
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 14:
Requirements Analysis

➜ Basic Requirements Process
� requirements in the software lifecycle
� the essential requirements process

➜ What is a requirement?
�What vs. How
�Machine Domain vs. Application Domain
� Implementation Bias

➜ Non-functional Requirements

➜ Notations, Techniques and Methods
� Elicitation techniques
�Modeling methods

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Refresher: Software Lifecycles
Waterfall ModelWaterfall Model

requirements

design

code

integrate

test

Blum’s Essential ModelBlum’s Essential Model

Real World

Problem
Statement

Implementation
Statement

System

Co
rr

es
po

nd
en

ce
Co

rr
ec

tn
es

s

Va
lid

at
io
n

Ve
ri
fi
ca

ti
on

Source: Adapted from Lecture 2!

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Basics of Requirements Engineering
➜ The ‘essential’ requirements process:

� Understand the problem
� use data gathering techniques to elicit requirements
� Eg. Interviews, Questionnaires, Focus Groups, Prototyping, Observation,…

�Model and Analyze the problem
� use some modeling method(s)
� Eg. Structured Analysis, Object Oriented Analysis, Formal Analysis,…

� Attain agreement on the nature of the problem
� validation
� conflict resolution, negotiation

� Communicate the problem
� specifications, documentation, review meetings,

�Manage change as the problem evolves
� Requirements continue to evolve throughout software development
� (introducing new software changes the problem!!!)
� requirements management - maintain the agreement!

Source: Adapted from Nuseibeh & Easterbrook, 2000

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

RE is the weak link in most projects
➜ Requirements Engineering is hard (“wicked”):

� Analysis problems have ill-defined boundaries (open-ended)
� Requirements are found in organizational contexts (hence prone to conflict)
� Solutions to analysis problems are artificial
� Analysis problems are dynamic
� Tackling analysis requires interdisciplinary knowledge and skill

➜ Requirements Engineering is important:
� Engineering is about developing solutions to problems

� A good solution is only possible if the engineer fully understands the problem

� Errors cost more the longer they go undetected
� Cost of correcting a requirements error is 100 times greater in the maintenance

phase than in the requirements phase

� Experience from failed software development projects:
� Failure to understand and manage requirements is the biggest single cause of cost

and schedule over-runs

� Analysis of safety problems
� Safety-related errors tend to be errors in specifying requirements, while non-

safety errors tend to be errors in implementing requirements

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

What vs. How
➜ Requirements should specify ‘what’ but not ‘how’

� But this is not so easy to distinguish:
� What does a car do?
� What does a web browser do?

� ‘What’ refers to a system’s purpose
� it is external to the system
� it is a property of the application domain

� ‘How’ refers to a system’s structure and behavior
� it is internal to the system
� it is a property of the machine domain

➜ Requirements only exist in the application domain
� Distinguishing between the machine and the application domain is essential

for good requirements engineering
�Need to draw a boundary around the application domain

� I.e. which things are part of the problem you are analyzing and which are not?

Source: Adapted from Jackson, 1995, p207 and van Vliet 1999, p204-210

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Implementation Bias
➜ Implementation bias is the inclusion of requirements

that have no basis in the application domain
� i.e. mixing some ‘how’ into the requirements

➜ Examples:
� The dictionary shall be stored in a hash table
� The patient records shall be stored in a relational database

➜ But sometimes it’s not so clear:
� The software shall be written in FORTRAN.
� The software shall respond to all requests within 5 seconds.
� The software shall be composed of the following 23 modules
� The software shall use the following fifteen menu screens whenever it is

communicating with the user.…

➜ Instead of ‘what’ and ‘how’, ask:
� is this requirement only a property of the machine domain?

� in which case it is implementation bias
�Or is there some application domain phenomena that justifies it?

Source: Adapted from Jackson, 1995, p98

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Functional vs. Non-functional
➜ “Functional Requirements”

� fundamental functions of the system
� E.g. mapping of inputs to outputs
� E.g. control sequencing
� E.g. timing of functions
� E.g. handling of exceptional situations
� E.g. formats of input and output data (and stored data?)
� E.g. real world entities and relationships modeled by the system

➜ “Non-Functional Requirements (NFRs)”
� constraints/obligations (non-negotiable)

� E.g. compatibility with (and reuse of) legacy systems
� E.g. compliance with interface standards, data formats, communications protocols

� quality requirements (soft goals)
� E.g. security, safety, availability, usability, performance, portability,…
� must be specified

Source: Adapted from van Vliet 1999, p241-2

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Elicitation Techniques
➜ Traditional Approaches

