s% University of Toronto Department of Computer Science

Lecture 14:
Requirements Analysis

0 Basic Requirements Process
% requirements in the software lifecycle
% the essential requirements process

0 What is a requirement?
% What vs. How
% Machine Domain vs. Application Domain
% Implementation Bias

0 Non-functional Requirements
0 Notations, Techniques and Methods

% Elicitation techniques
% Modeling methods

© 2001, Steve Easterbrook

x4 Refresher: Software Lifecycles

% University of Toronto Department of Computer Science

Source: Adapted from Lecture 2!

Waterfall Model Blum's Essential Model

requirements
) < Real World

A
design 9 .
A 5 . Problem (.
{ 22 Statement S | e
., 8l £ Y iSHES
code s S |€
>4 [~}
y| 4 y £ (3
S 5 ; S |S
8| SL_ [[mplementation| (& S
test Sfafer:\enf v
v
- System
integrate 4 -

© 2001, Steve Easterbrook

Department of Computer Science

%" University of Toronto

¥ Basics of Requirements Engineering

Source: Adapted from Nuseibeh & Easterbrook, 2000

0 The 'essential’ requirements process:

% Understand the problem

> use data gathering techniques to elicit requirements

» Eg. Interviews, Questionnaires, Focus Groups, Prototyping, Observation,...
% Model and Analyze the problem

» use some modeling method(s)

> Eg. Structured Analysis, Object Oriented Analysis, Formal Analysis, ...
% Attain agreement on the nature of the problem

> validation

> conflict resolution, negotiation
% Communicate the problem

> specifications, documentation, review meetings,
% Manage change as the problem evolves

> Requirements continue to evolve throughout software development

> (introducing new software changes the problemlll)

> requirements management - maintain the agreement!

© 2001, Steve Easterbrook

% University of Toronto Department of Computer Science

¥ RE is the weak link in most projects

0 Requirements Engineering is hard (“wicked”):
% Analysis problems have ill-defined boundaries (open-ended)
% Requirements are found in organizational contexts (hence prone to conflict)
% Solutions to analysis problems are artificial
% Analysis problems are dynamic
% Tackling analysis requires interdisciplinary knowledge and skill

0 Requirements Engineering is important:

% Engineering is about developing solutions to problems
> A good solution is only possible if the engineer fully understands the problem

% Errors cost more the longer they go undetected
» Cost of correcting a requirements error is 100 times greater in the maintenance
phase than in the requirements phase

% Experience from failed software development projects:
» Failure to understand and manage requirements is the biggest single cause of cost
and schedule over-runs

% Analysis of safety problems
» Safety-related errors tend to be errors in specifying requirements, while non-
safety errors tend to be errors in implementing requirements
© 2001, Steve Easterbrook

Department of Computer Science

%& University of Toronto

V. What vs. How

Source: Adapted from Jackson, 1995, p207 and van Vet 1999, p204-210

0 Requirements should specify ‘what’ but not ‘how’
% But this is not so easy to distinguish:
» What does a car do?
> What does a web browser do?
% 'What' refers to a system's purpose
» it is external to the system
> it is a property of the application domain
% 'How' refers to a system's structure and behavior
> it is internal to the system
> it is a property of the machine domain

0 Requirements only exist in the application domain

% Distinguishing between the machine and the application domain is essential
for good requirements engineering

% Need to draw a boundary around the application domain
> I.e. which things are part of the problem you are analyzing and which are not?

© 2001, Steve Easterbrook 5

%& University of Toronto Department of Computer Science

Implementation Bias

Source: Adapted from Jackson, 1995, p98

0 Implementation bias is the inclusion of requirements
that have no basis in the application domain

% i.e. mixing some ‘how’ into the requirements

0 Examples:
% The dictionary shall be stored in a hash table
% The patient records shall be stored in a relational database

0 But sometimes it's not so clear:
% The software shall be written in FORTRAN.
% The software shall respond to all requests within 5 seconds.
% The software shall be composed of the following 23 modules

% The software shall use the following fifteen menu screens whenever it is
communicating with the user....

0 Instead of ‘what' and ‘'how’, ask:

% is this requirement only a property of the machine domain?
» in which case it is implementation bias
% Or is there some application domain phenomena that justifies it?
© 2001, Steve Easterbrook 6

Department of Computer Science

Functional vs. Non-functional

Source: Adapted from van Viiet 1999, p241-2

0 “Functional Requirements”

% fundamental functions of the system
> E.g. mapping of inputs to outputs
E.g. control sequencing
E.g. timing of functions
. handling of exceptional situations
E.g. formats of input and output data (and stored data?)
E.g. real world entities and relationships modeled by the system

%" University of Toronto

YV VVYVYV
m
[(<]

0 “"Non-Functional Requirements (NFRs)”

% constraints/obligations (non-negotiable)

> E.g. compatibility with (and reuse of) legacy systems

» E.g. compliance with interface standards, data formats, communications protocols
% quality requirements (soft goals)

> E.g. security, safety, availability, usability, performance, portability,...

