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Abstract

Machine learning is transforming several scientific disciplines, and has resulted
in the emergence of new interdisciplinary data-driven research fields. Surveys of
such emerging fields often highlight how machine learning can accelerate scientific
discovery. However, a less discussed question is how connections between the
parent fields develop and how the emerging interdisciplinary research evolves. This
study attempts to answer this question by exploring the interactions between ma-
chine learning research and traditional scientific disciplines. We examine different
examples of such emerging fields, to identify the obstacles and accelerators that
influence interdisciplinary collaborations between the parent fields.

1 Introduction

In recent decades, several scientific research fields have experienced a deluge of data, which is
impacting the way science is conducted. Fields such as neuroscience, psychology or social sciences
are being reshaped by the advances in machine learning (ML) and the data processing technologies it
provides. In some cases, new research fields have emerged at the intersection of machine learning
and more traditional research disciplines. This is the case for example, for bioinformatics, born
from collaborations between biologists and computer scientists in the mid-80s [1], which is now
considered a well-established field with an active community, specialized conferences, university
departments and research groups. How do these transformations take place? Do they follow similar
paths? If yes, how can the advances in such interdisciplinary fields be accelerated?

Researchers in the philosophy of science have long been interested in these questions. In [2], Kuhn
suggested that scientific research operates within a set of traditions, called paradigm. When new
problems arise that cannot be solved under the existing paradigm, a paradigm shift occurs, and a new
research field emerges. [3] studied the dynamics and evolution of scientific fields using a network-
based analysis and found that the cross-fertilization of established research fields often precedes
the emergence of new fields. Several other studies have explored the question of how scientific
collaboration networks appear, grow and fade away [4, 5, 6]. In all these cases, the examined
emerging field results from interactions between various well-established parent fields. However,
never before has a single field had such a rapid impact, and as much potential for impact, on a variety
of scientific disciplines as AI. Consequently, several studies have examined the opportunities resulting
from the application of ML to scientific discovery [7, 8, 9, 10]. Yet, the rate of progress, when
applying ML, can vary from one scientific field to another. The study of collaborations between ML
and existing fields can highlight common patterns and shed light on key factors that accelerate the
emerging field or instead hold back its progress.

Our goal is to move beyond anecdotal evidence of the impact of ML on traditional fields and the
benefits of interdisciplinary research for science. Instead, in the next section, we draw on the literature
from a wide range of ML-enabled research fields and identify the main factors capable of slowing
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down or accelerating progress in these emerging fields. We summarize these insights as a table of the
key factors impacting the rate of progress in interdisciplinary fields.

2 Places to intervene in the system

2.1 Obstacles

Publicly available datasets are a pre-requisite for interdisciplinary research involving AI. However,
after examining several emerging data-driven fields, data-related obstacles can be identified. In fields
such as health-care [11] and cyber-security [12], privacy concerns present an obstacle that can stall
the adoption of ML technologies. In other fields such as marketing and legal research areas [13], the
‘creepy stalker factor’ associated with data collection practices can also slow down interdisciplinary
collaborations. Finally, in a number of traditional scientific disciplines, such as climate modelling and
cancer research, datasets present unique aspects like non-stationarity and paucity of representative
samples, that differ from data science problems usually encountered in commercial applications [14].

Even when an interdisciplinary approach proves to be productive, collaborations between parent fields
can slow down when the two fields grow separately in complexity and their disciplinary boundaries
solidify [15]. It becomes then harder for respective researchers to specialize in one field, let alone
both fields. In other cases, technical challenges can hold back productive collaborations as is the
case for quantum machine learning. In this case, challenges such as quantum states preparation and
measurements still hinder the adoption of QML technologies by both ML and quantum computing
researchers. In a different context, disciplines such as climate modelling for instance, involve the
study of various physical processes interacting on different space and time scales. Using machine
learning techniques to model such processes in a modular way through specialized collaborations
(e.g., oceanography and ML experts, atmosphere and ML experts, etc) contradicts the entanglement
that characterizes non-linear climate dynamics. As David Randall puts it: “The trouble with modular
models is that nature is not modular" [16]. Physical processes involved in the climate system are
subject to intertwined feedback loops and cannot be formulated independently of one another.

