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Abstract
Model Management addresses the problem of manag-

ing an evolving collection of models, by capturing the re-
lationships between models and providing well-defined op-
erators to manipulate them. In this paper, we describe two
such operators for manipulating hierarchical Statecharts:
Match, for finding correspondences between models, and
Merge, for combining models with respect to known corre-
spondences between them. Our Match operator is heuris-
tic, making use of both static and behavioural properties
of the models to improve the accuracy of matching. Our
Merge operator preserves the hierarchical structure of the
input models, and handles differences in behaviour through
parameterization. In this way, we automatically construct
merges that preserve the semantics of Statecharts models.
We illustrate and evaluate our work by applying our opera-
tors to AT&T telecommunication features.

1 Introduction

Model-based development involves construction, inte-
gration, and maintenance of complex models. For large-
scale projects, this can include many inter-related models,
representing different versions over time, different variants
across a product family, different options for implementa-
tion, and so on. Model Management aims to provide a sys-
tematic way to represent the relationships between mod-
els, and a set of operators for manipulating them. Such
operators include Match, for finding correspondences be-
tween models, Diff, for finding differences between models,
Merge, for putting together a set of models with respect to
known relationships between them, and Slice, for producing
a projection of a model based on a given criterion [2, 18, 6].

Among these operators, Match and Merge play a cen-
tral role in supporting distribution and coordination of mod-
elling tasks. In any situation where models are developed
independently, Match provides a way to discover the re-
lationships between them, for example, to compare vari-
ants [15], to identify inconsistencies [30], and to support

reuse [14]. Sophisticated Match tools, e.g. [3], can han-
dle models that use different vocabularies and different lev-
els of abstraction. Merge provides a way to combine mod-
els, to gain a unified perspective, to understand interactions
between models, and to perform various types of analysis,
e.g., validation and verification.

Many existing approaches to Match and Merge focus
on structural similarities between models. For example,
[18] studies matching and merging of conceptual database
schemata; [17] proposes a general framework for merg-
ing visual design diagrams; [27] describes an algebraic ap-
proach for merging requirements views; and, [15] provides
a technique for matching architecture diagrams using ma-
chine learning. These approaches treat models as graph-
ical artifacts while largely ignoring their semantics. This
treatment provides generalizable tools that can be applied
to many different modelling notations, and is particularly
suited to early stages of development, when models may
have loose or undefined semantics.

In contrast, recent work on behavioural models has con-
centrated on establishing semantic relationships between
models. For example, [32] uses logical pre/post-conditions
over object interactions for merging independently-
developed sequence diagrams, and [31] uses refinement re-
lations for merging consistent state-machine models such
that their behavioural properties are preserved.

In this paper, we present an approach to matching and
merging hierarchical Statecharts1 models that exploits both
structural and semantic information in the models, and
ensures that behavioural properties are preserved. Our
Match operator includes heuristics for finding terminolog-
ical, structural, and semantic similarities between models.
Our Merge operator parameterizes variabilities between the
input models so that their behavioural properties are guar-
anteed to hold in their merge. We illustrate and evaluate our
work by applying our operators to a set of AT&T telecom-
munication features.

1Statecharts is a design and implementation language and is widely
used for specifying dynamic behaviours of software systems [9].
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Variables ``subscriber'', ``participant'', and ``callee'' are port variables.
A label ``p?e'' on a transition indicates that the transition is triggered by event 
``e'' sent from port ``p''. 

These variants are examples of DFC ``feature boxes'', which  can be instantiated  in the ``source zone'' or the ``target zone''. Feature boxes instantiated in the source 
zone apply  to all outgoing calls of a customer, and those instantiated in the target zone apply to  all their incoming calls.  The conditions ``zone = source'' and  ``zone 
= target'' are used for distinguishing the behaviours of feature boxes in different zones. 

Figure 1. Simplified variants of the call logger feature.

1.1 Motivating Example

We motivate our work with a scenario for maintaining
variant feature specifications at AT&T. These executable
specifications are modules within the Distributed Feature
Composition (DFC) architecture [11], and form part of a
consumer voice-over-IP service. In the current implemen-
tation of DFC [5], the features are written using Statecharts.

One feature of the voice-over-IP service is “call log-
ging”, which makes an external record of the disposition
of a call allowing customers to later view information on
calls they placed or received. At an abstract level, the fea-
ture works as follows: It first tries to setup a connection
between the caller and the callee. If for any reason (e.g.,
caller hanging up or callee not responding), a connection is
not established, a failure is logged; otherwise, when the call
is completed, information about the call is logged.

Initially, the functionality was designed only for basic
phone calls, for which logging is limited to the direction of
a call, the address location where a call is answered, success
or failure, and the duration if it succeeds. Later, a variant of
this feature was developed for customers who subscribe to
the voicemail service. Incoming calls for these customers
may be redirected to a voicemail resource, and hence, the
log information should include the voicemail status as well.
Figure 1 shows simplified views of the basic and voicemail
variants of this feature. To avoid clutter, we combine transi-
tions that have the same source and target states using dis-
junction (OR).

In the DFC architecture, telecom features may come
in several variants to accommodate different customers’
needs. The development of these variants is often dis-
tributed across time and over different teams of people, re-

sulting in the construction of an independent model for each
variant. To reduce the high costs associated with verifying
and maintaining independent models, it is desirable to con-
solidate the variants of each feature into a single coherent
model. To do this, we need to be able to identify corre-
spondences between variant models and merge these mod-
els with respect to their correspondences.

