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Lecture 14:
Requirements Analysis

➜ Basic Requirements Process
� requirements in the software lifecycle
� the essential requirements process

➜ What is a requirement?
�What vs. How
�Machine Domain vs. Application Domain
� Implementation Bias

➜ Non-functional Requirements

➜ Notations, Techniques and Methods
� Elicitation techniques
�Modeling methods

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Refresher: Software Lifecycles
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Source: Adapted from Lecture 2!

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Basics of Requirements Engineering
➜ The ‘essential’ requirements process:

� Understand the problem
� use data gathering techniques to elicit requirements
� Eg. Interviews, Questionnaires, Focus Groups, Prototyping, Observation,…

�Model and Analyze the problem
� use some modeling method(s)
� Eg. Structured Analysis, Object Oriented Analysis, Formal Analysis,…

� Attain agreement on the nature of the problem
� validation
� conflict resolution, negotiation

� Communicate the problem
� specifications, documentation, review meetings,

�Manage change as the problem evolves
� Requirements continue to evolve throughout software development
� (introducing new software changes the problem!!!)
� requirements management - maintain the agreement!

Source: Adapted from Nuseibeh & Easterbrook, 2000
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RE is the weak link in most projects
➜ Requirements Engineering is hard (“wicked”):

� Analysis problems have ill-defined boundaries (open-ended)
� Requirements are found in organizational contexts (hence prone to conflict)
� Solutions to analysis problems are artificial
� Analysis problems are dynamic
� Tackling analysis requires interdisciplinary knowledge and skill

➜ Requirements Engineering is important:
� Engineering is about developing solutions to problems

� A good solution is only possible if the engineer fully understands the problem

� Errors cost more the longer they go undetected
� Cost of correcting a requirements error is 100 times greater in the maintenance

phase than in the requirements phase

� Experience from failed software development projects:
� Failure to understand and manage requirements is the biggest single cause of cost

and schedule over-runs

� Analysis of safety problems
� Safety-related errors tend to be errors in specifying requirements, while non-

safety errors tend to be errors in implementing requirements
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What vs. How
➜ Requirements should specify ‘what’ but not ‘how’

� But this is not so easy to distinguish:
� What does a car do?
� What does a web browser do?

� ‘What’ refers to a system’s purpose
� it is external to the system
� it is a property of the application domain

� ‘How’ refers to a system’s structure and behavior
� it is internal to the system
� it is a property of the machine domain

➜ Requirements only exist in the application domain
� Distinguishing between the machine and the application domain is essential

for good requirements engineering
�Need to draw a boundary around the application domain

� I.e. which things are part of the problem you are analyzing and which are not?

Source: Adapted from Jackson, 1995, p207 and van Vliet 1999, p204-210
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Implementation Bias
➜ Implementation bias is the inclusion of requirements

that have no basis in the application domain
� i.e. mixing some ‘how’ into the requirements

➜ Examples:
� The dictionary shall be stored in a hash table
� The patient records shall be stored in a relational database

➜ But sometimes it’s not so clear:
� The software shall be written in FORTRAN.
� The software shall respond to all requests within 5 seconds.
� The software shall be composed of the following 23 modules ....
� The software shall use the following fifteen menu screens whenever it is

communicating with the user.…

➜ Instead of ‘what’ and ‘how’, ask:
� is this requirement only a property of the machine domain?

� in which case it is implementation bias
�Or is there some application domain phenomena that justifies it?

Source: Adapted from Jackson, 1995, p98
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Functional vs. Non-functional
➜ “Functional Requirements”

� fundamental functions of the system
� E.g. mapping of inputs to outputs
� E.g. control sequencing
� E.g. timing of functions
� E.g. handling of exceptional situations
� E.g. formats of input and output data (and stored data?)
� E.g. real world entities and relationships modeled by the system

➜ “Non-Functional Requirements (NFRs)”
� constraints/obligations (non-negotiable)

� E.g. compatibility with (and  reuse of) legacy systems
� E.g. compliance with interface standards, data formats, communications protocols

� quality requirements (soft goals)
� E.g. security, safety, availability, usability, performance, portability,…
� must be specified

Source: Adapted from van Vliet 1999, p241-2
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Elicitation Techniques
➜ Traditional Approaches

� Introspection
� Interview/survey
� Group elicitation

➜ Observational approaches
� Protocol analysis
� Participant Observation (ethnomethodology)

➜ Model-based approaches
� Goal-based: hierarchies of stakeholders’ goals
� Scenarios: characterizations of the ways in which the system is used
� Use Cases: specific instances of interaction with the system

➜ Exploratory approaches
� Prototyping (“plan to throw one away”)

Source: Adapted from Nuseibeh & Easterbrook, 2000 and van Vliet 1999, section 9.1.1
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Modeling: Notations vs. Methods
➜ Definitions:

�Notation: a systematic way of
presenting something
�may be linguistic (textual) or

graphical (diagrams)

�A Method provides:
�a set of notations (e.g. for

different viewpoints)
� techniques for using those

notations (esp. analysis techniques)
�heuristics to provide guidance

�Notation or method?
�Some notations have been adopted

by a number of different methods
�Some ‘methods’ are really just

notations

�Tools usually support a single
method (or a single notation!!)

➜ Example Methods
�Structured Analysis

�SADT
�SASD
�Information Engineering
�JSD

�Entity-Relationship Approach
�Object Oriented Analysis

�Coad-Yourdon
�OMT
�UML (not a method ??)

�Formal Methods
�SCR
�RSML
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➜ There are lots of things we could (should) model:

➜ Key questions
�Where do we start?

� Structured Analysis starts by modeling the existing system
� Object Oriented Analysis starts by identifying candidate objects

� How do we structure our modeling approach?
� We can partition the problem, abstract away detail, and create projections

Modeling: Where to start?
Source: Adapted from Loucopoulos & Karakostas, 1995, p73
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Structuring Principle 1: Partitioning
➜ Partitioning

� captures aggregation/part-of relationship

➜ Example:
� goal is to develop a spacecraft
� partition the problem into parts:

� guidance and navigation;
� data handling;
� command and control;
� environmental control;
� instrumentation;
� etc

�Note: this is not a design, it is a problem decomposition
� actual design might have any number of components, with no relation to these

sub-problems

� However, the choice of problem decomposition will probably be reflected in
the design
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Structuring Principle 2: Abstraction
➜ Abstraction

� A way of finding similarities between concepts by ignoring some details
� Focuses on the general/specific relationship between phenomena

� Classification groups entities with a similar role as members of a single class
� Generalization expresses similarities between different classes in an ‘is_a’

association

➜ Example:
� requirement is to handle faults on the spacecraft
�might group different faults into fault classes

Source: Adapted from Davis, 1990, p48 and Loucopoulos & Karakostas, 1995, p78

� E.g. based on symptoms of fault:
� no response from device;
� incorrect response;
� self-test failure;
� etc...

� E.g. based on location of fault:
� instrumentation fault,
� communication fault,
� processor fault,
� etc
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Structuring Principle 3: Projection
➜ Projection:

� separates aspects of the model into multiple viewpoints
� similar to projections used by architects for buildings

➜ Example:
�Need to model the communication between spacecraft and ground system
�Model separately:

� sequencing of messages;
� format of data packets;
� error correction behavior;
� etc.

➜ Note:
� Projection and Partitioning are similar:

� Partitioning defines a ‘part of’ relationship
� Projection defines a ‘view of’ relationship

� Partitioning assumes a the parts are relatively independent

Source: Adapted from Davis, 1990, p48-51
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