In addition, ML researchers proposing ML-based solutions for problems in different fields can
sometimes report findings and insights that were long known in the parent field, which reduces the
acceptability of ML research in that field. Finally, another phenomenon slowing down progress in
interdisciplinary fields is the fast-paced competition in machine learning research, which encourages
winning challenges by conducting empirical studies on public datasets, rather than developing insight
and understanding [17]. These factors, combined with the lack of interpretability of ML models [18,
19], hinders the acceptance of other fields for machine learning solutions. In addition to the fields’
complexity, the traditions of the parent fields also play a crucial role in slowing down collaborations.
When the parent fields are steeped in different traditions around the communication of results, the
language used, the frequency of publications, the length of publications, etc, the objectives of young
researchers become misaligned and these differences send a signal discouraging interdisciplinary
research projects. In particular, ML fields are characterized by fast and frequent publication cycles
in conference venues which require relatively short papers compared to more traditional scientific
disciplines where lengthy journal submissions are considered standard.

Another obstacle is the hype surrounding the emerging data-driven fields. When the application
of ML technologies to a scientific discipline is hyped through over-promising and is followed by
under-delivery of results and insights, real progress is slowed down by a breach of trust between the
two fields. The case of quantum supremacy illustrates this point [20]: although real progress is being
made in the field, researchers expect it will take several more years before quantum computers show
their worth [21]. And when real progress is achieved, there could be a perceived risk by researchers in
the traditional field that they will be replaced by AI. This perceived risk can implicitly push scientists
to dismiss ML solutions that are otherwise valid. This rejection is further worsened by some issues
plaguing the machine learning research fields recently: namely, reproducibility and hyper-parameter
tuning of ML models [22, 17]. Researchers in scientific fields are aware of the ML reproducibility
crisis, and may dismiss valid ML solutions as a consequence.

Finally, another set of obstacles is faced by researchers publishing findings at the intersection of
ML and another traditional field. These obstacles have to do with the supply of skilled reviewers to
evaluate the interdisciplinary contributions. Sculley and colleagues [17] argue that it takes years to
train skilled reviewers in ML areas. This means it would take even longer to train reviewers who
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have an understanding of two different fields, who would recognize the potential of interdisciplinary
research, and not force researchers working at the boundaries to re-present their work as more centric
to just one of the parent fields [23].

2.2 Accelerators

Just as there are obstacles to the progress of data-driven interdisciplinary research fields, there are
also factors than can accelerate progress (see Table 1). One of the key accelerators for an emerging
field is the availability of comprehensive and well-written papers that set the vision for the new
field, summarize advances in the parent fields for a mixed audience, use unifying language and
metaphors [15], emphasize the complementarity of the parent fields [21], highlight the novel and
important research questions as well as their priority [24] and identify research ‘low hanging fruits’.
These ‘low hanging fruits’ are easily achievable research breakthroughs available to the first come
to the boundary research and include problems in one field solvable using tools from the second
field in a straightforward manner. Identifying such problems can attract young researchers to the
emerging field. Another accelerator is the adoption of a theory-guided data science paradigm [25, 26]
and thoughtful ML principles [27]. The advantage of adopting such approaches is to leverage the
knowledge accumulated in scientific principles by introducing scientific consistency and enabling
scientific interpretability in data-driven models [25].

The second set of accelerators revolves around datasets. Publicly available benchmark datasets can
accelerate collaborations between ML and scientific disciplines. Ebert and colleagues [28] highlight
10 key characteristics of ideal benchmark datasets to build bridges between geoscience and data
sciences. These characteristics include high impact, active research area, means for evaluating success
and citability. Sim and colleagues [29] discuss the importance of benchmark datasets developed by
research community consensus to show agreement on which problems are important, concentrating
the community’s attention on them, and hence increasing the scientific maturity of emerging research
fields. However, with respect to the ML community’s focus on winning the benchmark competition
versus advancing the understanding, these benchmark datasets should be accompanied with an
expiration date, after which the benchmarks should retire. Such a precaution helps prevent overfitting
on these datasets, which results in wasted effort from non-generalizable results.