1.2 Contributions of this Paper
Match and Merge are recurring problems arising in dif-

ferent contexts. Our motivating example illustrates one of
the many applications of these operators. Implementation
of Match and Merge involves answering several questions.
Particularly, what criteria should we use for identifying cor-
respondences between different models? How can we quan-
tify these criteria? How can we construct a merge given a
set of models and their correspondences? How can we dis-
tinguish between shared and non-shared parts of the input
models in their merge? What properties of the input mod-
els should be preserved by their merge? In this paper, we
address these questions for the Statecharts notation. The
contributions of this paper are as follows:

• A versatile Match operator for Statecharts (Section 4).
Our Match operator uses a range of heuristics includ-
ing typographic and linguistic similarities between the
vocabularies of different models, structural similarities
between the hierarchical nesting of model elements, and
semantic similarities between models based on a quanti-
tative notion of behavioural bisimulation. We apply our
Match operator to a set of telecom feature specifications
developed by AT&T. Our evaluation indicates that the ap-
proach is effective for finding correspondences between
real-world Statecharts models (Section 6).



• A Merge operator for Statecharts (Section 5). We pro-
vide a procedure for constructing behaviour-preserving
merges that also respect the hierarchical structuring of
the input models.

2 Overview of Our Approach

The main challenge in devising a usable Match operator
is finding a set of effective heuristics that can imitate the rea-
soning of a domain expert. In our work, we use two types
of heuristics: static and behavioural. Static heuristics use
semantic-free attributes, such as element names, for mea-
suring similarities. For the models in Figure 1, static heuris-
tics would suggest a number of good correspondences, e.g.,
the pairs (s6, t6), and (s7, t7); however, these heuristics
would miss several others including (s3, t3), (s3, t2) and
(s4, t4). These pairs are likely to correspond not because
they have similar static characteristics, but because they ex-
hibit similar dynamic behaviours. Our behavioural heuristic
can find these pairs.

Our Match operator, produces a correspondence relation
between states in the two models. For the models of Fig-
ure 1, it may yield the correspondence relation shown in
Figure 3(b). Because the approach is heuristic, the rela-
tion must be reviewed by a domain expert and adjusted by
adding any missing correspondences and removing any spu-
rious ones. In our example, the final correspondence rela-
tion approved by a domain expert is shown in Figure 3(c).

In contrast to matching, merging is not heuristic, and is
almost entirely automatable. Given a pair of models and
a correspondence relation between them, our Merge opera-
tor automatically produces a merge that: (1) preserves the
behavioural properties of the input models, (2) respects the
hierarchical structure of these models, and (3) distinguishes
between shared and non-shared behaviours of these mod-
els by attaching appropriate guard conditions to non-shared
transitions. Figure 4, shows the merge of the models of
Figure 1 with respect to the relation in Figure 3(c). In the
merge, non-shared transitions are guarded by boldface con-
ditions representing the models they originate from.

This merge is behaviour-preserving. For example, the
property “After a connection is set up, a successful call will
be logged if the subscriber or the participant sends Accept”
holds in both models in Figure 1, and is thus preserved in
their merge as a shared behaviour (denoted by the path from
state (s4, t4) to (s6, t6)). The property “After a connection
is set up, a voicemail will be logged if the call is redirected
to the voicemail service”, which holds over the voicemail
variant but not over the basic, is represented as a parameter-
ized behaviour in the merge (denoted by the transition from
(s4, t4) to t8), and is preserved only when its guard holds.
The merge also respects the hierarchical structure of the in-
put models, providing users with a merge that has the same
conceptual structure as the input models.

3 Background
While our work is general and can be applied to various

Statecharts dialects, in this paper, we ground our discussion
on a particular dialect, called ECharts [4]. ECharts provides
well-defined deterministic semantics for the Statecharts lan-
guage, and is suitable for detailed design and implementa-
tion. The AT&T telecom features are specified in ECharts.

A Statecharts model is a tuple (S, ŝ,�, E, V,R), where
S is a finite set of states; ŝ ∈ S is an initial state; � is a
partial order defining the state hierarchy tree (or hierarchy
tree, for short); E is a finite set of events; V is a finite set of
variables; and R is a finite set of transitions, each of which
is of the form 〈s, a, c, α, s′, prty〉, where s, s′ ∈ S are the
transition’s source and target, respectively, a ∈ E is the
triggering event, c is an optional predicate over V , α is a
sequence of zero or more actions, and prty is a number de-
noting the transition’s priority. Each state in S can be either
an atomic state or a superstate. The hierarchy tree � defines
a partial order on states with the top superstate as root and
the atomic states as leaves. For example, in Figure 1, s0 is
the root, s2 through s7 are leaves, and s1 is neither.

This formalism, adapted from [22], supports super-
states (OR states), but not parallel states (AND states).
ECharts uses parallel states with interleaved transition ex-
ecutions [4], and can be translated to the above formalism
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using the interleaving semantics of [22]. A
simple example of this translation is shown
on the right. In ECharts, transitions with
the same event and condition can be made
deterministic by assigning globally-ordered
priorities to them (using prty). The models
shown in Figure 1 are already deterministic,
and thus, no prioritization is required.

