
CUTE: traffic Classification Using TErms
Soheil Hassas Yeganeh

University of Toronto
soheil@cs.toronto.edu

Milad Eftekhar
University of Toronto

milad@cs.toronto.edu

Yashar Ganjali
University of Toronto

yganjali@cs.toronto.edu

Ram Keralapura
Narus Inc., CA, US

rkeralapura@narus.com

Antonio Nucci
Narus Inc., CA, US
anucci@narus.com

Abstract—Among different traffic classification approaches,
Deep Packet Inspection (DPI) methods are considered as the
most accurate. These methods, however, have two drawbacks: (i)
they are not efficient since they use complex regular expressions
as protocol signatures, and (ii) they require manual intervention
to generate and maintain signatures, partly due to the signature
complexity.

In this paper, we present CUTE, an automatic traffic clas-
sification method, which relies on sets of weighted terms as
protocol signatures. The key idea behind CUTE is an observation
that, given appropriate weights, the occurrence of a specific
term is more important than the relative location of terms in
a flow. This observation is based on experimental evaluations as
well as theoretical analysis, and leads to several key advantages
over previous classification techniques: (i) CUTE is extremely
faster than other classification schemes since matching flows
with weighed terms is significantly faster than matching regular
expressions; (ii) CUTE can classify network traffic using only
the first few bytes of the flows in most cases; and (iii) Unlike
most existing classification techniques, CUTE can be used to
classify partial (or even slightly modified) flows. Even though
CUTE replaces complex regular expressions with a set of simple
terms, using theoretical analysis and experimental evaluations
(based on two large packet traces from tier-one ISPs), we show
that its accuracy is as good as or better than existing complex
classification schemes, i.e. CUTE achieves precision and recall
rates of more than 90%. Additionally, CUTE can successfully
classify more than half of flows that other DPI methods fail to
classify.

Index Terms—Traffic Classification, Deep Packet Inspection,
Automatic Signature Generation

I. INTRODUCTION

Traffic classification is an important element in computer
networks with many applications including traffic prioritiza-
tion, bandwidth management, and intrusion detection. There
are different categories of traffic classification methods. Port-
based methods are the oldest, the simplest, and the most
efficient ones which classify flows based on standard port
numbers. Despite being efficient, port-based methods have a
very limited scope since they fail to detect protocols that are
carried over non-standard ports. For instance, many peer-to-
peer protocols use random ports for communication, and there-
fore are not detectable by port-based classification methods.

Feature-based methods, on the other hand, use selected flow
features to classify network flows. Although these methods
can detect several protocol families (e.g., email, web, peer-
to-peer, etc.), they have poor performance in identifying the
exact protocol which might be essential for some applications.
Moreover, they are prone to be over-trained, and are very
sensitive to the learning data set [19].

Deep Packet Inspection (DPI) methods are the most accurate
as they inspect the payload (or content) of network flows.

These methods utilize a set of protocol signatures for traffic
classification. A signature is a set of regular expressions
that match flow payloads for a specific protocol, as well as
additional flow information such as port numbers.

Despite their high accuracy levels, DPI methods suffer
from two major drawbacks: (i) Signature generation is very
challenging, and usually requires laborious manual effort.
Thus, adapting signatures to temporal changes for existing
protocols is extremely difficult. (ii) Even for methods which
automatically generate signatures, the output is in the form
of very complex regular expressions. Matching flow payloads
against these signatures either takes a very long time to
complete, or requires prohibitively large space, making it
difficult to work in realtime, and at extremely high line rates.

To tackle these issues, we present CUTE: an automatic
traffic classification system with extremely simple signatures.
Instead of using complex regular expressions as protocol sig-
natures, CUTE relies on weighted term sets. These signatures
are easy to extract automatically, simple to match against flows
in realtime, and result in very high accuracy levels. A set
of weighted terms can be considered as a relaxed version
of a regular expression, which implies that the occurrence
of terms is more important than the relative order of terms
in flow payloads. Needless to say, such a relaxation might
introduce classification errors, specially when protocols share
many common terms. However, in our experiments (with large
packet traces collected from tier-1 ISPs) we observe that such
scenarios are very unlikely, and therefore, we conclude that
weighted term sets have high accuracy for traffic classification.

CUTE automatically extracts weighted terms for various
protocols from a set of training flows. Based on these weighted
terms, CUTE estimates the similarity of a flow to each
protocol, and classifies the flow accordingly. CUTE is very
effective even when we can monitor only the first few bytes
of flows, or when we encounter partial/incomplete flows with
asymmetric routing. Our experiments show that CUTE can
reach a precision and recall rate of about 90% even if it uses
the first 100 bytes of each flow. We note that incomplete flows
might be common in real-world network traces.

To show the effectiveness of CUTE, we comprehensively
analyzed two large datasets captured from two different tier-
1 ISPs within two different continents. Our results show that
CUTE achieves very high precision and recall rates (> 90%)
for almost all the protocols even when we use only 5%
of the most important terms that CUTE extracts from the
training flows. These rates are as good as or better than rates
achieved by other automatic signature generation methods
[18] (that usually focus on a limited set of flows such as

978-1-4673-1544-9/12/$31.00 ©2012 IEEE

file-sharing applications rather). We note that increasing the
percentage of terms that are used by CUTE will result in better
accuracy at the cost of reducing efficiency. This trade-off can
be very useful for network operators that can find the right
balance of accuracy and efficiency depending on their network
conditions and needs. Interestingly, CUTE labels almost 60%
of incomplete flows, which are classified as unknown flows by
manually (and carefully) created protocol signatures in other
DPI methods.

Our contributions are threefold: First, we propose a very
efficient, and accurate automatic traffic classification method,
which relies on weighted term matching. Second, using theo-
retical analysis as well as experimental evaluations, we show
that occurrence of terms in network flows are more important
than the relative order of the terms in traffic classification.
This observation is the basis of CUTE, and explains why it
can achieve high precision and recall rates with very simple
signatures. We also show that CUTE can efficiently classify
flows even when they have partial payloads. Finally, we show
that existing methods for automatically generating signatures
are biased toward the training dataset, and thus cannot robustly
classify flows. We show that this problem can be solved by
using partial matching techniques (such as CUTE), which can
be robust to the training data set.

