
Augmenting Flow Diagrams Created by End-user
Programs

Jonathan Lung
Department of Computer Science

University of Toronto
Toronto, Canada

Email: LungJ@cs.toronto.edu

Steve Easterbrook
Department of Computer Science

University of Toronto
Toronto, Canada

Email: sme@cs.toronto.edu

Abstract—Flow and causal loop diagrams can be used by

content creators to illustrate how variables in a system impact

one another. Such diagrams are used in educational settings to

illustrate concepts like food cycles in an ecosystem and energy

flows in climate models. We demonstrate how our tool, Inflo-

Graphic, can produce interactive diagrams either by augmenting

existing static diagrams produced using common tools users may

already be familiar and have available such as the Gimp or Adobe

Photoshop or by using a preexisting image or web page. Content

consumers can use these interactive diagrams to visualize how

changes to one part of a system can ripple through a system.

I. INTRODUCTION

Complex systems are everywhere: we live in them (e.g., the
earth, the solar system), we are part of them (e.g., economy,
different communities), and we contain them (e.g., nervous
system, digestive system). In order to understand them for
ourselves or to explain them to others, it is sometimes helpful
to draw diagrams. Flow diagrams and causal loop diagrams are
useful for illustrating how different parts of a system impact
and are related to each other. For example, a simple flow
diagram might show how changing the temperature and/or
pressure of a mixture in an equilibrium state would affect the
concentration of various chemicals in the mixture. Another
diagram might show how central bank interest rates, bond
prices, and stock prices are all interrelated. An energy flow
diagram of the earth might show how the energy from the sun
is reflected, absorbed, and trapped by clouds, the atmosphere,
and the earth’s surface (fig. 1).

Flow and causal loop diagrams use arrows to show the
direction of change propagation between components of a
system; feedback loops that are present can be identified by
cycles formed by the arrows. However, these diagrams do not
convey how small (large) perturbations might have non-linear
large (small) effects. That is, these diagrams do not always
make it apparent what complex system dynamics arise from
interactions between mechanisms [1].

One way of revealing these interactions is to run exper-
iments on simulated models [3]. These experiments involve
adjusting variables and watching the results. Experiments
cannot be conducted on static diagrams as found in textbooks
and standard lecture slides. In static diagrams with numerical
values, values must be precomputed for a particular state.

“Guided rediscovery” with interactive models further im-
prove understanding [3]. With guided rediscovery, educators
provide a set of questions to learners with the expectation that
learners will understand how various subsystems interact while
attempting to come up with answers. For example, learners

Fig. 1. An energy flow diagram showing earth’s energy budget.[2]

might be given the question “What will reduce the heating
energy consumption of a home most?” Playing with a model
could reveal how insulation efficiency, home size, desired
indoor temperature, and weather affect energy consumption.

Fig. 2. An interactive stock-and-flow diagram produced by STELLA.[4]

There are many tools which can be used to create pro-
grammable/dynamic models. One way of thinking about a
system is as set of stocks and flows. Existing stock-and-flow-
based tools such as STELLA [4] and TRUE [5] can create
these dynamic models; so can more general-purpose visual
programming tools such as Inflo [6], [7] and LabVIEW. The
models that are generated indicate which system components
are related through lines and/or arrows. However, the visual

2012 IEEE Symposium on Visual Languages and Human-Centric Computing

978-1-4673-0853-3/12/$31.00 c�2012 IEEE 175

result is utilitarian (e.g., see figure 2). Diagrams such as
fig. 1 show there is room for aesthetic improvement. Elegant
diagrams are not merely cosmetic. Learning is improved
when things move from the abstract to the concrete visually
appealing diagrams can help [8], [9].

II. MOTIVATION & GOALS

Considering the benefits of experimentation, guided redis-
covery, and aesthetically pleasing diagrams, we wanted to
empower people (especially in educational settings) to create
elegant causal loop diagrams. We describe two approaches
for creating visually elaborate interactive diagrams, with one
approach built on top of the other: the InfloGraphic (IG) li-
brary, a JavaScript library that can be used to augment an
existing static diagram by giving it dynamic capabilities, and
IGUI, a user interface built on top of the IG library. Rather
than build an entirely new tool for creating more visually
elaborate diagrams, designers and developers can incorporate
the IG library into their workflow (which we assume contains
software such as the Gimp or Adobe Photoshop) and produce
interactive diagrams. This library is not entirely accessible as
it does require knowledge of Javascript. However, our second
approach, IGUI, obviates the need to know JavaScript to
create new interactive diagrams. We consider the lowering of
barriers to creating visually pleasing diagrams one of the most
important contributions of this work since it may increase use
of flow diagrams.