We present our Match and Merge operators for
input models M1 = (S1, ŝ,�1, E1, V1, R1) and
M2 = (S2, t̂,�2, E2, V2, R2). We assume the sets of
events, E1 and E2, and variables, V1 and V2 are drawn from
a shared vocabulary, i.e. there are no name clashes, and no
two elements represent the same concept. This assumption
is reasonable for design and implementation models be-
cause events and variables capture observable stimuli, and
for these, a unified vocabulary is often developed during
upstream lifecycle activities.

4 Matching Statecharts
Our Match operator (Figure 2) uses a hybrid approach

combining static matching (Section 4.1) and behavioural
matching (Section 4.2). Static matching is independent of
Statecharts semantics and uses typographic and linguistic
similarities between state names, and similarities between
state depths in the models’ hierarchy trees. Behavioural
matching generates similarity degrees between states based
on their behavioural semantics. We aggregate these static



Static Matching

Behavioural Matching
ρ

+ Translation

 Correspondence Relation (  )

Threshold

M1,M2

Figure 2. Overview of the Match operator.

and behavioural heuristics to produce overall similarity de-
grees between states (Section 4.3). Given a similarity
threshold, we can then determine a correspondence relation
ρ over the states of the input models (Section 4.4).

4.1 Static Matching
Typographic Matching assigns to every pair (s, t) of states
a normalized value in [0..1] computed by applying the N-
gram algorithm [16] to the name labels of s and t. Given a
pair of strings, this algorithm produces a similarity degree
based on counting the number of their identical substrings
of length N. We use a generic implementation of this algo-
rithm with trigrams (i.e., N = 3).

Linguistic Matching measures similarity between name la-
bels based on their linguistic correlations, to assign a nor-
malized similarity value to every pair of states. We employ
the freely available WordNet::Similarity package [23] for this
purpose.

Depth Matching uses state depths to derive a useful simi-
larity heuristic for models that are at the same level of ab-
straction. This captures the intuition that states at similar
depths are more likely to correspond to each other. Depth
matching assigns a normalized value in [0..1] to every pair
(s, t) of states. The closer the depths of s and t in their re-
spective hierarchy trees are, the closer this value is to one.
Depth matching is not used when the input models are at
different levels of abstraction.

4.2 Behavioural Matching
Our behavioural matching technique is reminiscent of

deciding bisimilarity between state-machines [19]. Bisim-
ilarity provides a natural way to characterize behavioural
equivalence. Bisimilarity is a recursive notion and can be
defined in two ways, forward and backward [21]. Two
states are forward bisimilar if they can transition to (for-
ward) bisimilar states via identically-labelled transitions;
and are (forward) dissimilar otherwise. Backward bisimi-
larity is dual.

Bisimilarity relates states with precisely the same set
of behaviours, but it cannot capture partial similari-
ties. For example, states s4 and t4 in Figure 1 tran-
sit to (forward) bisimilar states s7 and t7, respectively,
with transitions labelled participant?Reject[zone=source], par-
ticipant?TearDown[zone=source], subscriber?Reject[zone=target],
and subscriber?TearDown[zone=target]. However, despite their
intuitive similarity, s4 and t4 are dissimilar because their
behaviours differ on a few other transitions, e.g., the one
labelled redirectToVoicemail[zone=target].

Instead of considering pairs of states to be either bisim-
ilar or dissimilar, we introduce an algorithm for computing
a quantitative value measuring how close the behaviours of
one state are to those of another. Our algorithm iteratively
computes a similarity degree for every pair (s, t) of states
by aggregating the similarity degrees between the immedi-
ate neighbours of s and those of t. By neighbours, we mean
either successor/child states (forward neighbours) or pre-
decessor/parent states (backward neighbours) depending on
which bisimilarity notion is being used. The algorithm iter-
ates until either the similarity degrees between all state pairs
stabilize, or a maximum number of iterations is reached.

In the remainder of this section, we describe the algo-
rithm for the forward case. The backward case is similar.
We use the notation s

a→ s′ to indicate that s′ is a forward
neighbour of s. That is, s has a transition to s′ labelled a,
or s′ is child of s where a is a special label called child.
Treating children states as neighbours allows us to propa-
gate similarities from children to their parents.

Behavioural matching is a total function
B : S1 × S2 → [0..1]. We denote by Bi(s, t) the de-
gree of similarity between states s and t after the ith
iteration of the matching algorithm. Initially, all states of
the input models are assumed to be bisimilar, so B0(s, t)
is 1 for every pair (s, t) of states. Users may override the
default initial values, for example assigning zero to those
tuples that they believe would not correspond to each other.
This provides a mechanism for users to apply their domain
expertise during the matching process. Since behavioural
matching is iterative, user input gets propagated to all
tuples and can hence induce an overall improvement in the
results of matching.

For proper aggregation of similarity degrees between
states, our behavioural matching requires a measure for
comparing transition labels. A transition label is made up
of an event, and optionally, a condition and an action. We
compare transition labels using the N-gram algorithm aug-
mented with some simple semantic heuristics. This algo-
rithm is suitable because of the assumption that a shared
vocabulary for observable stimuli already exists. We im-
prove transition label comparison by using the variable as-
signments in the action parts of transition labels for term
rewriting. For example, in Figure 1, the actions callee = par-
ticipant and callee = subscriber suggest that the transition label
callee?Ack is similar to participant?Ack and subscriber?Ack. We
account for this by (automatic) term replacement prior to
applying the N-gram algorithm. The algorithm assigns a
similarity value L(a, b) in [0..1] to every pair (a, b) of tran-
sition labels.

