
Model Management and Inconsistency in Software Design

Steve Easterbrook
Department of Computer Science, University of Toronto

40 St George Street, Toronto, Ontario, M5S 2E4, Canada
http://www.cs.toronto.edu/~sme

Abstract
The management of inconsistency between multiple

viewpoints is a central problem in the design of large
software systems. However, many of the formalisms we
use in software design cannot handle inconsistent
descriptions. This leads to two common reactions: to
abandon the formalisms (and use semi-formal or
informal design notations) or to repair inconsistent
descriptions at all costs, if necessary by discarding
problematic information. Both reactions represent a
retreat from support for a full range of design activities.
Instead, we argue the need for formal reasoning systems
that can tolerate inconsistent information. A key
observation is that model management is a central
activity in software design. Rather than seeking to build
a single consistent model, software designers need to
reason about the inconsistencies and dependencies
between a set of inter-related partial models. We are
currently investigating the use of paraconsistent logics to
reason with information from inconsistent models.

1. Viewpoint Integration in SE

For the past 15 years, we have been studying the
problem of viewpoint integration in Software
Engineering. Viewpoints are used in SE to support a
loosely-coupled distributed approach to software
development, in which different participants are able to
maintain their own (partial) models of the system and its
requirements, without being constrained by the need to be
consistent with other participants’ models [3]. By
exploring the relationships between viewpoints, and the
inconsistencies that arise when intended relationships do
not hold, the participants discover disagreements, and
understand one another’s perspectives better.

The key insight of the viewpoints work is to see
software development as a problem of model
management, with the attendant goal of seeking coherence
in information drawn from disparate sources. Software
designers create models in a variety of notations to
capture their current understanding of the problem and
these models are rarely static. Designers analyze their
models in various ways, and use the results of these
analyses to improve them. They create multiple versions
of their models to explore design options, and to respond
to changing requirements. Hence, most of the time,
design models are likely to be incomplete and

inconsistent. Managing inconsistency as these models
evolve is a major challenge.

In its narrowest sense, consistency is usually taken to
mean syntactic consistency. In a good modeling language,
syntactic consistency should correspond to the developer’s
intuitive notion of a “well-formed model”. Hence,
syntactic inconsistencies indicate simple mistakes, or
slips, made by the designer. In this view, detection and
resolution of inconsistency can be thought of as “model
hygiene”.

In our work, we have taken a much broader view of
consistency. In our view, an inconsistency occurs
whenever some relationship that should hold (of a model)
has been violated. This definition has an intentional
flavour: someone (e.g. the designer) intends that certain
relationships hold. Such relationships may be internal to
a model (e.g. the definition of an element should be
consistent with its use), or may refer to external
relationships (e.g. a model should be consistent with a
particular choice of semantics, with existing standards,
with good practice guidelines, or with another model,
etc). This definition of inconsistency spans the semantics
and pragmatics (i.e. the intended meanings and uses) of
model elements, in addition to their syntax.

This view has several interesting consequences.
Firstly, by this definition, most conceptual models are
inconsistent most of the time, and attempting to remove
all inconsistency is usually infeasible. Design involves
finding acceptable compromises, rather than seeking
perfection. Hence, in our work on consistency
management, we don’t view detection and removal of
inconsistency as the main goal; instead, we focus on tools
to explore the consistency relationships, and on reasoning
techniques that tolerate inconsistency [7].

Secondly, most of the interesting consistency
relationships arise implicitly as models are developed. If
we wish to provide automated tools for consistency
management, such consistency relationships have to be
captured and represented. Thirdly, because of the
intentional nature of these relationships, the set of
relevant consistency relationships for a given model will
change over time as the developer’s intent changes.

We have made significant progress in the past 15 years
in our study of these ideas.
ß We have developed a number of representation

schemes for capturing and managing the consistency
relationships in modeling languages. These include a

first order logic for checking XML documents [6], a
production rule approach for checking UML models
[5] and a structural mapping technique based on
graph morphisms for graphical notations [8]

ß We have developed a number of reasoning techniques
that tolerate inconsistency. In general, these make use
of paraconsistent logics, i.e. non-classical logics
whose entailment relations are not explosive under
contradiction. For example, we have explored the use
of a family of multi-valued logics identified by
Fitting [4], and demonstrated that we can build
practical reasoning engines for these logics [1].