III. WORKFLOW WITH THE IG LIBRARY

A. Creating a diagram
Interactive IG diagrams begin life as static diagrams created

by a designer. Any diagram that is stored in a compatible
image format (e.g., JPEG or PNG), be it created in-house or
from hiring a professional illustrator, is ready to be annotated
to indicate regions of interest. Due to the wide range of
sources, including a search on the Internet, the developer
attempting to create an interactive diagram need not suffer
for want of a static diagram.

B. Annotating the diagram
The designer or developer can open a suitable image in

editing software such as the Gimp or Photoshop. These soft-
ware packages permit users to divide an image into rectangular
regions known as “slices”. To create a slice, users drag a box
around a part of an image using the slice tool; the enclosed
region forms a new slice (see figure 3); IG repurposes each
of these slices as a placeholder for a value from the dynamic
model. These slices can be given a name, a fact which IG
uses to its advantage. Using the image editing application, the
sliced image can be exported as a set of images and an HTML
view file. Although slice names are reflected differently in the
output from these software packages, IG can automatically
detect these.

C. Adding interactive elements to the diagram
The placeholder slices created during annotation (or, in fact,

any image in an HTML file) can be overlaid with an interactive
text box. Firstly, the developer needs to create an HTML model
file to house the interactive model (in addition to the view file
in section III-B). This model file must contain markup/code
to perform the following steps:

Fig. 3. The “78” from the original static image in figure 1 has been erased
and a slice named CondensationHeat put in its place.

1) import the IG library using the standard HTML
<script src> tag,

2) specify the view file’s file name,
3) add dynamic slices, and then
4) tell the library to run the diagram.

Aside from adding dynamic slices to the model file and
specifying which file contains the view file, the rest of the
model file is just boilerplate code.

To add dynamic slice, the developer needs to indicate
• the name of the slice in the view to be made dynamic,
• a default value for the dynamic slice, and
• a callback function.

1 i g . a d d s l i c e (’mySlice’ , 12 , f u n c t i o n () {})

Each callback function returns a JavaScript hash table whose
keys specify which dynamic slices are to be updated if this
particular dynamic slice is changed and whose values are the
newly calculated value. The callback function’s arguments are
the names of dynamic slices whose values need to be known
in order to update the model. For example, to encode the
relationship velocity = distance

time , the following anonymous
function might be used for both the time and velocity
dynamic slices:

1 f u n c t i o n (t ime , d i s t a n c e) {
2 re turn {
3 v e l o c i t y : d i s t a n c e / t ime
4 }
5 }

In this case, if time or distance are changed by the user,
the velocity dynamic slice’s value will be updated according
to the values for time and distance .

When all of the above steps have been performed, an
interactive diagram has been created. In order to view it, the
user opens the model file (which is just a standard HTML file)
in his/her browser (see figure 4).

IV. TECHNICAL DESIGN

The IG library is designed to be a lightweight library to
decouple the process of creating the artwork for a flow or
causal loop diagram from the process of making it interactive.
It allows users that have a webpage containing one or more
images to overlay an interactive model when opened in a web
browser. Because we wanted to facilitate the situation in which

176

Fig. 4. An augmented energy flow diagram showing earth’s energy budget
with one of the text entry fields highlighted. As desired, it largely resembles
the image in figure 1. The original values in the source image were erased
and the diagram sliced, augmented, and populated with default values in
under 10 minutes; however, no formulae were added – only default values.

the original diagram designer may not be involved with the
augmentation of his/her diagram, the model-view-controller
architecture was chosen because it provides a separation of
concerns that aligned closely with the intended use cases.
Within the MVC paradigm,

• view – the finished view is based around the flow or
causal loop diagram created by a designer (sections III-A
and III-B),

• model – the model is created by the developer (sec-
tion III-C), and

• controller – the IG library serves as the controller.
Each of these components is stored in a separate file.

A. MVC – View (HTML, possibly with JavaScript)
Slices are usually used for the purpose of creating

mouseover animations or optimizing an image for download-
ing. Because slices are simple to create, artists and non-artists
alike can slice a completed image. IG uses these slices for
a different purpose: the names of slices are used to couple
the model to the view. To maximize compatibility not only
with web pages created by image editors but also with HTML
files generated by hand or other web editors, IG employs a
variety of methods to match names used in the model and
the HTML source. IG is designed to minimize interference
with code in the HTML files that respond to mouse events,
preserving rollover animations, form submit buttons, etc.