We have also explored the use of analytical reasoning for
comparing transition labels. For example, the N-gram algo-
rithm would find a rather small degree of similarity between
conditions (x ∧ y) ∨ z and (x ∨ z) ∧ (y ∨ z), whereas an-



alytical reasoning, e.g. by a theorem prover, would identify
these conditions as identical. Our experimentation with this
idea indicates that such reasoning over labels is expensive
and also unnecessary because examples such as the above
are not very common in practice.

Having described the initialization data (B0), and transi-
tion label comparison (L), we now describe the computation
of B. For every pair (s, t) of states, the value of Bi(s, t), is
computed from: (1) Bi−1(s, t); (2) similarity degrees be-
tween the forward neighbours of s and those of t after step
i − 1; and (3) comparison between the labels of transitions
relating s and t to their forward neighbours.

We formalize the computation of Bi(s, t) as follows.
Let s

a→ s′. To find the best match for s′ among the
forward neighbours of t, we need to maximize the value
L(a, b)× Bi−1(s′, t′) where t

b→ t′.
The similarity degrees between the forward neigh-

bours of s and their best matches among the for-
ward neighbours of t after iteration i − 1 is computed
by X =

∑
s

a→s′ max
t

b→t′
L(a, b)× Bi−1(s′, t′). And the

similarity degrees between the forward neighbours of
t and their best matches among the forward neigh-
bours of s after iteration i − 1 are computed by
Y =

∑
t

a→t′
max

s
b→s′L(a, b)× Bi−1(s′, t′). We denote

the sum of X and Y by Sumi(s, t).
The value of Bi(s, t) is computed by first normalizing

Sumi(s, t) and then taking its average with Bi−1(s, t):

Bi(s, t) = 1
2

` Sumi(s,t)
|succ(s)|+|succ(t)| + Bi−1(s, t)

´
In the above formula, |succ(s)| and |succ(t)| are the num-
ber of forward neighbours of s and t, respectively. The
larger the Bi(s, t), the more the behaviours of s and t are
alike.

This computation is performed iteratively until the dif-
ference between Bi(s, t) and Bi−1(s, t) for all pairs (s, t)
becomes less than a fixed ε > 0. If the computation does not
converge, the algorithm stops after some maximum number
of iterations.

4.3 Combining Different Similarity Measures
To obtain overall similarity degrees between states, we

need to combine the results from different heuristics. There
are several approaches to this, including linear and nonlin-
ear averages, and machine learning. Learning-based tech-
niques have been shown to be effective when proper train-
ing data is available [15]. At this stage, we do not have
sufficient training data to employ such techniques. In our
current implementation, we use a simple approach based on
linear averages.

We generate an aggregate value for static heuristics, de-
noted by S, by taking the maximum of typographic and
linguistic similarities, and computing its weighted average

s0 s1 s2 s3 s4 s5 s6 s7

t0 .87 .63 .54 .03 .08 .07 .57 .58

t1 .48 .70 .92 .17 .17 .26 .20 .23

t2 .08 .18 .17 .65 .30 .31 .31 .29

t3 .07 .19 .17 .66 .30 .32 .30 .30

t4 .07 .15 .17 .23 .64 .30 .30 .30

t5 .08 .15 .25 .22 .24 1.0 .04 .28

t6 .58 .45 .17 .22 .30 .30 1.0 .63
t7 .56 .45 .17 .22 .31 .28 .62 1.0
t8 .55 .45 .17 .22 .30 .35 .62 .62

(a) Combined C matching results for the models in Figure 1.

(s0, t0), (s2, t1), (s3, t2),
(s3, t3), (s4, t4), (s5, t5),
(s6, t6), (s7, t7), (s1, t0),
(s1, t1), (s6, t7), (s6, t8),
(s7, t6), (s7, t8)

(b) A correspondence relation ρ.

(s0, t0), (s4, t4),
(s2, t1), (s5, t5),
(s3, t2), (s6, t6),
(s3, t3), (s7, t7)

(c) ρ after revisions of Sec 4.4
and sanity checks of Sec 5.1.

Figure 3. Results of matching for call logger.

with depth similarity. Behavioural similarity, B, is com-
puted as the maximum of forward behavioural and back-
ward behavioural matching. To produce an overall com-
bined measure, denoted C, we take a weighted average of B
with S. Figure 3(a) illustrates C for the models in Figure 1.
Here, we use a 4-to-1 ratio for averaging name similarities
(max. of typographic and linguistic) with depth similar-
ity, and use equal weights for averaging S and B. These
weights, which we arrived at by experimentation, are also
used for the evaluation in Section 6.

4.4 Translating Similarities to Correspondences
To obtain a correspondence relation between M1 and

M2, the user sets a threshold for translating the overall simi-
larity degrees into a relation ρ. Pairs of states with similarity
degrees above the threshold are included in ρ, and the rest
are left out. In our example, if we set the threshold value
to 60%, we obtain the correspondence relation ρ shown in
Figure 3(b). Since matching is a heuristic process, ρ should
be reviewed and, if necessary, adjusted by the user. We as-
sume that the user would remove the spurious pairs (s6, t7),
(s6, t8), (s7, t6) and (s7, t8) from ρ. As we will discuss in
Section 5.1, the resulting relation needs to be further revised
before merge.