Next, we present CUTE in Section II), and evaluate it using
real packet traces in Section III. We provide an abstract model
for the automatic signature generation problem in Section IV,
and theoretically show why CUTE works in Section V. Sec-
tion VI presents related works, and is followed by a brief
discussion in Section VII.

II. THE PROPOSED METHOD

Manual signature authoring is a tedious and resource inten-
sive task, that results in static protocol signatures which lose
their accuracy over time as protocols evolve. In response, some
automatic signature generation methods have been proposed,
such as Longest Common Subsequence [21] and Laser [18],
which generate regular expressions as protocol signatures. In
other words, they find the best regular expressions that can
classify network flows.

In this section, we present the proposed classification
method, CUTE. CUTE uses terms for classification instead of
using regular expressions. For example, existing DPI methods
use “GET.*HTTP” as a signature for HTTP, but CUTE
uses “GET or HTTP” as a signature for HTTP. In general,
CUTE uses a highly relaxed regular expression for classifying
flows. Note that such relaxed signatures cannot produce false
negatives, but can produce false positives. We obviate false
positives by assigning appropriate weights to terms. As a
result, CUTE employs weighted term matching for classifi-
cations. CUTE automatically extracts the terms, and assigns
respective weights using a learning set of network flows. We
provide the theoretical foundation of our method, together with
required definitions and theorems, in Section V.

The first step in CUTE extracts potential terms from sample
flows. We extract terms of certain length (say of at least b
bytes), which are shared between a considerable fraction of
flows (say with a frequency of at least δ). Such common terms

(for the formal definition refer to Definition 1) can be extracted
by aligning each pair of flows, and extracting all common
substrings of at least b bytes.

Considering the fact that payloads mostly start with impor-
tant terms, we employ a simple tweak to distinguish these
important terms; we insert a mark (e.g., |) before the first
byte of flows. For instance, when we insert | at the beginning
of flows, we will extract |GET instead of GET which is
probably unique for HTTP, and HTTP-based protocols. This
simple tweak significantly improves the experimental results
as illustrated in Section III.

The next step is assigning weights to terms. The main
idea behind CUTE’s weight function is that we should assign
higher weights to terms that are unique to a protocol. In other
words, terms which are frequent in different protocols are not
important, nor useful, for classification. We assign weights
using the weight function presented in Equation 1:

W p
t =

{ (
fp
t∑

p∈P fp
t

)ρ

fp
t ≥ T

0 fp
t < T

, (1)

where P , p, t are, respectively, the set of all protocols, a
sample protocol, and a sample term. Moreover, fp

t and W p
t ,

respectively, denote frequency and weight of term t in protocol
p. We note that T and ρ are the parameters of this weight
function. Section III discusses appropriate values for T and ρ.
Note that Equation 1 produces weights of 1 for unique terms.

The last step is to classify network flows. CUTE searches
for the weighted terms of each protocol within flow payloads.
The similarity of a flow to a protocol is simply defined as
the average weight of matched terms in the flow payload.
Then, the protocol with the highest similarity is selected as
label protocol of the flow. Note that we have evaluated CUTE
using other alternatives (e.g., using the maximum weight)
and discovered that the presented version achieves the best
accuracy. Those alternatives are eliminated due to lack of
space.

CUTE’s classification algorithm has two inputs: (i) the
flow payload f , and (ii) the set of top r-percentile weighted
terms for each protocol (W = {Wp1 ,Wp2 , · · · ,Wpm}) (r is
a parameter of CUTE). Using only the top terms improves
accuracy and efficiency of our method, since it eliminates
unimportant terms extracted due to locality, errors, and noises.

Note that we have used the naive string matching algorithm
only for the sake of readability. This string matching method
can be, readily, replaced with efficient techniques such as the
Aho-Corasick algorithm[1].

In the next section, we illustrate the experimental results of
classifying real-world network flows using CUTE.

III. EXPERIMENTAL EVALUATION

To evaluate CUTE, we use two network datasets, each
containing about 40 million flows, captured from two different
tier-1 ISPs for a duration of 30 minutes at different dates. To
preserve the anonymity of these ISPs, we call them ISP1 and
ISP2. These ISPs are located in different continents, and have
completely different traffic characteristics. To create a base
of evaluation, the captured flows are classified using a set

Algorithm 1: CUTE’s classification algorithm

Input: f ; /* The Flow */
Input: W ; /* Top r% of Weighted Terms */
Result: result p ; /* The detected protocol(s) */
max← −1;
result p← ∅;
for Wp ∈W do

sum← 0; count← 0;
for (t, w) ∈Wp do

if f contains t then
sum← sum+ w; count← count+ 1;

if max = sum
count

then
result p← result p ∪ p;

else if max < sum
count

then
result p← p;
max = sum

count
;

return result p;

of manually-created, commercially-designed signatures, which
we called baseline signatures. Note that there are flows in the
dataset, which cannot be classified by the baseline signatures
due to either payload encryption, flow incompleteness, or sig-
nature over-specification. We eliminate these unknown flows
from the datasets.

To show CUTE’s robustness, we use one data set as the
learning data set, and the other one for evaluation. Note that we
are able to evaluate CUTE only on protocols shared between
the both datasets.

In the training phase, we extract all common substrings of at
least 4 bytes as protocols’ terms. Here, we can observe the first
advantage of CUTE over complete matching techniques. There
are many frequent, but unimportant terms, such as “date”s
(e.g., “Sun, 24 Feb 2010 08:49:37 GMT”) in HTTP flows. If
we extract signatures automatically, these unimportant terms
would be present in protocol signatures due to their high
frequency. Such signatures perform well on the learning data
set, but result in poor classification, when other datasets are
used. Since CUTE uses partial matching and weighted terms
for classification, it simply tolerates such misleading terms.

In the experiments, we set the threshold T (Equation 1) to
0.1, as the frequencies of important terms (such as HELO in
SMTP, and POST in HTTP) are about 10 percent in real traffic.
Setting T to smaller values may result in more unimportant
terms in classification.