B. MVC – Model (HTML/JavaScript)
IG models are created in JavaScript and embedded in an

HTML file so as to work in standard web browsers. The
callback function design described in section III-C was chosen
because it places no requirements on the programmer to
adhere to any particular design principles. The actual model
may be written using whatever techniques and technologies
the programmer desires so long as they can interface with
the browser’s JavaScript engine. This could be as simple as
providing a direct calculation formula in the callback function,
as shown in the velocity example. However, the IG library is

designed to accommodate coupling to any source including a
JavaScript-based model or a model housed on a server. Since
the full power of JavaScript is at the developer’s disposal,
dynamically generated images are possible.

C. MVC – Controller (JavaScript)
The IG library serves primarily as a controller. IG loads the

HTML file containing the referenced view file and attempts to
locate the dynamic slices in it that are referenced by the model.
It then overlays these dynamic slices with pre-populated input
fields for users to enter new values for the dynamic slices;
these fields are, as expected, coupled to the model via the con-
troller. To minimize interference with JavaScript code in the
view, the controller runs the entire page in a sandbox and uses
editable HTML DIV element overlays for user input/output:
due to the way events are handled in web browsers, mouse
movements and actions “bubble” allowing scripted actions
attached to elements underneath the DIV overlays to fire.

The controller uses simple heuristics to determine the types
of data in the model (to distinguish between strings, integers,
and floats), performing automatic type conversions between
the model and the view. It also uses software reflection to parse
the callback functions defined in the model to simplify the
API; the IG library automatically determines which dynamic
slices’ values need to be converted and passed to each callback
function, eliminating the need for messy boilerplate code
inside each callback function.

D. Split-file design
IG is designed to support the model and view being stored

in separate files rather than the simpler single-file design. The
reason for this is two-fold. The first has to do with streamlining
the user’s workflow based upon the expectation that many of
diagrams will be sliced in the Gimp, Photoshop, etc. Instead of
directly editing HTML file, these programs export HTML and
supporting resource files, overwriting manual changes. Adding
code for IG to these HTML files could become tedious;
whenever a change to an image is made, all the IG-related code
would need to be added again. Though this process could be
partly automated, it would still involve an extra step to merge
code. Instead, IG takes advantage of the run-time processing of
the HTML view: the IG controller, when loaded in the HTML
model file as part of the normal viewing process, loads the
HTML view file and uses the web browser’s parser to avoid
dealing with variations in output between the software used to
produce the view files.

The second major reason for the split-file design is to
improve modularity. Doing an Internet search for “earth’s
energy budget” will yield many example diagrams that an
educator could use for an interactive diagram. If an interactive
diagram is produced with IG using a particular static diagram
and, later, a nicer static diagram is found, it can be substituted
after slicing the new image. The positions and sizes of the
slices make no difference; the only thing that needs to be
done to ensure compatibility is to keep slice names consistent
between the old and the new HTML view files.

V. USER INTERFACE

The IG library, a JavaScript file, by itself does not provide
any convenient editing interface; developers may use whatever
tools they wish. However, considering the intended user-base

177

includes educators that may not have experience with HTML,
much less JavaScript, we prototyped a user interface for creat-
ing and editing IG diagrams. IGUI, a web application, unifies
the processes of annotating (section III-B) and augmenting
(section III-C) into one graphical tool. Though the purpose
and uses of this tool are rather different from Inflo[6], a visual
language based on directed acyclic graphs, we are reusing
parts of the design language for expressing computation since
people with no programming experience have found it usable.

The first step for producing a model using this service is
to add an image or webpage to the user’s library of static
diagrams. This can be done by uploading an image or a web
page as a ZIP file or entering a URL1. From here, instead of
relying on an image editor (or code editor) to perform slicing,
developers will be shown the items from their static diagram
library in their web browser and can freely drag boxes to create
slices that IG will track internally. This not only reduces the
need to install an additional piece of software, it eliminates the
need for an intermediate set of files to be managed by users.
These slices can be named within the application.

Next, developers can create sets of models to connect to
static diagrams. A static diagram may be augmented with one
or more models. For example, in the earth’s energy budget,
one model might deal with incoming solar radiation while
another might deal with infrared radiation originating from
the earth. The two could be used to augment the same static
diagram. There is a box reserved for entering equations into
IGUI, much like a formula editor in a spreadsheet (except
multiple equations, rather than a single formula, are entered).
The “spreadsheet cells”, however, are the slices defined by the
user and may contain constraints. E.g., to disallow negative
mass, the constraint mass > 0 can be given where mass
is the name of a slice.