5 Merging Statecharts
In this section, we describe our Merge operator for Stat-

echarts. The input to this operator is a pair of models, M1

and M2, and a correspondence relation ρ. The output is a
merged model if ρ satisfies certain sanity checks. Other-
wise, a subset of ρ violating the checks is identified.

5.1 Sanity Checks for Correspondence Relations
Before applying the Merge operator, we need to ensure

that ρ passes certain sanity checks. To have behaviourally
sound merges, the initial states of the input models should
correspond. If ρ does not match ŝ to t̂, we add to the input
models new initial states ŝ′ and t̂′ with transitions to the old



ones. We then simply add the tuple (ŝ′, t̂′) to ρ. Note that
we can lift the behavioural properties of the models with
the old initial states to those with the new initial states. For
example, instead of evaluating a temporal property p at ŝ
(resp. t̂), we check AXp at ŝ′ (resp. t̂′), where AX denotes
the universal next-time operator.

To construct merges that are structurally sound, ρ must
satisfy the following conditions for every (s, t) ∈ ρ:

1. (monotonicity) If ρ relates a proper descendant of s
(resp. t) to a state x in M2 (resp. M1), then x must be
a proper descendant of t (resp. s).

2. (relational adequacy) Either the parent of s is related to
an ancestor of t, or the parent of t is related to an ancestor
of s by ρ.

Monotonicity ensures that ρ does not relate an ancestor of
s to t (resp. t to s) or to a child thereof. Relational ade-
quacy ensures that ρ does not leave parents of both s and
t unmapped; otherwise, it would not be clear which state
should be the parent of s and t in the merge. Note that de-
scendant, ancestor, parent, and child are all with respect to
each model’s hierarchy tree, �.

Pairs in ρ that violate any of the above conditions are
reported to the user. In our example, the relation shown
in Figure 3(b) has three monotonicity violations: (1) s0

and its child s1 are both related to t0; (2) t0 and its child
t1 are both related to s1; and (3) s1 and its child s2 are
both related to t1. Our algorithm reports {(s0, t0), (s1, t0)},
{(s1, t0), (s1, t1)}, and {(s1, t1), (s2, t1)} as conflicting
sets. We assume that the user addresses these conflicts by
eliminating (s1, t0) and (s1, t1) from ρ. The resulting rela-
tion, shown in Figure 3(c), passes all sanity checks and can
be used for merge.

5.2 Merge Construction
To merge M1 and M2, we first need to identify their

shared and non-shared parts with respect to ρ. A state x is
shared if it is related to some state by ρ, and is non-shared
otherwise. A transition r = 〈x, a, c, α, y, prty〉 is shared
if x and y are respectively related to some x′ and y′ by ρ,
and further, there is a transition r′ from x′ to y′ whose event
is a, whose condition is c, and whose priority is prty . r is
non-shared otherwise. Notice that there is no requirements
for the actions of r and r′ to be identical.

The goal of the Merge operator is to construct a model
that contains shared behaviours of the input models as
normal behaviours and non-shared behaviours as variabili-
ties. To represent variabilities, we use parameterization [8]:
Non-shared transitions are guarded by conditions denoting
the transitions’ origins, before being lifted to the merge.
Non-shared states can be lifted without any provisions –
these states are reachable only via non-shared (and hence,
guarded) transitions.

Below, we describe our procedure for construct-
ing a merge. We denote by M1 +ρ M2 =

(Link Callee, 
Link Subscriber)

(Link Callee,
 Link Participant)

(Waiting, 
Pending)

(Timer Started, 
Timer Started)

(Log Failure, 
Log Failure)

(Log Success, 
Log Success)

setup [zone =target]/
callee = subscriber

setup [zone=source] /
callee=participant

participant?Ack 
[ID=voicemail] subscriber?Ack

[ID=voicemail]

redirectToVoicemail
[zone=target,
ID=voicemail]

participant?Reject [zone=source] OR
participant?Unavail [zone=source, ID=voicemail]OR
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Figure 4. Resulting merge for call logger.
(S+, ŝ+,�+, E+, V+, R+) the merge of M1 and M2 with
respect to ρ.
States and Initial State. (S+ and ŝ+) The set S+ of states of

M1 +ρ M2 has one element for each tuple in ρ and one
element for each state in M1 and M2 that is non-shared.
The initial state of M1 +ρ M2, ŝ+, is the tuple (ŝ, t̂).

Events and Variables. (E+ and V+) The set E+ of events of
M1 +ρ M2 is the union of those of M1 and M2. The set V+

of variables of M1 +ρ M2 is the union of those of M1 and
M2 plus a reserved enumerated variable ID that accepts
values M1 and M2.

Hierarchy Tree. (�+) The hierarchy tree �+ of M1 +ρ M2

is computed as follows. Let s be a superstate in M1 (the
case for M2 is symmetric), and let s′ be a child of s.
• if s is mapped to t by ρ,

- if s′ is mapped to a child t′ of t by
ρ, make (s′, t′) a child of (s, t) in
M1 +ρ M2.

ts
s′ t′

(s, t)
(s′, t′)=⇒

- otherwise, if s′ is non-shared, make
s′ a child of (s, t) in M1 +ρ M2.

ts
s′

(s, t)

=⇒ s′

• otherwise, if s is non-shared
- if s′ is mapped to a state t′ by ρ,

make (s′, t′) a child of s in M1+ρM2.

s
s′ t′ (s′, t′)=⇒

s

- otherwise, if s′ is non-shared, make
s′ a child of s in M1 +ρ M2.

s
s′ =⇒

s
s′

Transition Relation. (R+) The transition relation R+ of
M1 +ρ M2 is computed as follows. Let r = 〈s, a, c, α, s′, prty〉
be a transition in M1 (the case for M2 is symmetric).

