intrinsic limitations of a SDN proposal as opposed to
constraints resulting from its historic evolution. In our
view, there is no inherent reason a controller should not
be able to handle frequent events. This assumption comes
from the way OpenFlow was historically presented: we need
to have a physically-isolated, centralized controller, or at
least a centralized view, and it is very challenging to handle
frequent events in any system that provides a centralized
view. Recent proposals, like Kandoo [7], show how we can
handle frequent events in control plane.

Clarifying the difference between intrinsic limitations and
challenges helps us gain a better understanding of the solu-
tion space, and not to needlessly eliminate viable solutions.
For example, implementing new functions in silicone is by
nature a costly and lengthy process. This is a limitation
which cannot be overcome. In contrast, improving the
performance of a software-based packet processing solution
is a challenge. We might be able to handle this by code
optimization, or by employing parallelism (i.e., throwing
more resources).

When it comes to frequent events (or any function beyond
forwarding), the paradigm of separating control from data
path should be shifted to separation of software from data
path. In this model, frequent events can be handled
using software (similar to control applications in OpenFlow).
Obviously, for handling frequent events, we need an apt
software platform with smart placement strategies and
distribution mechanisms to gain scale and performance.
Such a platform should be elastic enough to take advantage
of any additional resource to optimize the performance of
the system.

Of course, even with the best resource provisioning and
code optimization, we might not be able to match silicone’s
behavior in some cases. However, we believe accepting this
performance bound as a limitation is a more natural way
than assuming the function can only be implemented in
ASIC, which most likely will stop any further development.

In this model, hardware solutions will naturally emerge
during the evolution stages, as mature functions are pushed
to hardware with the objective of accelerate common parts of
new networking functions. Using these hardware primitives
one can accelerate parts of a network function without
taking the risks of switching to hardware at an early stage.

These design challenges are mainly about scale and
resilience in the software platform that hosts network func-
tions (a.k.a. Control Plane in OpenFlow’s terminology).
As we shortly discuss, a software platform that provides
arbitrary network functions at scale with the best use of
the available computing resources would render all these so-
called limitations irrelevant.

A Consolidated Software Platform. To enable our
vision on SDN functions, we need a distributed software
platform for network programming that have three main
properties:

1. Optimized Placement: A key for a scalable SDN
is to place network functions in the closest vicinity of
event sources. For instance, a SDN platform can easily
scale as long as it performs packet processing as close
as possible to the edge. At the same time, a forwarding
function that requires a centralized view of the network

31

should be placed in a way to minimize the tail latency
to switches.

2. High Resource Utilization: Today’s networks are
equipped with a variety of computing resources. On
the end-hosts, we have general purpose processors and
GPUs, at the core we have general purpose processors
and programmable hardware in switches. It would be
quite beneficial when a consolidated software platform
can offload networking functions on these computing
power.

3. Easy to Use: The software platform must be easy
to use, otherwise, if it makes it subtle and compli-
cated, network programmers will never switch to that
software platform. That is, unless we provide simplify-
ing programming abstractions, network programmers
would prefer to develop their functions in isolated silos
rather than implementing it as a SDN function. Note
that, in contrary to the popular belief, centralization
is not the only way to provide an easy-to-use platform.
In other fields, we have seen proposals such as Map-
Reduce [5], Spanner [3], and Spark [12] that provide
simplicity at scale by hiding generic boilerplates and
complications.

Example: DPI. Using such a platform, one can implement
DPI simply as a function that processes incoming packets
regardless of the actual placement of the function in the
wild. When deployed, the platform automatically pushes
the functions as close as possible to the points where packets
enter the network (e.g., end-hosts if we are using soft
switches, or choke points in a WAN) to scale. Moreover,
since the platform is aware of resources, it would try to place
the function on a NetFPGA over an x86 processor if possible
for accelerated event handling.

Existing Proposals. There are a few recent software-based
proposals to handle frequent events in SDN. For instance,
Kandoo [7] categorizes control application into local (i.e.,
applications that require the state of a single switch) and
non-local applications. Local applications do not share
state and as such they have implicit parallelism. Exploiting
that property, Kandoo offloads local application to local
processing resources (e.g., end-hosts and co-processors on
switches) and, as long as frequent events are processed in
local applications, Kandoo simply scales. The problem with
Kandoo is that it is not generic enough to help functions
that require a state beyond a single switch.

Nicira NVP [8] is SDN-based network virtualization plat-
form that provides packet processing in software at special-
ized gateway nodes. These gateways are connected to virtual
ports (connecting hypervisors) using an overlay network.
As such, NVP utilizes processing resources available in a
data center to provide generic networking services such
as firewalls and gateways. Although NVP’s design is
limited to virtualization environments (where everything
goes through hypervisors) and does not utilize hardware
resources available on physical switches, it demonstrates how
one can introduce radically innovative functions in software
without waiting for the hardware to catch up.

These recent proposals, although being very good starting
points, do not cover all the requirements we envision of a
complete SDN software platform. We believe developing
this platform is still a significant open design challenge in

SDN, that deserves extensive discussion and community’s
attention.

Coupling vs Collocation. Our methodology and our ar-
guments relies on offloading functionalities close to switches
to gain scale and performance. This might look like
as coupling data and control planes back together again.
On the contrary, we note that collocating software with
forwarding fabric does not contradict decoupling. We indeed
keep the control plane decoupled but, if the environment
allows, we colocate them to reduce the overheads of having
physically separate control and data planes. That is,
the network applications can still function without being
collocated with the data plane. This approach sits at the
sweet spot in between traditional networks and OpenFlow:
A decoupled control plane with minimal overheads.

4. CONCLUDING REMARKS
In this paper, we analyzed the problem of introducing a

new networking function in SDN. We believe some of the
design limitations are not inherent in SDN, and are only
stemmed from the historical evolution of OpenFlow. Such
limitations can be easily overcome using an aptly design
software platform that can accommodate network functions
ranging from packet processing to network control. Such a
platform would be able scale by placing network functions
on best available resources based on their characteristics.

5. REFERENCES
[1] M. Casado et al. Sane: A protection architecture for

enterprise networks. In Proceedings of USENIX-SS’06,
2006.

[2] M. Casado et al. Ethane: Taking control of the enterprise.
In Proceedings of SIGCOMM’07, pages 1–12, 2007.

[3] J. Corbett et al. Spanner: Google’s globally-distributed
database. In Proceedings of OSDI’12, pages 251–264,
Berkeley, CA, USA, 2012.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: Scaling flow
management for high-performance networks. In Proceedings
of SIGCOMM’11, pages 254–265, 2011.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[6] A. Greenberg et al. A clean slate 4d approach to network
control and management. SIGCOMM CCR, 35(5):41–54,
Oct. 2005.

[7] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A framework
for efficient and scalable offloading of control applications.
In Proceedings of HotSDN’12, pages 19–24, 2012.

[8] T. Koponen et al. Network virtualization in multi-tenant
datacenters. In Proceedings of NSDI’14, pages 203–216,
2014.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
Openflow: Enabling innovation in campus networks.
SIGCOMM CCR, 38(2):69–74, Mar. 2008.

[10] B. Pfaff et al. Extending networking into the virtualization
layer. In HotNets, 2009.

[11] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
flow-based networking with difane. In Proceedings of
SIGCOMM’10, pages 351–362, 2010.

[12] M. Zaharia et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of NSDI’12, 2012.

32

	Introduction
	Problem Statement
	An Alternative Perspective
	Concluding Remarks
	References