ß We have developed a theoretical framework for
combining information from multiple, inconsistent
sources, without first resolving the inconsistencies
[8]. The composition technique we use in this
framework preserves information about relative
certainty and inconsistency of the source models.

2. Implications for the Science of Design

Drawing on our experience with work on
viewpoints and inconsistency management, we can
make the following observations of a typical
software design process:
ß By its very nature, design involves the integration of

information from a heterogenous collection of
knowledge sources each provided by a particular
stakeholder with a particular interest in the outcome.

ß The knowledge from these disparate sources will not
be static – it will evolve as the design process
proceeds, and as the participants’ understandings and
expectations change.

ß For much of the time, a designer’s current
understanding of an evolving design will be based on
partial knowledge of these disparate sources. Hence,
if designers are to build explicit models of their
current understanding, these models must perforce be
partial.

ß For much of the time, such models will be
inconsistent with one another, in terms of the
meanings attached to model elements, and the ways
in which those elements are used.

ß A coherent design can only be achieved if the
(intentional) consistency relationships between the
partial models can be captured and made explicit.

ß Analysis of an emerging design will only be possible
if we have automated tools for testing these
consistency relationships to identify inconsistencies.

ß The process of investigating these inconsistencies and
deciding how to resolve them is one of the key
drivers that pushes the design process forward; it is
certainly a key element in how teams of designers
come to achieve a shared understanding of their
designs [2].

ß At any given moment, a snapshot of the current
design will contain inconsistencies that are not
immediately repairable, because such repair is not a

matter of model hygiene, but is rather a substantial
part of the design process itself.

ß Hence, analysis tools that are intended to reason
about a design as it evolves must be tolerant of
inconsistency.

It should be clear by now that we believe a central
problem in large-scale software design is the management
of inconsistency between fragmentary design models. We
believe our work on consistency management in the
viewpoints framework suggests some promising ways
forward. In particular, we believe we have practical
solutions to two of the greatest challenges: representing
the consistency relationships between models, and
reasoning over composite models that contain
inconsistencies. Several of the techniques described above
are applicable.

3. References

[1] M. Chechik, B. Devereux, S. M. Easterbrook & A.
Gurfinkel "Multi-Valued Symbolic Model-Checking".
To appear, ACM Trans. on Software Engineering and
Methodology, 2003.

[2] S. M. Easterbrook, “Coordination Breakdowns: Why
Groupware is so Hard to Design”. Proceedings, 28th
Hawaii International Conference on Systems Sciences
(HICSS-28), Hawaii, 3-6 January, 1995, Pp 191-199.

[3] S. M. Easterbrook & B. A. Nuseibeh “Managing
Inconsistencies in an Evolving Specification”. 2nd IEEE
Int. Symp. on Requirements Engineering (RE'95), York,
UK, p48-55. Apr 1995.

[4] M. Fitting “Kleene's three-valued logics and their
children”. Fundamenta Informaticae, 20, 113-131, 1994.

[5] W. Liu, S. M. Easterbrook & J. Mylopoulos, “Rule-Based
Detection of Inconsistency in UML Model”. Workshop
on Consistency Problems in UML-Based Software
Development, 5th Int. Conference on the Unified
Modeling Language, Dresden, Germany, Oct 1, 2002.

[6] C. Nentwich, W. Emmerich, A. Finkelstein and E. Ellmer,
“Flexible Consistency Checking” ACM Trans. on
Software Engineering and Methodology 12 (1) 28-63,
2003.

[7] B. A. Nuseibeh, S. M. Easterbrook & A. Russo, “Making
Inconsistency Respectable in Software Development”, J.
of Systems and Software, 58 (2) 171-180. 2001.

[8] M. Sabetzadeh & S. M. Easterbrook “Analysis of
Inconsistency in Graph-Based Viewpoints: A Category-
Theoretic Approach”. 18th IEEE Int. Conf. on Automated
Software Engineering, Montreal, Oct. 6-10, 2003.