• (Shared Transitions) if r is shared, add to R+ a transi-
tion corresponding to r with event a, condition c, action2

α; α′, and priority prty .
2In ECharts [4], actions can neither produce triggering events nor

change the values of shared variables. Thus, the order of concatenation
of α and α′ is unimportant here.



• (Non-shared Transitions) otherwise, if r is non-shared,
add to R+ a transition corresponding to r with event a,
condition c ∧ [ID = M1], action α, and priority prty .

As an example, Figure 4 shows the resulting merge for
the models of Figure 1 with respect to the relation ρ in Fig-
ure 3(c). The conditions shown in boldface in Figure 4 cap-
ture the origins of the respective transitions. For example,
the transition from (s4, t4) to t8 annotated with the condi-
tion ID=voicemail indicates a variable behaviour that is appli-
cable only for clients subscribing to voicemail.

Two points need to be noted about our merge construc-
tion: (1) The construction requires that states be either
atomic or superstates (OR states) – as noted in Section 3,
parallel states (AND states) are replaced by their semanti-
cally equivalent non-parallel structures before merge. To
keep the structure of the merged model as close as possible
to the input models, non-shared parallel states can be ex-
empted from this replacement when their descendants are
all non-shared too. Such parallel states (and all descendants
thereof) can be lifted verbatim to the merge. (2) Our defi-
nition of shared transitions is conservative in the sense that
it requires such transitions to have identical events, condi-
tions, and priorities in both input models. This is necessary
to ensure that merges are behaviourally sound and deter-
ministic. However, such a conservative approach may re-
sult in redundant transitions. These redundancies arise due
to logical or unstated relationships between the events and
conditions used in the input models. For example, in Fig-
ure 4, the transitions from (s2, t1) to (s3, t2) and to (s3, t3)
fire actions callee = subscriber and callee=participant, respec-
tively. Thus, in state (s3, t3), the value of callee is equal to
participant, and in state (s3, t2), it is equal to subscriber. This
allows us to replace the event callee?Ack[ID=basic] on tran-
sition from (s3, t2) to (s4, t4) by subscriber?Ack[ID=basic],
and merge the two out-going transitions from (s3, t2) into
one transition with label subscriber?Ack. Similarly, the two
transitions from (s3, t3) to (s4, t4) can be merged into one
transition with label participant?Ack. Identifying such redun-
dancies and addressing them requires human intervention.

6 Evaluation
The ultimate evaluation of our work is whether develop-

ers faced with model management tasks find our approach
helpful. In some contexts, developers may find it relatively
easy to identify matches by hand, for example if the models
are small, and the developers are very familiar with them.
Our approach to matching is valuable if it offers a quick
way to identify appropriate matches with reasonable accu-
racy, in situations where matches are hard to find by hand,
for example where the models are complex, or the devel-
opers are less familiar with them. On the other hand, com-
puting merge by hand is always likely to be laborious; our
approach to merge is therefore useful if it produces seman-
tically correct results and scales well.

Here, we present some initial steps to evaluate our work.
First, we discuss the complexity of our Match and Merge
operators, to show that they scale. We assess our Match
operator by measuring the accuracy of the relations it pro-
duces, in comparison with the assessment of a domain ex-
pert. We assess our Merge operator by proving that it pre-
serves the behavioural properties of the input models. In the
longer term, we plan to conduct more extensive user evalu-
ations to determine the value of our approach.

We have implemented our Match operator and have used
it for the evaluation described in here. We have also de-
veloped a Merge tool, TReMer [28], for merging state-
machines with respect to a given correspondence relation
between them. TReMer implements the procedure in Sec-
tion 5.2 and can merge Statecharts models stored as XML
files, but currently lacks a user interface for displaying hi-
erarchical models. We have successfully used TReMer for
merging variant telecom features.

6.1 Complexity
Let n1 and n2 be the number of states in the input mod-

els, and let m1 and m2 be the number of transitions in these
models. The space and time complexities of computing ty-
pographic and linguistic similarity scores between individ-
ual pairs of name labels are negligible and bounded by a
constant. The space complexity of Match is then the storage
needed for keeping a state similarity matrix and a label simi-
larity matrix (L in Section 4.2) and is O(n1×n2+m1×m2).
The time complexity of static matching is O(n1 × n2) and
of behavioural matching – O(c×m1 ×m2), where c is the
maximum allowed number of iterations for the behavioural
matching algorithm.

The space complexity of Merge is linear in the size of
the correspondence relation ρ and the input models. Theo-
retically, the size of ρ is O(n1×n2). In practice, we expect
the size of ρ to be closer to max(n1, n2) giving us linear
space complexity for practical purposes. This was indeed
the case for our models (see Table 1). The time complexity
of Merge is O(m1 ×m2).