The first experiment explores the impact of ρ on CUTE’s
precision and recall. Figure 1(a) shows that there is a strong
correlation between ρ and precision: the higher the ρ, the
more unique the terms, and the more precise the classification.
Figure 1(b) displays the relationship between recall and ρ.
One interesting point, here, is that for lower values of ρ, the
precision is more sensitive to r (the top percentile parameter).
Larger ρ’s result in smaller term weights except for the unique
terms. For instance, terms in the top 50-percentile, when ρ is
512, are the same as terms in the top 5-percentile when ρ is
32. In fact, for any value of ρ there is a value for r that leads
to the same precision while maintaining the same recall rate.
Since there are different number of flows for each protocol in
the dataset, Figure 1(b) does not convey a meaningful relation
between ρ and recall values: for different values of ρ, recall

 0.8

 0.9

 20 40 60 80

!=1

!=2

!=4

!=8

!=16

!=32

!=64

!=128

!=512

!=2048

!=8192

Top Percentile of Terms (r)

P
re

ci
si

o
n

(a) Precision

 0.9

 0.92

 0.94

 20 40 60 80

!=1

!=2

!=4

!=8

!=16

!=32

!=64

!=128

!=512

!=2048

!=8192

R
ec

al
l

Top Percentile of Terms (r)

(b) Recall

Fig. 1. Average recall and precision for different ρ values

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90

AIM

FTP

HTTP

BT

IMAP

GNUTELLA

RTSP

IRC

SMTP

POP3

P
re

ci
si

o
n

Top Percentile of Terms (r)

(a) Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90

AIM

FTP

HTTP

BT

IMAP

GNUTELLA

RTSP

IRC

SMTP

POP3

Top Percentile of Terms (r)

R
ec

al
l

(b) Recall

Fig. 2. Recall and precision for ρ = 64

values have jitters of 2%. This is mainly due to the low number
of flows for some protocols in our data set.

Figure 2 shows that CUTE accurately classifies most proto-
cols’ flows. As this figure suggests, CUTE has the maximum
precision when we use the top 5-percentile terms, and ρ = 64.
In Figure 2(a), we observe that CUTE classifies all protocols
with high precision, except for IRC. The precision for IRC
flows is 50% using the top 5-percentile, since IRC flows are
basically unstructured text containing terms shared with other
protocols. In such protocols, even the top terms are not very
important. Thus, even the top 5-percentile terms result in a
considerable amount of false positives. Figure 2(b) illustrates
the recall for different protocols. It shows that CUTE achieves
high recalls for all protocols except RTSP. The recall value
for RTSP flows is 50%, since RTSP and HTTP share a lot
of terms; hence, RTSP does not have a sufficient number of
highly weighted terms. The only terms unique to RTSP are its
commands, e.g., DESCRIBE.

 0.7

 0.8

 0.9

 20 40 60 80

l=50

l=100

l=500

l=1000
P

re
ci

si
o

n

Top Percentile of Terms (r)

(a) Precision

 0.8

 0.9

 20 40 60 80

l=50

l=100

l=500

l=1000

Top Percentile of Terms (r)

R
e
c
a
ll

(b) Recall

Fig. 3. Average precision and recall using the first bytes of flows

In the previous experiments, we have used the first 1KB
of flow payloads for classification. One of the advantages
of exploiting terms instead of term lists is that a flow can
be classified using its very first few bytes. To illustrate this
advantage, we present classification results using the first l
bytes of flow payloads. Figure 3 portrays the average precision
and recall for different values of l. It shows that using more
bytes from payloads generally results in higher precision and
recall. Meanwhile, we can improve the efficiency of CUTE
by using fewer payload bytes in classification, and still getting
high precision and recall values. We observe that by using only
the first 50 bytes of the flows, we achieve acceptable precision
and recall. An interesting extension to this work is to find the
suitable value of l for different protocols.

There is one counterintuitive situation in these graphs:
the maximum average recall is achieved when l = 100.
To investigate this problem, we take a deeper look at the
detailed classification results when l = 100. Figure 4 displays
the recall values for different protocols when l = 100. By
comparing Figures 2(b) (l = 1000) and Figure 4 (l = 100),
we observe that, when l = 1000, the recalls for three protocols
(HTTP, FTP, and POP3) are higher, but it is much lower
for RTSP. Therefore, the average recall, misleadingly, shows
improvement when we reduce l to 100.

Another advantage of CUTE is its capability to classify
unknown flows. To evaluate this advantage, we randomly
selected 15000 unknown flows out of our data set, and fed
them to CUTE. CUTE classified 60% of these flows. Since
we do not have any ground truth for these unknown flows,
there is no straight forward approach to calculate the accuracy.
To estimate the accuracy, we have manually explored and
labeled 40% of these flows. Most of these unknown flows
are incomplete, partial flows. As shown in table I, most of
the unknown flows are HTTP, and are labeled correctly by
CUTE. These unknown flows are legitimate HTTP flows but
they are either response only, request only, or from proprietary
non-compliant applications.

FTP HTTP IMAP BT GT RTSP SMTP IRC
0.1% 88.5% 0.2% 0.1% 1.8% 3.9% 4.6% 0.8%

TABLE I
NEW LABELS OF UNKNOWN FLOWS (5-PERCENTILE, AND ρ = 64)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90

AIM

FTP

HTTP

BT

IMAP

GNUTELLA

RTSP

IRC

SMTP

POP3

R
e
c
a
ll

Top Percentile of Terms (r)

Fig. 4. Recall when l = 100

IV. FORMAL MODELING

In this section, we model the traffic classification problem
to theoretically analyze CUTE. We aim to compare CUTE
with existing automatic signature extraction methods (such as
Longest Common Subsequence [21] and Laser [18]) which
generate term lists (a sequences of terms) as protocol signa-
tures. We show that CUTE is significantly faster (due to the
use of partial matching instead of complete matching) without
sacrificing the precision and recall rates.

