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Lecture 6:
Procedural Abstractions

➜ Defining procedural abstractions
� the parts of a procedural abstraction
� total vs. partial procedures
� side effects

➜ Implementing procedural abstractions
� defensive programming
� optimization
� some comments on program style

Note: procedural abstraction applies to any language, no matter
what the units are called:

procedures (e.g. Ada, Modula,…)
functions (e.g. C, ML,…)
methods (e.g. java,…)
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Procedural Abstractions
➜ A procedure maps from input to output parameters

� it may modify its parameters
� it may have side effects
� it may return a result

➜ aim for “Referential Transparency”
� procedure does the same thing, no matter where it is used
� basis of the Cleanroom approach

➜ A procedural abstraction (“specification”):
� describes what a procedure does, ignores how it does it
� different implementations of the abstraction can differ over details
� one implementation can be substituted for another

➜ Advantages
� Locality: programmers don’t need to know implementation details
�Modifiability: replacing an implementation does not affect the rest of the

system
� Language Independence: implementation could be any programming language
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Defining abstractions
➜ Abstractions need to be precisely defined

� formally (mathematically): very precise; can be automatically checked
� informally (e.g. natural language description): less precise, easier to read

and write

➜ Need to define five things:
� The way in which the procedure communicates (input/output parameters)
� The conditions under which the procedure will work
�What the procedure achieves
� Any side effects (changes to global variables or system state)
� Any exceptions raised

procedure sort(a:array of int, len:int) returns array of int
requires: a is an array that is at least len integers long
effects: returns a copy of the array a with its elements sorted

into ascending order
modifies: reduces available heap space by n * sizeof(int)
raises: arraybounderror if a is not a valid pointer to an array of

length len; memerror if there is insufficent heap space for a new
array of length len

procedure sort(a:array of int, len:int) returns array of int
requires: a is an array that is at least len integers long
effects: returns a copy of the array a with its elements sorted

into ascending order
modifies: reduces available heap space by n * sizeof(int)
raises: arraybounderror if a is not a valid pointer to an array of

length len; memerror if there is insufficent heap space for a new
array of length len
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Total vs. Partial Procedures
➜ A total procedure

� works for any input
� (within the type checking restrictions of the language)

� hence has no requires clause
� e.g.

➜ A partial procedure
� works for some of the possible inputs
� e.g.

� (square root only works for non-negative integers)
� The requires clause places restrictions on the operation of the procedure
� The procedure is only guaranteed to work if the requires clause is met

procedure length(a: stack of int) returns b:int
effects: b is the number of elements in a

procedure length(a: stack of int) returns b:int
effects: b is the number of elements in a

procedure sqrt (a:int) returns b: real
requires: a ≥≥≥≥ 0
effects: b is an approximation of the square root of
a to within ±10-4

procedure sqrt (a:int) returns b: real
requires: a ≥≥≥≥ 0
effects: b is an approximation of the square root of
a to within ±10-4
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Specifying Side Effects
➜ Side effects

� If a procedure modifies its environment in any way, this is a side effect
� e.g. modifying global variables
� e.g. allocating or de-allocating memory
� e.g. printing text on the screen (actually: writing to the output stream)
� e.g. reading characters from the keyboard (actually: consuming the input stream)

� A pure function has no side effects
� all communication is through its parameters and return result

� All programming languages allow procedures/functions to have side effects
� input/output is impossible otherwise(!)
� but side effects make a program harder to understand and more prone to error

➜ Use of ‘modifies’ procedure readlines (n:int)
returns s:list of strings

requires n>=0
modifies: advances the input stream by

up to n lines
effects: s is a list of up to n strings,

containing characters on the next n
lines of input. Newline characters are
not included in the strings

procedure readlines (n:int)
returns s:list of strings

requires n>=0
modifies: advances the input stream by

up to n lines
effects: s is a list of up to n strings,

containing characters on the next n
lines of input. Newline characters are
not included in the strings

procedure initialize_counter()
returns old:int

modifies: the global variable
count is set to zero

effects: old is set to the value
of count before initialization

procedure initialize_counter()
returns old:int

modifies: the global variable
count is set to zero

effects: old is set to the value
of count before initialization
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Different Implementations

➜ Many possible implementations:
� linear search - slow but easy to implement
� binary search - fast for large lists
� …