> must be specified

© 2001, Steve Easterbrook 7

¥

%} University of Toronto Department of Computer Science

Elicitation Techniques

Source: Adapted from Nuseibeh & Easterbrook, 2000 and van Vliet 1999, section 9.1.1

0 Traditional Approaches
% Introspection
% Interview/survey

% Group elicitation

0 Observational approaches
% Protocol analysis
% Participant Observation (ethnomethodology)

0 Model-based approaches
% Goal-based: hierarchies of stakeholders' goals
% Scenarios: characterizations of the ways in which the system is used
% Use Cases: specific instances of interaction with the system

0 Exploratory approaches
% Prototyping ("plan to throw one away”)

© 2001, Steve Easterbrook 8

%’ University of Toronto

Department of Computer Science

0 Definitions:

%Notation: a systematic way of
presenting something
»may be linguistic (textual) or
graphical (diagrams)
%A Method provides:
> a set of notations (e.g. for
different viewpoints)
> techniques for using those
notations (esp. analysis techniques)
> heuristics to provide guidance
%Notation or method?
> Some notations have been adopted
by a number of different methods
> Some 'methods’ are really just
notations
% Tools usually support a single
method (or a single notationl!)

v Modeling: Notations vs. Methods

0 Example Methods
% Structured Analysis
» SADT
» SASD
» Information Engineering
> JSD
% Entity-Relationship Approach
% Object Oriented Analysis
» Coad-Yourdon
» OMT
»>UML (not a method ??)
% Formal Methods
» SCR
»RSML

© 2001, Steve Easterbrook

%’ University of Toronto

Department of Computer Science

¥ Modeling: Where to start?

Source: Adapted from Loucopoulos & Karakostas, 1995, p73

0 There are lots of things we could (should) model:

How info about the g How the machine
application domain will — APDPI'CGT'OH 44— represents info about
be used by the system gl the application domain

Usage ¢ User N Machine
Domain Interfaces Domain

i))

Justification of Development Design
development goals > Dom':.\in ¢ Decisions

0 Key questions

% Where do we start?
» Structured Analysis starts by modeling the existing system
> Object Oriented Analysis starts by identifying candidate objects

% How do we structure our modeling approach?
> We can partition the problem, abstract away detail, and create projections

© 2001, Steve Easterbrook

10

%’3 University of Toronto

Department of Computer Science

0 Partitioning

0 Example:
% goal is to develop a spacecraft

% partition the problem into parts:
> guidance and navigation;
» data handling:
> command and control;
» environmental control:
» instrumentation;
> etc

i Structuring Principle 1: Partitioning

% captures aggregation/part-of relationship

% Note: this is not a design, it is a problem decomposition
> actual design might have any number of components, with no relation to these

%’5 University of Toronto

Department of Computer Science

¥ Structuring Principle 2: Abstraction

Source: Adapted from Davis, 1990, p48 and Loucopoulos & Karakostas, 1995, p78

0 Abstraction

% A way of finding similarities between concepts by ignoring some details

% Focuses on the general/specific relationship between phenomena
> Classification groups entities with a similar role as members of a single class

> Generalization expresses similarities between different classes in an ‘is_a’
association

0 Example:
% requirement is to handle faults on the spacecraft
% might group different faults into fault classes

% E.g. based on location of fault:
> instrumentation fault,

% E.g. based on symptoms of fault:
> no response from device;

sub-problems

% However, the choice of problem decomposition will probably be reflected in
the design

© 2001, Steve Easterbrook 1

> communication fault,
> processor fault,
» etc

» incorrect response;
> self-test failure;
> etc...

© 2001, Steve Easterbrook

12

8%‘: University of Toronto

IS

* Structuring Principle 3: Projection

Department of Computer Science

Source: Adapted from Davis, 1990, p48-51
I
0 Projection:

% separates aspects of the model into multiple viewpoints
> similar to projections used by architects for buildings

0 Example:
% Need to model the communication between spacecraft and ground system
% Model separately:
> sequencing of messages:
format of data packets;

error correction behavior;
etc.

Y V V

O Note:

% Projection and Partitioning are similar:
> Partitioning defines a ‘part of' relationship
> Projection defines a 'view of' relationship

% Partitioning assumes a the parts are relatively independent

© 2001, Steve Easterbrook

13

& University of Toronto

Department of Computer Science

References

van Vliet, H. "Software Engineering: Principles and Practice (2nd Edition)”
Wiley, 1999.

Chapter 9 is an excellent introduction to the basics of requirements engineering.

B. A. Nuseibeh and S. M. Easterbrook, "Requirements Engineering: A
Roadmap", In A. C. W. Finkelstein (ed) “The Future of Software Engineering".

IEEE Computer Society Press, 2000.
Available at http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf

Jackson, M. "Software Requirements & Specifications: A Lexicon of
Practice, Principles and Prejudices”. Addison-Wesley, 1995.

This is my favourite requirements engineering book. It makes a wonderful and thought provoking read. It
consists of a series of short essays (each typically only a couple of pages long) that together really get
across the message of what requirements engineering is all about.

Davis, A. M. "Software Requirements: Analysis and Specification”.
Prentice-Hall, 1990.

This is probably the best textbook around on requirements analysis, although is a little dated now.

Loucopoulos, P. and Karakostas, V. "System Requirements Engineering”.
McGraw Hill, 1995.

This short book provides a good overview of requirements engineering, especially in a systems context.

© 2001, Steve Easterbrook 14