In general, a term list is (i) a group of terms, accompanied
with (ii) ordering constraints. Ordering constraints are to in-
crease the accuracy of classification, but they come at the cost
of matching efficiency, and complexity of automatic signature
generation. In contrast, CUTE relaxes those constraints, and
uses weighted terms for classification. The question is “how
important are these constraints?” and “how adversely does
the classification algorithm perform if we relax these con-
straints?”. In what follows, we formalize CUTE’s approach,
and then theoretically analyze it.

We, first, present our definition of common terms, and
then we proceed with the theoretical model for comparing
our proposed signatures with existing protocol signatures, in
next section. Note that we have used term and common term
interchangeably in this paper.

Definition 1: Let b, and δ be given numbers. We define a
continuous subsequence of bytes as a term iff: (i) it has at
least b byes, (ii) it occurs with a probability of at least δ in
flows of the respective protocol, and (iii) it is not a substring
of another term with the same probability. T (P) denotes the
set of common terms for protocol P , i.e.,

T (P) = {ti | |ti| ≥ b ∧ Pr(ti|P) ≥ δ ∧
@tj : ti ⊂ tj ∧ Pr(tj |P) = Pr(ti|P)},

where Pr(t|P) is the probability of having term t in the flows
of protocol P .

As an example, consider the HTTP protocol. When b = 3
and δ = 0.1, POST and GET are among the terms for HTTP.
Let us consider the character sequence POS. Obviously, its
frequency is at least equal to the frequency of POST. Two
scenarios may happen here: (i) POS has the same frequency
as POST: in this case, we do not consider it as a term. (ii)
POS has a higher frequency than POST: here, both POS and
POST are considered terms of HTTP.

Terms are the basic constructs of term lists. A flow is
matched with a term list, iff it contains all terms in the list
with respective ordering. For instance, a flow which contains
xbxaxcx will not match with L = {a, b, c}, but it matches

L = {b, a, c}. We denote this flow matching mechanism by
the complete matching operator.

Definition 2: The complete matching operator ⊕, between
the flow f and term list L = {t1, · · · , tn}, is defined as
follows:

f ⊕ L ⇔ index(f, t1) > 0 ∧ lsplit(f, t1)⊕ {t2, · · · , tn},

where index(f, t) is a function that returns the first position
of term t in flow f if f contains t, and −1 otherwise.
Moreover, lsplit(f, ti) returns the subsequence of bytes in
f from the first character after ti to the end. For instance,
lsplit(xxabcyyabc,abc) is yyabc.

Similar to terms, we may have redundant term lists. A term
list L is a sub-list of another term list L′, if L′ matches all
flows that could match by signature L. For instance, {a, b, c}
is a sub-list of {b}.

Definition 3: Term list Li is a sub-list of term list Lj , Li ⊂
Lj , iff: ∀f, Li ⊕ f ⇒ Lj ⊕ f .
Similar to terms, we eliminate redundant term lists. A term list
is redundant, if one of its sub-list has the same probability. The
remaining term lists form the protocol signatures according to
Definition 4.

Definition 4: A term list is an ordered signature for pro-
tocol P if:
(i) It matches more than T fraction of flows: Pr(L|P) ≤ T ,
(ii) It is not redundant:

∀L@L′, L′ ̸= L ∧ L′ ⊂ L ∧ Pr(L|P) = Pr(L′|P),

where Pr(L|P) is the probability of term list L for flows of
protocol P .

Definition 4 intuitively implies that we consider all impor-
tant signatures for a protocol P . This is what we call the
completeness property.

The ordered matching operator (⊕) satisfies two constraints:
(i) full matching: a flow must contain all terms of a term list
to be matched, and (ii) ordering: the ordering of the terms
should be the same in the term list and the given flow. The
matching operator used in CUTE relaxes these constraints, as
defined in Definition 5 In contrast to the complete matching
operator, xxbxxaxxcxx matches with L = {a, b, c}, if we
use the partial matching operator.

Definition 5: A flow is partially matched with a term list,
iff it contains at least one of term from the list. The partial
matching operator ⊙, between flow f and term list L, is
formally defined as follows:

f ⊙ L ⇔ ∃ti ∈ L, index(f, ti) > 0.

The partial matching operator is significantly less complex
than the complete matching operator, while it might introduce
inconsistencies in classification. In the next section, we discuss
how poorly traffic classification algorithms perform, if we use
partial matching operator ⊙ instead of the complete matching
operator ⊕.

V. THEORETICAL ANALYSIS

In what follows, we analyze CUTE based on the model
presented in previous section. In our theoretical analysis, we

aim at providing bounds on CUTE’s classification error, in
comparison to existing automatic signature generation meth-
ods.

Existing automatic signature generation methods have an
intrinsic error probability, as they extract all possible term
lists with a probability of at least T for all protocols. They
miss-classify flows, if some important signatures are present
in less than T fraction of flows, and respective flows cannot
be identified using other signatures. The total error probability
of a protocol can be even unbounded, if too many tiny clusters
of flows (less than T − ϵ fraction of flows) are not covered
by any extracted signature. That said, these methods perform
well in practice since such worst cases are too rare as long as
we select an apt value for T .

The partial matching operator can introduce further errors.
These errors do not include false negatives, since the partial
matching operator certainly matches all flows matched by
the complete matching operator. Moreover, as long as the
classification does not result in conflicts between term lists
(when one flow matches with two or more protocols), false
positives are not introduced. So, the only scenario that can
lead to error for partial matching is when we have conflicting
signatures. Note that the correct protocol is always among
the set of identified, conflicting protocols, since the partial
matching operator always includes results of the complete
matching operator.

We study the probability of having false positives (or equiv-
alently conflicts), in certain scenarios, where some conditions
hold. In fact, we propose two sufficient condition which bound
the false positive rate introduced by a signature.

A. Definitions and Assumptions
As previously mentioned, we represent protocol signatures

using term lists. The set of term lists of a protocol P is denoted
by L(P) = {LP

1 , L
P
2 , · · · , LP

m}.
To analyze the error probability of the partial matching

operator, we have the following simplifying assumptions:
Assumption 1: (Coverage) We can detect the protocol of

every flow using existing signatures. Since we aim at studying
the effects of applying the partial matching operator, it is
reasonable to ignore unknown flows.

