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Lecture 14:
Requirements Analysis

0 Basic Requirements Process
% requirements in the software lifecycle
% the essential requirements process

0 What is a requirement?
% What vs. How
% Machine Domain vs. Application Domain
% Implementation Bias

0 Non-functional Requirements
0 Notations, Techniques and Methods

% Elicitation techniques
% Modeling methods
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Source: Adapted from Lecture 2!
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¥ Basics of Requirements Engineering

Source: Adapted from Nuseibeh & Easterbrook, 2000

0 The 'essential’ requirements process:

% Understand the problem

> use data gathering techniques to elicit requirements

» Eg. Interviews, Questionnaires, Focus Groups, Prototyping, Observation,...
% Model and Analyze the problem

» use some modeling method(s)

> Eg. Structured Analysis, Object Oriented Analysis, Formal Analysis, ...
% Attain agreement on the nature of the problem

> validation

> conflict resolution, negotiation
% Communicate the problem

> specifications, documentation, review meetings,
% Manage change as the problem evolves

> Requirements continue to evolve throughout software development

> (introducing new software changes the problemlll)

> requirements management - maintain the agreement!
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¥ RE is the weak link in most projects

0 Requirements Engineering is hard (“wicked”):
% Analysis problems have ill-defined boundaries (open-ended)
% Requirements are found in organizational contexts (hence prone to conflict)
% Solutions to analysis problems are artificial
% Analysis problems are dynamic
% Tackling analysis requires interdisciplinary knowledge and skill

0 Requirements Engineering is important:

% Engineering is about developing solutions to problems
> A good solution is only possible if the engineer fully understands the problem

% Errors cost more the longer they go undetected
» Cost of correcting a requirements error is 100 times greater in the maintenance
phase than in the requirements phase

% Experience from failed software development projects:
» Failure to understand and manage requirements is the biggest single cause of cost
and schedule over-runs

% Analysis of safety problems
» Safety-related errors tend to be errors in specifying requirements, while non-
safety errors tend to be errors in implementing requirements
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V. What vs. How

Source: Adapted from Jackson, 1995, p207 and van Vet 1999, p204-210

0 Requirements should specify ‘what’ but not ‘how’
% But this is not so easy to distinguish:
» What does a car do?
> What does a web browser do?
% 'What' refers to a system's purpose
» it is external to the system
> it is a property of the application domain
% 'How' refers to a system's structure and behavior
> it is internal to the system
> it is a property of the machine domain

0 Requirements only exist in the application domain

% Distinguishing between the machine and the application domain is essential
for good requirements engineering

% Need to draw a boundary around the application domain
> I.e. which things are part of the problem you are analyzing and which are not?
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Implementation Bias

Source: Adapted from Jackson, 1995, p98

0 Implementation bias is the inclusion of requirements
that have no basis in the application domain

% i.e. mixing some ‘how’ into the requirements

0 Examples:
% The dictionary shall be stored in a hash table
% The patient records shall be stored in a relational database

0 But sometimes it's not so clear:
% The software shall be written in FORTRAN.
% The software shall respond to all requests within 5 seconds.
% The software shall be composed of the following 23 modules ....

% The software shall use the following fifteen menu screens whenever it is
communicating with the user....

0 Instead of ‘what' and ‘'how’, ask:

% is this requirement only a property of the machine domain?
» in which case it is implementation bias
% Or is there some application domain phenomena that justifies it?
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Functional vs. Non-functional

Source: Adapted from van Viiet 1999, p241-2

0 “Functional Requirements”

% fundamental functions of the system
> E.g. mapping of inputs to outputs
E.g. control sequencing
E.g. timing of functions
. handling of exceptional situations
E.g. formats of input and output data (and stored data?)
E.g. real world entities and relationships modeled by the system
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0 “"Non-Functional Requirements (NFRs)”

% constraints/obligations (non-negotiable)

> E.g. compatibility with (and reuse of) legacy systems

» E.g. compliance with interface standards, data formats, communications protocols
% quality requirements (soft goals)

> E.g. security, safety, availability, usability, performance, portability,...

> must be specified
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Elicitation Techniques

Source: Adapted from Nuseibeh & Easterbrook, 2000 and van Vliet 1999, section 9.1.1

0 Traditional Approaches
% Introspection
% Interview/survey

% Group elicitation

0 Observational approaches
% Protocol analysis
% Participant Observation (ethnomethodology)

0 Model-based approaches
% Goal-based: hierarchies of stakeholders' goals
% Scenarios: characterizations of the ways in which the system is used
% Use Cases: specific instances of interaction with the system

0 Exploratory approaches
% Prototyping ("plan to throw one away”)
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0 Definitions:

%Notation: a systematic way of
presenting something
»may be linguistic (textual) or
graphical (diagrams)
%A Method provides:
> a set of notations (e.g. for
different viewpoints)
> techniques for using those
notations (esp. analysis techniques)
> heuristics to provide guidance
%Notation or method?
> Some notations have been adopted
by a number of different methods
> Some 'methods’ are really just
notations
% Tools usually support a single
method (or a single notationl!)

v Modeling: Notations vs. Methods

0 Example Methods
% Structured Analysis
» SADT
» SASD
» Information Engineering
> JSD
% Entity-Relationship Approach
% Object Oriented Analysis
» Coad-Yourdon
» OMT
»>UML (not a method ??)
% Formal Methods
» SCR
»RSML
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¥ Modeling: Where to start?

Source: Adapted from Loucopoulos & Karakostas, 1995, p73

0 There are lots of things we could (should) model:
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0 Key questions

% Where do we start?
» Structured Analysis starts by modeling the existing system
> Object Oriented Analysis starts by identifying candidate objects

% How do we structure our modeling approach?
> We can partition the problem, abstract away detail, and create projections
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0 Partitioning

0 Example:
% goal is to develop a spacecraft

% partition the problem into parts:
> guidance and navigation;
» data handling:
> command and control;
» environmental control:
» instrumentation;
> etc

i Structuring Principle 1: Partitioning

% captures aggregation/part-of relationship

% Note: this is not a design, it is a problem decomposition
> actual design might have any number of components, with no relation to these
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¥ Structuring Principle 2: Abstraction

Source: Adapted from Davis, 1990, p48 and Loucopoulos & Karakostas, 1995, p78

0 Abstraction

% A way of finding similarities between concepts by ignoring some details

% Focuses on the general/specific relationship between phenomena
> Classification groups entities with a similar role as members of a single class

> Generalization expresses similarities between different classes in an ‘is_a’
association

0 Example:
% requirement is to handle faults on the spacecraft
% might group different faults into fault classes

% E.g. based on location of fault:
> instrumentation fault,

% E.g. based on symptoms of fault:
> no response from device;

sub-problems

% However, the choice of problem decomposition will probably be reflected in
the design
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> communication fault,
> processor fault,
» etc

» incorrect response;
> self-test failure;
> etc...
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Source: Adapted from Davis, 1990, p48-51
I
0 Projection:

% separates aspects of the model into multiple viewpoints
> similar to projections used by architects for buildings

0 Example:
% Need to model the communication between spacecraft and ground system
% Model separately:
> sequencing of messages:
format of data packets;

error correction behavior;
etc.
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O Note:

% Projection and Partitioning are similar:
> Partitioning defines a ‘part of' relationship
> Projection defines a 'view of' relationship

% Partitioning assumes a the parts are relatively independent
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