� Introspection
� Interview/survey
� Group elicitation

➜ Observational approaches
� Protocol analysis
� Participant Observation (ethnomethodology)

➜ Model-based approaches
� Goal-based: hierarchies of stakeholders’ goals
� Scenarios: characterizations of the ways in which the system is used
� Use Cases: specific instances of interaction with the system

➜ Exploratory approaches
� Prototyping (“plan to throw one away”)

Source: Adapted from Nuseibeh & Easterbrook, 2000 and van Vliet 1999, section 9.1.1

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Modeling: Notations vs. Methods
➜ Definitions:

�Notation: a systematic way of
presenting something
�may be linguistic (textual) or

graphical (diagrams)

�A Method provides:
�a set of notations (e.g. for

different viewpoints)
� techniques for using those

notations (esp. analysis techniques)
�heuristics to provide guidance

�Notation or method?
�Some notations have been adopted

by a number of different methods
�Some ‘methods’ are really just

notations

�Tools usually support a single
method (or a single notation!!)

➜ Example Methods
�Structured Analysis

�SADT
�SASD
�Information Engineering
�JSD

�Entity-Relationship Approach
�Object Oriented Analysis

�Coad-Yourdon
�OMT
�UML (not a method ??)

�Formal Methods
�SCR
�RSML

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

➜ There are lots of things we could (should) model:

➜ Key questions
�Where do we start?

� Structured Analysis starts by modeling the existing system
� Object Oriented Analysis starts by identifying candidate objects

� How do we structure our modeling approach?
� We can partition the problem, abstract away detail, and create projections

Modeling: Where to start?
Source: Adapted from Loucopoulos & Karakostas, 1995, p73

Application
Domain

Development
Domain

Usage
Domain

Machine
Domain

User
Interfaces

Design
Decisions

How the machine
represents info about
the application domain

How info about the
application domain will
be used by the system

Justification of
development goals

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Structuring Principle 1: Partitioning
➜ Partitioning

� captures aggregation/part-of relationship

➜ Example:
� goal is to develop a spacecraft
� partition the problem into parts:

� guidance and navigation;
� data handling;
� command and control;
� environmental control;
� instrumentation;
� etc

�Note: this is not a design, it is a problem decomposition
� actual design might have any number of components, with no relation to these

sub-problems

� However, the choice of problem decomposition will probably be reflected in
the design

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Structuring Principle 2: Abstraction
➜ Abstraction

� A way of finding similarities between concepts by ignoring some details
� Focuses on the general/specific relationship between phenomena

� Classification groups entities with a similar role as members of a single class
� Generalization expresses similarities between different classes in an ‘is_a’

association

➜ Example:
� requirement is to handle faults on the spacecraft
�might group different faults into fault classes

Source: Adapted from Davis, 1990, p48 and Loucopoulos & Karakostas, 1995, p78

� E.g. based on symptoms of fault:
� no response from device;
� incorrect response;
� self-test failure;
� etc...

� E.g. based on location of fault:
� instrumentation fault,
� communication fault,
� processor fault,
� etc

13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Structuring Principle 3: Projection
➜ Projection:

� separates aspects of the model into multiple viewpoints
� similar to projections used by architects for buildings

➜ Example:
�Need to model the communication between spacecraft and ground system
�Model separately:

� sequencing of messages;
� format of data packets;
� error correction behavior;
� etc.

➜ Note:
� Projection and Partitioning are similar:

� Partitioning defines a ‘part of’ relationship
� Projection defines a ‘view of’ relationship

� Partitioning assumes a the parts are relatively independent

Source: Adapted from Davis, 1990, p48-51

14

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)”
Wiley, 1999.

Chapter 9 is an excellent introduction to the basics of requirements engineering.

B. A. Nuseibeh and S. M. Easterbrook, "Requirements Engineering: A
Roadmap", In A. C. W. Finkelstein (ed) "The Future of Software Engineering".
IEEE Computer Society Press, 2000.

Available at http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf

Jackson, M. “Software Requirements & Specifications: A Lexicon of
Practice, Principles and Prejudices”. Addison-Wesley, 1995.

This is my favourite requirements engineering book. It makes a wonderful and thought provoking read. It
consists of a series of short essays (each typically only a couple of pages long) that together really get
across the message of what requirements engineering is all about.

Davis, A. M. “Software Requirements: Analysis and Specification”.
Prentice-Hall, 1990.

This is probably the best textbook around on requirements analysis, although is a little dated now.

Loucopoulos, P. and Karakostas, V. “System Requirements Engineering”.
McGraw Hill, 1995.

This short book provides a good overview of requirements engineering, especially in a systems context.