Assumption 2: (Consistency) Signatures of different proto-
cols are conflict-free, unless one of them is a sub-signature
of the other one. In such cases, the most specific signature
is preferred. Note that, we allow conflicting sub-signatures to
classify overlay protocols.

B. Uniqueness Condition
We start with the stronger (and simpler) sufficient condition.

Suppose that each term list has a term, which is not a member
of any term list in signatures of other protocols–in other words,
it is unique to the respective protocol. Note that the unique
terms of a protocol may exist in less than T fraction of flows
of another protocol. If the Uniqueness Condition (Condition 1)
holds, we can prune non-unique terms to have less conflicts
with the same coverage as the original signatures.

Condition 1: The Uniqueness condition holds iff for every
term list L of protocol Pi, there is at least one term t which

does not occur in any term list L′ of other protocols; i.e.,

∀L ∈ L(Pi), ∃t ∈ L s.t. ∀Pj(j ̸=i)@L′ ∈ L(Pj), t ∈ L′

Surprisingly, the uniqueness condition holds for many real-
world protocols even though it is a seemingly strong condition.
The only exceptions are overlay protocols, which share the
same terms with their underlying protocol (e.g. BitTorrent
running on HTTP). Shortly, we will introduce a weaker, more
practical sufficient condition in Section V-C, based on the
Uniqueness condition.

When the Uniqueness Condition holds, we eliminate non-
unique terms to simplify signatures, and also to improve effi-
ciency. We remove every term t with the following property:

∃L ∈ L(Pi), L
′ ∈ L(Pj)(i ̸=j)t ∈ L ∧ t ∈ L′.

Having at least one unique term, each term list contains one
or more terms after pruning. We simplify each term list by
selecting one of its unique terms (later in this section, we
discuss the best way to select from unique terms). Thus, our
pruned term lists contain one and only one term. For each term
list L, the pruned version is denoted by P(L). According to
Theorem 1, the probability of producing conflicts between a
pruned term list of a protocol, and flows of another protocols
is bounded by T .

Theorem 1: If the Uniqueness Condition is satisfied, a
pruned signature of protocol Pi conflicts with another protocol
Pj with a probability of less than T . i.e.,

∀Pi, Pj ̸=i, L ∈ L(Pi) : Pr(f ⊙ P(L)|f ∈ Pj) < T.

Proof: (Proof by contradiction) Suppose that P(L) is a
pruned signature of protocol Pi composed of term t, and the
probability of matching a flow f of protocol Pj with P(L) is
more than T , i.e., Pr(f ⊙ P(L)|f ∈ Pj) ≥ T . Equivalently,
the probability of having t in flows of Pj is at least T . Thus, t
must be part of a signature for protocol Pj (see Definition 4)
and is not unique. This contradicts with our assumption that
t is unique, and the proof merely follows.
Since two protocols can have several conflicting unique terms,
the total probability of having conflict between two protocols
can be higher than T . The probability that we mis-classify
flows of a protocol Pj to Pi is Pr(f ⊙ ∪L∈PiL|f ∈ Pj), which
is always less than T × ki where ki is the number of pruned
signatures in Pi. Note that ki is small in practice; hence, if
the Uniqueness Condition is satisfied, we can use the partial
matching operator instead of the complete matching operator
with a few conflicts in practice.

By minimizing the number of terms for each proto-
col, we can improve the efficiency of matching: the less
the terms, the faster the matching. Suppose that, we have
the following term lists of unique terms for protocol P :
{{A,C}, {A,C,E, F}, {B,D}, {C}}. The optimum, equiv-
alent term lists for P , is {{B}, {C}} since all term lists have
either B or C. Thus, without rendering any further issues,
we increase the performance of matching by using only two
unique terms.

The question is what is the minimum number of unique
terms that covers all term lists? This problem, in general, is

equivalent to the Minimum Hitting-Set problem (Definition 6)
which is both NP-Hard and APX-Hard [4].

Definition 6: Hitting-Set. Suppose that we have a finite set
S and a collection C of subsets of S. A Hitting-Set for C is
a set S′ ⊆ S with the following property: ∀S′′ ∈ C, ∃t ∈ S′′ :
t ∈ S′.

The term lists, however, have an interesting property: based
on Definition 4, we can easily show that the intersection of two
different term lists of protocol P is either empty, or a term list
of P–i.e., ∀L1, L2 ∈ L(P), L1 ∩ L2 = ∅ ∨ L1 ∩ L2 ∈ L(P).
The reason is that, a non-empty intersection of two different
term lists has a higher probability than T and is a signature
by itself.

Based on this observation, we propose an algorithm we
call the Minimum Hitting-Set for Protocols (MHSP), which is
capable of discovering the minimum Hitting-Set of term lists
in O(|P |2). According to Theorem 2, this algorithm returns
the correct hitting set for our problem.

Algorithm 2: MHSP: Minimum Hitting-Set for Protocols

Data: P // the protocol
Result: Minimum Hitting-Set
Disjoint Set ← ∅;
for L ∈ P do

Is Disjont ← True;
for L′ ∈ P do

if L′ ⊂ L then
Is Disjoint ← False;

if Is Disjoint then
Disjoint Set ← Disjoint Set ∪{L};

Hitting Set ← ∅;
for L ∈ Disjoin Set do

Hitting Set ← Hitting Set ∪ head(L);
return Hitting Set;

Theorem 2: MHSP finds the minimum Hitting-Set for pro-
tocol P .

Proof: Suppose that the algorithm returns a set of terms:
S = {t1, t2, · · · , tk}. It is obvious that |S| = |Disjont Set|.
Since there is no common terms between any two members
of the Disjoint Set, the minimum Hitting-Set cannot have
less than |Disjont Set| members. Therefore, S is one feasible
minimum Hitting-Set.

C. The Weak Sufficient Condition

The Uniqueness condition is too strong specially for overlay
protocols. For instance, Gnutella shares most of its terms
with HTTP since it is an overlay protocol; hence, HTTP will
not have enough unique terms. To resolve this issue, we
propose a looser sufficient condition which holds in almost
all cases including overlay protocols, and can lessen the
probability of false positives, as well.