Although systems may be cyclic in nature, when a user
experiments by changing values in the simulation, we are
interested in how changes propagate outward to reach a new
equilibrium. If the new equilibrium can be computed by direct
calculation (as opposed to be found iteratively via simulation),
users do not need to do any complex programming tasks.
As such, simple callback functions in IG may be entered
using roughly the same interface components as used in Inflo.
For example, if the dynamic slices reflectivity , incident
radiation , reflected , and absorbed are defined, an IG
callback for reflectivity can be specified as
reflected = reflectivity * incident radiation ,
absorbed = (1 - reflectivity) * incident radiation

For complex models, programming is unavoidable; fortunately,
IG allows developers to fall back on the JavaScript language
where necessary. In all other cases, providing a dedicated
editor that uses a formula editor along with a point-and-click
interface rather than leaving developers to their own devices
avoids the necessity for users to learn JavaScript, a set of
APIs, and to wade through boilerplate code. When models
are complete, developers will be able to share their interactive
diagrams from within IGUI.

1In the current prototype, there is no diagram or model library (see below),
preventing reuse. Background images and equations are selected/reentered for
each dynamic diagram. Further, only a single equation can define a system at
the moment. All other features work as described.

VI. FUTURE WORK

IGUI will be evaluated with teachers when the fall school
semester starts. In the meantime, we are seek approval for a
study with students in a one-day art workshop for kids. In
the workshop, we will give a “class” on energy efficiency
in the home (for example, attic insulation, wall insulation,
water boiler efficiency, and size of home) and have them
create mixed-media art pieces of houses in small groups.
Photographs of these art pieces will serve as IG diagram
backdrops. Students can then slice these images identifying
regions of interest (e.g., a box around the attic). After labelling
these boxes by clicking on a slice and typing in a name like
size of home , students can click on the equation editor at

the top of the screen and enter an equation for the energy
efficiency of the house. E.g., part of the formula may look
like size of home * heating energy per square foot *
(wall insulation efficiency * 70% + attic insulation

efficiency * 30%) .
An semi-structured interview with open-ended questions

will be administered in an informal environment to assess
understanding of concepts and reported enjoyment. Audio
recordings throughout the day and screen capture will be used
in tandem to augment the data.

VII. CONCLUSION

Flow and causal loop diagrams are useful for understanding
complex systems and are a valuable educational tool. Elegant
interactive versions of these diagrams provide additional bene-
fits as a concrete vehicle for experimentation and guided redis-
covery. Allowing educators and other individuals to augment
new and existing flow and causal loop diagrams would allow
these benefits to be realized by more people. The MVC model
is appropriate for this situation; the IG library demonstrates
why this architecture choice integrates well with different
workflows. Thus, IG has made it possible to make existing
diagrams interactive in ways which prior research has shown
to be useful and can be used to rapidly prototype different
styles of presenting models for research purposes.

REFERENCES

[1] M. Cronin, C. Gonzalez, and J. Sterman, “Why don’t well-educated
adults understand accumulation? a challenge to researchers, educators,
and citizens,” in Organizational Behavior and Human Decision Processes,
vol. 108, no. 1, 2009, pp. 116–130.

[2] (2007). [Online]. Available: http://cimss.ssec.wisc.edu/sage/meteorology
[Accessed: 11 March, 2012]

[3] M. Schaffernicht, “Learning from rediscovering system dynamics mod-
els,” Systèmes dInformation et Management, vol. 14, no. 4, pp. 87–
105,114, 2009.

[4] (2012) STELLA modeling & simulation software. [Online]. Available:
http://www.iseesystems.com/ [Accessed: 11 March, 2012]

[5] (2011, October) True-world: Temporal reasoning universal elaboration.
[Online]. Available: http://www.true-world.com [Accessed: 11 March,
2012]

[6] J. Lung and S. Easterbrook, “Inflo: collaborative reasoning via open
calculation graphs,” in Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work, ser. CSCW ’12. New
York, NY, USA: ACM, 2012, pp. 1199–1202. [Online]. Available:
http://doi.acm.org/10.1145/2145204.2145384

[7] ——, “A first look at end-user visual computation supporting sharing
amp; reuse with inflo,” in Visual Languages and Human-Centric Com-
puting (VL/HCC), 2011 IEEE Symposium on, sept. 2011, pp. 257 –258.

[8] P. L. Pirolli and J. R. Anderson, “The role of learning from examples
in the acquisition of recursive programming skills,” Canadian Journal of
Psychology, vol. 39, no. 2, pp. 240–272, June 1985.

[9] G. Stenberg, “Conceptual and perceptual factors in the picture superiority
effect,” European Journal of Cognitive Psychology, vol. 18, no. 6, pp.
813–847, 2006.

178