6.2 Accuracy of Match
As with all heuristic matching techniques, the results of

our Match operator should be reviewed and adjusted by
users to obtain a desired correspondence relation. In this
sense, a good way to evaluate a matcher is by consider-
ing the number of adjustments users would need to make
to the results it produces. A matcher is effective if it neither
produces too many incorrect matches (false positives) nor
misses too many correct matches (false negatives).

We use two well-known metrics, namely precision, and
recall, to capture this intuition. Precision measures quality
(i.e., low number of false positives) and is the ratio of cor-
rect matches found to the total number of matches found.
Recall measures coverage (i.e., low number of false nega-
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Figure 5. Results of static, behavioural, and combined matching.

tives) and is the ratio of the correct matches found to the
total number of all correct matches. For example, if our
matcher produces the relation in Figure 3(b) and the desired
relation is Figure 3(c), the precision and recall is 8/14 and
8/8, respectively.

A good matching technique should produce high preci-
sion and high recall. However, these two metrics tend to be
inversely related: improvements in recall come at the cost of
reducing precision and vice versa. The Software Engineer-
ing literature suggests that for information retrieval tasks,
users are willing to tolerate a small decrease in precision
if it can bring about a comparable increase in recall [10].
We expect this to be true for model matching, especially
for larger models: it is easier for users to remove incor-
rect matches rather than find missing ones. On the other
hand, precision should not be too low. A precision less than
50% indicates that more than half of the found matches are
wrong. In the worse case, it may take users more effort to
remove incorrect matches and find missing correct matches
than to do the matching manually.

We evaluated the precision and recall of our Match op-
erator by applying it to a set of Statecharts models describ-
ing different telecom features at AT&T. The fifth author of
this paper acted as the domain expert for assessing correct
matches. We studied three pairs of models, describing vari-
ant specifications of telecom features at AT&T. One of these
is the call logger feature in Section 1.1. Simplified versions
of the variants of this feature were shown in Figure 1. The
other two features are remote identification and parallel lo-
cation. Remote identification is used for authenticating a
subscriber’s incoming calls. Parallel location, also known
as find me, places several calls to a subscriber at different
addresses in an attempt to find her.

In Table 1, we show some characteristics of the studied
models. For example, the first variant of the remote iden-
tification feature has 24 states and 44 transitions, and the

Feature Variant I Variant II All Correct
# states # transitions # states # transitions Matches

Call Logger 18 40 21 63 11
Remote Identification 24 44 19 31 12

Parallel Location 28 71 33 68 16

Table 1. Characteristics of the studied models.

second one has 19 states and 31 transitions. The correct
relation (as identified manually by our domain expert) con-
sists of 12 pairs of states.

To compare the overall effectiveness of static matching,
behavioural matching, and their combination, we compute
their precision and recall for thresholds 3 ranging from 0.95
down to 0.5. The results are shown in Figure 5.

In the studied models, states with typographically sim-
ilar names were likely to correspond. Hence, typographic
matching, and by extension, static matching have high pre-
cision. However, static matching misses several correct
matches, and hence has low recall. Behavioural matching,
in contrast, has lower precision, but high recall. When the
threshold is set reasonably high, combined matching has
precision rates higher than those of static and behavioural
matching on their own. This indicates that static and be-
havioural matching are filtering out each other’s false pos-
itives. Recall remains high in the combined approach, as
static matching and behavioural matching find many com-
plimentary high-quality matches.

Table 2 shows the precision-recall tradeoff points, which
we believe to be reasonable for the studied examples. As
shown in the table, for thresholds between 0.75 and 0.85,
our combined matcher achieved a precision of more than
50% and a recall of more than 80%. We anticipate that for
thresholds between 0.7 and 0.9 our technique would have
acceptable precision and recall; however, a more decisive
answer to this question requires further evaluation.

3Recall that threshold is the cutoff value used for determining the cor-
respondence relation from the similarity degrees (see Section 4.4).



Feature Threshold Precision Recall
Call Logger 0.80 54% 82%

Remote Identification 0.75 55% 100%
Parallel Location 0.85 51% 81%

Table 2. Tradeoff precisions and recalls.

6.3 Correctness of Merge
In [20], we have shown that our merge procedure is

behaviour-preserving. The proof goes by first translating
Statecharts models to their semantically equivalent Labelled
Transition Systems (LTSs) [19], and then showing that the
merge, when applied to LTSs, preserves branching temporal
properties expressed in modal µ-calculus [12]. Intuitively,
this is because: (1) The set of unguarded behaviours of the
merge is a subset of the behaviours of the individual input
models. Therefore, any universal µ-calculus property that
holds over the input models also holds over the unguarded
fragment of their merge. (2) Behaviours of the individual
input models are present as either guarded or unguarded
behaviours in their merge. Thus, the merge preserves all
existential µ-calculus properties of the input models.

The merge includes, in either guarded or unguarded
form, every behaviour of the input models. A change in the
correspondence relation (ρ) does not cause any behaviours
to be added to or removed from the merge, but may make
some guarded behaviours unguarded, or vice versa. The
use of parameterization for representing behavioural vari-
abilities allows to generate behaviour-preserving merges for
models that may even be inconsistent.

As noted in Section 3, our models have deterministic se-
mantics, achieved by assigning priority labels to transitions.
Our merge construction respects transition priorities and en-
sures that merges are deterministic as well.