Instead of neglecting all non-unique terms, we can assign
lower weights to these terms, and classify flows based on a
weighted term matching approach, i.e., matched terms with the
highest weights determine the protocols of a flow. Moreover,
for each term least, we can keep the terms with the highest
weight, as the other lower weighted terms do not affect
classification.

(a) Initial Graph (b) Final Graph

Fig. 5. The Signature Graph built from P1 = {{a, b, c}, {d, e}},
P2 = {{a, b}, {a, b, d}}, and P3 = {{f, a}, {a}}

Let us illustrate this idea using an example. Suppose
that we have the following protocol signatures: P1 =
{{t1, t2, t3}}, P2 = {{t2, t3, t4}}, P3 = {{t2, t3}}. t1 and t4
should have high weights since they are unique. Non unique
terms, such as t2 and t3 on the other hand, should have
lower weights. If we assign weights according to their inverse
protocol frequency, and keep the terms with the highest weight
for each term list, new signatures will be: P1 = {{(t1, 1)}},
P2 = {{(t4, 1)}}, P3 = {{(t2, 1

3), (t3,
1
3)}}. Using these new

signatures, a flow containing t1 is classified as protocol P1,
since t1 is one of the two highest weighted terms. Interestingly,
flows containing only t2 or t3 are detected as P3. Note that
weights can be assigned in different ways as long as they
reflect the uniqueness of term.

To realize this idea, we propose the Signature Graph, which
is used for (i) selecting the best terms from each term list,
and (ii) assigning appropriate weights to them. The process of
creating a Signature Graph has multiple steps. Initially, each
term list is a node in this graph. An edge connects two nodes,
iff they are of different protocols and share at least one term.
The shared terms are the labels of the edge. Each node of the
graph is assigned an integer called mark which is initially 0,
i.e., ∀n ∈ N(G),mark(n) = 0.

Figure 5(a) illustrates the initial Signature Graph for term
lists of 3 protocols: L(P1) = {{a, b, c}, {d, e}}, L(P2) =
{{a, b}, {a, b, d}}, and L(P3) = {{f, a}, {a}}. Note that all
the nodes are, initially, marked as 0.

The next step is to find conflicting nodes. We mark each
node with no unique term as 1. Note that a term is unique to
a node, iff it is not on any edges of the respective node. We
remove all non-unique terms from nodes marked as 0. Those
nodes will not become empty, since they have at least one
unique term. Then, in the subgraph of nodes with mark 1, we
increment the mark of the nodes with no unique term to 2, and
remove non-unique terms (non-unique in the subgraph) from
nodes with mark 1.

We repeat this process until one of the following conditions
hold: (i) all nodes, marked as i, are now marked as i+ 1, or
(ii) there is no node marked as i + 1. If the first condition
holds, the process never terminates, and we are unable to
build the Signature Graph. If the second condition holds,
we have the final Signature Graph, with no more node to
process. An example of the final Signature Graph is shown
in Figure 5(b). If we can build the final Signature Graph for a
set of signatures, the Weak sufficient condition (Condition 2)
is satisfied.

Condition 2: Weak Sufficient condition holds in a set of

signatures, if we can create a non-conflicting signature graph
for them by following the pruning procedure described above.

Terms on the nodes with lower marks are more important
than terms on nodes with higher marks, since marks clearly
represent terms’ frequencies among different protocols, or
simply the inverse of terms’ uniqueness. Consequently, we
assign weights to the term lists, or basically nodes in the
final Signature Graph, in a way that it preserves the following
property: the lower the mark, the higher the term’s weight –
i.e., ∀ti ∈ n, tj ∈ n′,mark(n) < mark(n′) ⇒ weight(ti) >
weight(tj). An example of such a weighting function is
(1 +mark(n))−1 for the terms on node n.

Lemma 1: If the weak sufficient condition holds, there is a
term t for any node ni, which does not exist in any other
node with higher or equal mark – i.e., ∃t ∈ ni; ∀nj(i ̸=
j),mark(nj) ≥ mark(ni) : t /∈ nj

Proof: Suppose that we have a node ni, and its mark is
m. According to the pruning procedure, all terms in ni shared
with other nodes with mark m or higher are pruned. ni cannot
be empty, otherwise its mark should have been incremented to
m+ 1 or a higher value. Thus, ni contains at least one term
which is not shared with nodes of equal or higher marks.

Lemma 2: If L1 ⊂ L2, then mark(L2) < mark(L1).
Proof: Simply follows from Lemma 1.

As previously mentioned, if a flow matches with several
term lists, only the term lists of the highest value are consid-
ered as correct matches. In other words, if a node with mark
m matches a flow, no nodes with a mark higher than m are
considered as a match.

As stated in Theorem 3, if we use the terms on the nodes
of a final Signature Graph, we can partially match traffic with
a false positive rate of less than T .

Theorem 3: Using the weighted terms from a successfully
processed Signature Graph G, the probability of matching a
term t with flows of protocol Pj is less than T .

Proof: Suppose that we have a false positive, and a flow f
is matched with t ∈ Pi, but its should be matched with t′ ∈ Pj .
Suppose that nodes ni, and nj are representing t and t′ in the
signature graph, respectively. There are two possible cases: (i)
mark(nj) < mark(ni), and (ii) mark(nj) ≥ mark(ni).

According to Lemma 1, if ni’s mark is larger than nj’s
mark, nj has a term t, which is not shared with ni. On the
other hand, we know that if a flow matches both ni and nj , we
will choose nj as the matching signature, since its terms have
larger weights. Therefore, in Case (i), f does not have any of
the unique terms in nj . Hence, it does not match respective
term list, and it contradicts with our assumption.

If mark(nj) is greater than or equal to mark(ni) (Case
(ii)), we know that there is a term on ni, which is not pruned
and is not a member of nj . We know that t occurs in less than
T fraction of Pj’s flows, otherwise it was part of the protocol
signature. Thus, the probability that a given flow f matches
with t is less than T , and the proof follows.