➜ These satisfy the abstraction, but:
� what if x occurs more than once?
� what if a is not sorted?
� If we care about any of these details, they should be described in the

abstraction.

procedure search (a: list of int, x:int) returns i:int
requires: a is sorted in ascending order
effects: If x is in a, i is the index of an occurrence
of x in a, so that a[i]=x otherwise i is -1

procedure search (a: list of int, x:int) returns i:int
requires: a is sorted in ascending order
effects: If x is in a, i is the index of an occurrence
of x in a, so that a[i]=x otherwise i is -1
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Procedure Design
➜ Procedural abstractions:

� …have users and an implementor
� the abstraction defines the service offered to the users
� the implementor is free to provide the service in whatever way seems best

(As long as it meets the specification)

➜ The abstraction should:
� constrain things that matter to the user

� e.g. whether sort creates a new list or modifies the old one…

� not constrain things that don’t matter to the user
� e.g. speed, efficiency, algorithm used…

➜ Under-determination
� “some aspects of behavior are not defined”

� e.g. search was underdetermined as we didn’t say what to do if the element
occurs more than once in the list.

� an under-determined specification may have implementations that behave
differently
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Desirable properties of procedures
➜ Minimally specified

� only constrained to the extent required by the users

➜ General
� able to work on a range of inputs (or input types)

� e.g. search could be generalized to work on any array types
� ...we might need to pass it a comparison function

� BUT: generalizing a procedure is only worthwhile if it becomes more useful
� c.f. moving a method up the class hierarchy

➜ Simple
� a well-defined and easily explained purpose

� tip: if you can’t think of a simple name for your procedure, it’s probably overly
complex (= not cohesive)

➜ Non-trivial
� should achieve something significant
� don’t decompose a program down into too many tiny pieces
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Defensive Programming
➜ Murphy’s law:

� anything that can go wrong will go wrong
� e.g. if you rely on precedence order for expressions, you’ll make a mistake,

so put brackets everywhere
� x * y + a * b
� (x * y) + (a * b)

� e.g. people will call your procedure with the wrong inputs, will forget to
initialise data, etc, so always check!

➜ Partial Procedures are Problematic
� sooner or later someone will violate the ‘requires’ clause
� either: try to make them total
� or: add code at the beginning that checks the requires clause is met

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Further advantages of abstraction
➜ Encapsulation

� all the important information about the procedure is stated explicitly in one
place

� the detail is hidden

➜ Testing
� without an abstraction defined, how will you know if your procedure is

correct?
� the abstraction will suggest unusual (“off nominal”) test cases

➜ Optimization
� It is often hard to predict where bottlenecks will occur
� use abstractions to implement the whole program, then just optimize those

procedures that need optimizing

➜ Error tracing
� abstractions help you build firewalls that stop errors propagating
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Elements of Program Style
Program code is an expression of
a design that will change:
� write clearly, avoid cleverness
� use library functions
� avoid temporary variables
� clarity is more important than efficiency
� parenthesize to avoid ambiguity
� avoid confusing variable names
� don’t patch bad code - rewrite it
� don’t over-comment
� don’t comment bad code - rewrite it
� format the code for readability

As a design, program code should
convey intellectual clarity
� clarity is better than small gains in

efficiency
� make it right before you make it faster
� make it robust before you make it faster
� make it clear before you make it faster
� choose a data representation that makes

the program simple

Program code represents the
result of problem solving
� write first in a simple pseudo-code

then refine
� modularize
� write and test a big program in small

pieces
� instrument your programs
� measure for bottlenecks before you

optimize
� watch for “off-by-one” errors
� test the “boundary conditions”
� checks some answers by hand

Assumptions are dangerous
� test inputs for validity and plausibility
� identify bad input, recover if possible
� use self-identifying input
� make input easy to prepare
� make output self-explanatory
� make sure the code “does nothing”

gracefully

Source: Adapted from Blum, 1992, p278-9
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Summary
➜ Procedural abstractions are useful

� they express the contract between user and implementor
� they are helpful for testing
� they facilitate modification

➜ Procedural abstractions must be defined precisely
� “abstract” does not mean the same as “vague”!
� strive for referential transparency

➜ This process works at all levels
� The principles shown here for procedures apply to all design levels:

� specify the abstraction precisely
� the specification should tell you everything you need to know to use the component
� the specification should not include unnecessary design information

� Try it for:
� systems, CSCIs, modules, packages, procedures, loops, ...
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