Section 5 described our procedure for merging pairs of
models. This can be extended to n-ary merges by iteratively
merging a new input model with the result of a previous
merge, with one minor modification: the reserved variable
ID (in the merge procedure of Section 5.2) will range over
subsets of the input model indices. In this case, the order
in which the binary merges are applied does not affect the
final result.

7 Related Work
Matching. Most domains use heuristic techniques for
matching. These techniques yield values denoting a likeli-
hood of correspondence between elements of different mod-
els. In database design, finding correspondences between
database schemata is referred to as schema matching [24].
State-of-the-art schema matchers, such as Protoplasm [3],
combine several heuristics for computing similarities be-
tween schema elements. Our typographic and linguistic
heuristics (Section 4.1) are very similar to those used in
schema matching, but our other heuristics are tailored to
behavioural models.

Several approaches to matching have been proposed in
software engineering. [14] employs heuristic reasoning
for finding analogies between a problem description and
already existing domain abstractions. [25] uses approxi-
mate graph matching for finding overlaps between concept
graphs. [15] combines diagrammatic and syntactic heuris-
tics for finding matches between architecture models. None
of these were specifically designed for behavioural models
and are either inapplicable or unsuitable for matching Stat-
echarts models.

Our formulation of behavioural similarity (Section 4.2)
is analogous to the Markovian notions of behavioural re-
lations in [29]. Their goal is to define an overall distance
measure between reactive processes, whereas our goal is
to obtain a similarity measure between different Statecharts
models for finding their correspondences.

Merging. Model merging spans several application ar-
eas. In database design, merge is an important step for
producing a schema capturing the data requirements of all
stakeholders [2]. Software engineering deals extensively
with model merging – several papers study the subject in
specific domains including early requirements [27], static
UML diagrams [1, 17, 13, 33], scenarios [32], and state-
machines [26, 31]. [26] proposed a structural technique for
merging state-machines without regard to their behaviours.
In contrast, [31] provided an approach for behavioural
merging of consistent state-machines without variabilities.
These earlier approaches neither handle hierarchical nota-
tions nor address the question of reconciling the structural
and behavioural aspects of state-machine merging.

Our merge operator makes use of parameterization for
representing variabilities between different models. This
is a common technique in software maintenance and prod-
uct line engineering [8]. A different approach to dealing
with variabilities is to originally treat them as inconsisten-
cies [7, 31, 27]. This is more suitable for early stages of
development where variabilities may be due to conceptual
disagreements between stakeholders.

8 Conclusions and Future Work
We presented an approach to matching and merging of

Statecharts. Our Match operator includes heuristics that
use both static and behavioural properties to match pairs
of states in the input models. Preliminary evaluations show
that this combination produces higher precision than relying
on static or behavioural properties alone. Our Merge opera-
tor produces a combined model in which variant behaviours
of the input models are parameterized using guards on their
transitions. The result is a merge that preserves the tem-
poral properties of the input models. We have developed a
proof-of-concept implementation of these operators.

While our preliminary evaluations demonstrate the effec-
tiveness of our approach, its practical utility can only be as-



sessed by more extensive user trials. The value of our tools
are likely to depend on factors such as the size and complex-
ity of the models, the user’s familiarity with the models, and
the user’s subjective judgment of the matching results.

Our Match operator can be used in a number of different
ways. In Section 6, we evaluated Match as a fully auto-
matic operator. In practice, it might be reasonable to use
Match interactively, with the user seeding it with some of
the more obvious relations, and pruning incorrect relations
iteratively. We expect that such an approach will improve
accuracy, and we plan to run further experiments to inves-
tigate this idea. Alternatively, a developer might prefer to
assess the output of the Match operator by computing the
Merge, and inspecting the resulting model for validity. In
this way, each correspondence relation is treated as a hy-
pothesis for how the models should be combined, to be ad-
justed if the resulting merge does not make sense. We plan
to investigate whether this approach is feasible.

Finally, note that our evaluations depend on a subjective
judgment about the correct match to be found. In practice,
different developers may not agree on the correct way to
match their models [18]. We plan to conduct empirical eval-
uations that take this subjectivity into account.

Our work has a number of limitations that we plan to in-
vestigate further. As noted in Section 5.2, shared parallel
states are replaced with their semantically equivalent non-
parallel structures. This may result in discontinuities be-
tween the conceptual structuring of the merge and that of the
input models when parallel states have many substates. In
our telecom models, parallel states have no more than a few
substates each (less than five); therefore, the merged mod-
els still retained the essential structure of the input models.
An alternative approach to handling parallel states may be
needed for domains that make more extensive use of par-
allelization. Moreover, the Statecharts models studied in
Section 6 did not communicate through message passing
or shared variables. It is interesting to see if the semantics
of communications between models can help simplify our
matching and merging procedures.

ECharts have a number of advanced features including
transitions with multiple parallel source states and transi-
tions with history targets. Since match is a heuristic pro-
cess, we can either ignore these or find an approximating
representation for them. We have not yet investigated how
such features affect the accuracy of our Match operator. Our
Merge operator can handle these features as long as they are
non-shared. However, it currently does not provide explicit
support for these features.

The work reported here is part of a larger and ongoing
project on model management and its applications in soft-
ware engineering. An early vision of this project was pre-
sented in [6]. Our main direction for future work is to de-
velop appropriate model management operators for the suite

of UML notations and to provide a unifying framework for
using these operators in a cohesive way.
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