Lastly, according to Theorem 4, the Weak Sufficient Con-
dition is a general case of the Uniqueness Condition.

Theorem 4: Uniqueness condition is a special case of weak
sufficient condition. In other words, if uniqueness condition
holds, weak sufficient condition also holds.

Proof: If the uniqueness condition holds, there should
exist at least one unique term in each signature, and no
two signatures in the list can be conflicting. Therefore, the
signature graph of these sets of signatures shows no conflict
between nodes and the weak sufficient condition holds.

The properties of the Signature Graph shows that, if we have
a set of appropriately weighted terms for a set of protocols,
and the terms’ weights reflect their uniqueness, we can have an
accurate and efficient traffic classification method. This is in
agreement with our our experimental evaluation of CUTE, and
shows the intuition behind Signature Graph’s role in CUTE.

VI. RELATED WORKS

Deep packet inspection methods [15], [14], [10], [21] are
generally complex, and time-consuming, but very accurate.
One of the main problems of these approaches, besides their
complexity, is that they highly rely on manually designed
signatures. To solve this problem, quite a few efforts has been
made to generate protocols signatures automatically. Longest
Common Subsequence (LCS) [21] is a well-known approach
to generate signatures. The LCS method searches for the
longest subsequence common in all or the majority of the
flows of a particular protocol and uses that subsequence as
the protocol’s signature.

Another problem with DPI methods is that there is always
a trade-off between memory usage and the speed of regular
expression matching. Efforts in this area has focused on rewrit-
ing signatures and grouping schemes (e.g., [23]), narrowing
regular expression definitions (e.g., [6]), or utilizing hardware-
based methods (e.g., [24]).

Feature-based classification methods, on the other hand,
take advantage of layer 4 information and machine learning
techniques to classify network traffic [2], [16], [8], [9], [5],
[7], [20], [3], [13]. These methods are all automatic, but they
are prone to be over-trained [19]. We note that DPI methods
are considered as more accurate approaches, and generally
form the ground-truth for feature-based methods. An automatic
efficient DPI method is a better alternative, whenever the flow
payload is not encrypted.

Worm Detection is another area of research which is corre-
lated with Traffic Classification. Payload-based worm detec-
tion techniques, which try to match packets’ payload against a
set of signatures to detect potential attacks, are very similar to
DPI methods. Several attempts have been made in this area to
automatically generate signatures for detecting worms. Among
them, we can mention Honeycomb [12], Autograph [11],
Earlybird [22] for non-polymorphic worms and Polygraph [17]
for polymorphic worms. Note that a polymorphic worm is a
type of worm which can use self-encryption mechanisms, and
semantics-preserving code manipulation techniques to evolve
as spreading in the network.

In Polygraph, J. Newsome et al. have shown that all worms
have some invariant parts although they can be small. Using
this property, they have proposed three methods (Conjunction,
Token-Subsequence, and Bayesian) to detect attacks of poly-
morphic worms. While conjunction signatures try to match
flows with several tokens without considering the order of

these tokens, token-subsequence signatures consist of a list
of ordered tokens.

In Token-Subsequence approach, which is extended in
Laser [18] for traffic classification, a list of indivisible tokens
(terms in our terminology) is extracted from the flows, and
each flow is represented with a list of its tokens. For each
protocol, the Token-Subsequence method tries to find one
maximal substring which exists in all sample flows. In its
multiple-signature version, sample flows are clustered and one
signature is generated for each cluster. The signature for each
cluster should match all flows inside it. In Ideal case, each
cluster contains the flows of one protocol and the signatures
are non-conflicting. Bayesian signatures, on the other hand,
assign a weight to each token and a flow will be labeled as a
worm if sum of the matched tokens’ weights is larger than a
predetermined threshold. The experimental results show that
Bayesian signatures are equivalent to one special substring,
“best substring”, as far as accuracy of classification is con-
cerned [17]. However, no reason has been provided for this
phenomena. Moreover, they have not suggested any approach
to extract the best substring. The best substring is only reported
in Polygraph after brute-forcing all possible substrings.

There are some similarities between token-subsequence and
term lists in this paper. In both approaches, in an ideal case,
a set of non-conflicting term lists (see Assumption 2) with a
specific minimum probability (T in CUTE and S “the size of
the smallest cluster” in Token-Subsequence) is created. Since
these signatures are non-conflicting, false positive in both
approaches is zero. Note that false positive may increase when
we use tokens instead of token subsequences in Polygraph, and
terms instead of term lists in CUTE.

Despite those similarities, CUTE and Polygraph have three
important differences. First, CUTE, automatically, extracts the
best substrings, and we theoretically explain why it has similar
accuracy to Bayesian signatures of Polygraph. Second, CUTE
produces less false negatives compared to token-subsequences
in Polygraph, since CUTE extract all possible terms while
token- subsequence is limited by the generated clusters. Third,
CUTE uses partial matching which is more efficient and has
a higher recall rate, but Polygraph uses complete matching, or
complete unordered matching for conjunction signatures.

VII. DISCUSSION

Exploiting terms for classifying network flows has some
advantages and some drawbacks. The major drawback is
generating false positives. Based on theoretical analysis and
experimental evaluations, our method is capable of classifying
most of todays’ protocols with a negligible amount of false
positives. Accordingly, these simple signatures are competitive
alternatives to traditional complex signatures: they are simpler,
more efficient, and easier to maintain. Moreover, they result
in considerably higher recall rate.

Protocol signatures are precisely defined to classify network
traffic with a high accuracy. These signatures require quite a
few packets to classify a flow. Although it may increase the
classification accuracy to wait for packets on the fly, it has two
disadvantages: (i) it is more useful to discover flow protocols
as soon as possible, not in middle or final stages, and (ii) it

might need a considerable amount of memory to keep the state
of each flow for each protocol signature for a large fraction
of flow’s life-time. The experimental results show that CUTE
can classify flows using the first bytes (50 to 100 bytes) with
more than 80% of precision and recall. Moreover, CUTE can
improve the classification accuracy as new packets arrive.

CUTE’s output can also be enhanced by passing the conflict-
ing results to an existing DPI methods. Accordingly, CUTE,
accurately and efficiently, classifies most of the flows, and rare
conflicts are resolved using a regular expression.