Reproducibility of published empirical work accelerates and sustains progress in emerging fields
as it enables accurate judgement of the improvement offered by new methods [22]. To promote
reproducibility, Sculley and colleagues [17] suggest that sharing experimental notes and records
can help with issues of multiple hypothesis testing and post-hoc explanations. They also argue that
complete empirical evaluations are likely to involve large groups of collaborators. In this context,
improved credit assignment can incentivize such collaborations. In the case of interdisciplinary
fields, published articles should acknowledge the contributions and inspirations, however subtle, from
the other field, whenever it’s relevant. Also, flexible paper structures can accelerate collaborations
progress by destroying the barriers of disciplines’ traditions. Alternative paper formats can be adopted,
with different versions (short, long, with or without code, data and analysis, reviews and answers)
overlayed in a centralized system [30]. Reviewers for these interdisciplinary collaborations can
be trained through specialized MOOCs [31]. Finally, taking inspiration from the field of quantum
machine learning, interdisciplinary emerging fields should provide open access of relevant resources
to early adopters. Companies such as Google, Intel and Microsoft, as well as startups like Rigetti
computing, IonQ and Quantum Circuits made quantum computers accessible via the cloud to early
adopters. This open access of resources can accelerate progress in two ways. First, early business
adopters can provide valuable feedback and revenue stream for startups (for QML, such opportunities
include financial modelling, chemistry and route optimization modelling) [32]. Second, the full ML
and quantum computing revolution will be carried with a new generation of students and researchers
that will get to play with practical machines and contribute to a paradigm change as quantum
computers require different programming languages and fundamentally different ways of thinking
about what programming is [21].
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Table 1: Obstacles and accelerators to collaborations between ML and scientific disciplines

Obstacles Accelerators
R

es
ea

rc
h • Complexity and technical challenges in parent

fields;
• Non-modularity and non-stationarity in scien-

tific principles and disciplines [16];
• Focus on winning challenges on public

datasets, as opposed to developing insights
and understanding [17];

• Hyper-parameter tuning and multiple hyper-
parameter testing [17];

• Cheap development but expensive mainte-
nance of ML systems [33];

• CACE principle (changing anything changes
everything) [33];

• Research solutions providing tiny accuracy
benefits accompanied with massive increase
in system complexity [33];

• Publish survey articles setting the direction of
the emerging field;

• Use unifying language and metaphors [15, 34,
35];

• Emphasize complementarity of parent fields;
• Identify research low hanging fruits;
• Highlight of important and novel questions;
• Establish ML best practices (similarly to soft-

ware engineering best practices) [36];
• Adopt a theory-guided ML paradigm [25];
• Open access to code and data resources [37];
• Demonstrate impact on other fields beyond

the parent fields;
• Establish reliable baselines [22];

D
at

a • Privacy concerns [37];
• Creepy stalker factor;
• Specificities of datasets in scientific disci-

plines such as non-stationarity, paucity of la-
belled representative samples, spatial and tem-
poral correlations, high dimensionality, multi-
resolution and interest in rare events [14];

• Limitations and price of traditional computa-
tional resources;

• Publicly available datasets;
• High volume and quality of data;
• Awareness of strengths and weaknesses in

data collection processes [14];
• Identification of pre-processing steps [14];
• Benchmarks with 10 key properties: prob-

lems challenging for data scientists, data sci-
ence generality and versatility, rich infor-
mation content, hierarchical problem state-
ments, means for evaluating success, quick
start guide, context and citability [28];

• Retirement of benchmark datasets [29];
• Alternative sources of data (e.g., GAN simu-

lations);

C
om

m
un

ity • Lack of reproducibility [22];
• Traditions of parent fields;
• Gap in size between ML theory and applica-

tions communities;
• Gap in size between models’ development

and models’ applications communities
• Hype [38];
• Perceived risk/threat of being replaced;
• Open code and prisoners’ dilemma [31];
• Lack of trained reviewers due to rapid ad-

vances in ML [17];
• Publication of interdisciplinary research in

traditional conferences;
• Reviewers forcing boundary research to be-

come centric research [23];
• Reviewers crunch during conference cy-

cles [30];

• Reproducibility [39, 40];
• Standard requirements for empirical evalua-

tions [16];
• Sharing of experiment code notes and records;
• Academic licenses for open code [31];
• Acknowledgement of contributions and inspi-

rations;
• Credit assessment and attribution [17];
• Open access to rejected papers and reviews;
• Flexible paper structures;
• Availability of different versions of the same

article in a centralized repository [30];
• Open review systems [41];
• Online training for reviewers [31];
• Options for publication venues and flexible

conference formats;
• Increase in size and diversity of the models’

development community;
• University training of modelers with more de-

grees of freedom compared to government
and private laboratories focusing on applica-
tions [42];

• Open access to resources for early private and
business adopters;

• Alternative sources of funding through re-
search start-ups and industrial research;
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