Signature extraction methods generating term lists are prone
to be over-trained and generate wrong signatures. There are
several misleading terms due to capturing methodologies. For
instance, if all captured HTTP flows in the training data set
are initiated in 2010, automatic signature generation methods,
such as polygraph, incorporate such trifling, misleading terms
into the generated signatures. Similarly, CUTE report both
misleading terms (if they are sufficiently unique) and important
terms (e.g., HTTP/1.1) as HTTP’s terms. However, using par-
tial matching, CUTE is able to correctly classify a legitimate
HTTP flow without those trifling terms (e.g., 2010).

Another important aspect of all automatic signature genera-
tion methods, including CUTE, is to analyze their robustness
to adversarial attacks. One possible attack to term-based
methods is to create new fake protocols which contain other
protocols’ terms. This attack decreases the weight of important
terms of various protocols; hence, the classification method
cannot distinguish between existing real protocols and new
fake ones. We note that this kind of attacks is, intrinsically,
applicable to any payload-based classification method. Having
said that, the partial matching is less prone to such errors
compared to ordered and complete signatures, except if the
adversary generates attacks which are mainly designed for
partial matching (e.g., by creating flows which contains the
same terms with different orders). Finally, we note that CUTE
is only affected by such attacks if the training data set contains
those adversarial flows.

VIII. CONCLUSION

In this paper, we propose CUTE, an efficient DPI approach
based on a set of weighted terms. Weighted terms are much
simpler than regular expressions in terms of matching. Inter-
estingly, this simplification does not come at the cost of accu-
racy. Our theoretical analysis illustrates that, under practical
assumptions, the error probability of CUTE is negligible in
practice compared to complex regular expressions.

We have also evaluated CUTE using packet traces from
two tier-one ISPs. To ensure the validity of our experiments,
we have used one ISP for extracting terms, and one for
evaluating CUTE. Our experimental evaluation suggests that
appropriately weighted terms result in highly accurate classifi-
cation of network traffic. The results are close to classification
results generated using complex, manually created protocol
signatures. Moreover, CUTE is able to classify a considerable
amount of flows which are considered as unknown by the
manually created signatures.

REFERENCES

[1] A. Aho and M. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18(6):340, 1975.

[2] M. Arlitt, J. Erman, and C. Williamson. Offline/realtime traffic classi-
fication using semi-supervised learning. Performance Evaluation, 64(9-
12):1194–1213, 2007.

[3] T. Auld, A. Moore, and S. Gull. Bayesian neural networks for internet
traffic classification. IEEE Transactions on Neural Networks, 18(1):223–
239, 2007.

[4] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions
among convex optimization problems. Journal of Computer Systems
and Science, 21(1):136–153, 1980.

[5] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identifi-
cation. In Proce. of the ACM CoNEXT conference, pages 1–12, 2006.

[6] P. Bille and M. Thorup. Regular expression matching with multi-
strings and intervals. In Proc. of the ACM-SIAM Symposium on Discrete
Algorithms, pages 1297–1308, 2010.

[7] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Traffic classification
through simple statistical fingerprinting. ACM SIGCOMM Computer
Communication Review, 37(1):16, 2007.

[8] J. Erman, M. Arlitt, and A. Mahanti. Traffic classification using
clustering algorithms. In Proc. of the 2006 SIGCOMM workshop on
Mining network data, page 286, 2006.

[9] J. Fan, D. Wu, A. Nucci, R. Keralapura, and L. Gao. Identifying hidden
voice and video streams. In Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, volume 7344, page 14, 2009.

[10] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: automated
construction of application signatures. In Proc. of the 2005 ACM
SIGCOMM workshop on Mining network data, page 202, 2005.

[11] H. A. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In Proc. of the 13th conference on USENIX
Security Symposium, page 19, 2004.

[12] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection
signatures using honeypots. ACM SIGCOMM Computer Communication
Review, 34(1):51–56, 2004.

[13] Z. Li, R. Yuan, and X. Guan. Accurate classification of the internet
traffic based on the SVM method. In IEEE International Conference on
Communications, pages 1373–1378, 2007.

[14] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. Voelker. Unex-
pected means of protocol inference. In Proc. of the 6th ACM SIGCOMM
conference on Internet measurement, pages 313–326, 2006.

[15] A. Moore and K. Papagiannaki. Toward the accurate identification of
network applications. Passive and Active Network Measurement, pages
41–54, 2005.

[16] A. W. Moore and D. Zuev. Internet traffic classification using bayesian
analysis techniques. ACM SIGMETRICS Performance Evaluation Re-
view, 33(1):50–60, 2005.

[17] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating
signatures for polymorphic worms. In IEEE Symposium on Security and
Privacy, page 226, 2005.

[18] B. C. Park, Y. J. Won, M. S. Kim, and J. Hong. Towards automated
application signature generation for traffic identification. In Proc.
IEEE/IFIP Network Operations & Management Symposium, pages 160–
167, Salvador, Brazil, 2008.

[19] M. Pietrzyk, J.-L. Costeux, G. Urvoy-Keller, and T. En-Najjary. Chal-
lenging statistical classification for operational usage: the adsl case. In
Proc. of the 9th ACM SIGCOMM conference on Internet measurement
conference, pages 122–135, 2009.

[20] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service
mapping for QoS: a statistical signature-based approach to IP traffic
classification. In Proc. of the 4th ACM SIGCOMM conference on
Internet measurement, pages 135–148, 2004.

[21] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network
identification of p2p traffic using application signatures. In Proc. of the
13th international conference on World Wide Web, page 521, 2004.

[22] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm
fingerprinting. In Proc. 6th conference on Symposium on Opearting
Systems Design & Implementation, 2004.

[23] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast
and memory-efficient regular expression matching for deep packet
inspection. In Proc. of the ACM/IEEE symposium on Architecture for
networking and communications systems, pages 93–102, 2006.

[24] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit rate packet pattern-
matching using tcam. In Proc. of the 12th IEEE International Conference
on Network Protocols, pages 174–183, 2004.

