
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 4:
Software Lifecycles

➜ The Software Process
�Waterfall model
� Rapid Prototyping Cycle
� Phased Models:

� Incremental Development
� Evolutionary Development
� Spiral Model

� V-model and Systems Engineering
� The ‘essential’ software process

➜ Verification and Validation

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Waterfall Model

requirements

design

code

integrate

test

Source: Adapted from Dorfman, 1997, p7
see also: van Vliet 1999, p50

maintain

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Why not a waterfall?
➜ Waterfall model describes a process of stepwise

refinement
� Based on hardware engineering models
�Widely used in defense and aerospace industries

➜ But software is different:
�No fabrication step

� Program code is just another design level
� Hence, no ‘commit’ step - software can always be changed…!

�No body of experience for design analysis (yet)
� Most analysis (testing) is done on program code
� Hence, problems not detected until late in the process

�Waterfall model takes a static view of requirements
� ignores changing needs
� Lack of user involvement once specification is written

� Unrealistic separation of specification from design
� Doesn’t accommodate prototyping, reuse, etc.

Source: Adapted from Blum 1992, pp28-31
see also: van Vliet 1999, p50-1

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Prototyping lifecycle

➜ Prototyping is used for:
� understanding the requirements for the user interface
� examining feasibility of a proposed design approach
� exploring system performance issues

➜ Problems:
� users treat the prototype as the solution
� a prototype is only a partial specification

Source: Adapted from
van Vliet 1999, p53

document
require-
ments

design code test integrate

require-
ments

design
prototype

build
prototype

test
prototype

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

design code test integrate O&Mreqts

Phased Lifecycle Models

Requirem
ents

design code test integrate O&M

Source: Adapted from Dorfman, 1997, p10

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more

functionality)

Evolutionary development
(each version incorporates

new requirements)

Source: Adapted from
Dorfman, 1997, p10

see also: van Vliet 1999, p56

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

The Spiral Model
Determine goals,

alternatives,
constraints

Evaluate
alternatives

and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

alt
er

na
tiv

es 4

alt
er

na
tiv

es 3

Al
te

rn
-

at
ive

s 2

constraints4

constraints3

Constr-

aints2

alte
rna

tive
s

con
str

aint
s

risk analysis4
risk analysis3

riskanalysis2riskanalysis1

concept of
operation

so
ft

wa
re

re
qu

ire
men

ts

validated

requirements

so
ft

wa
re

de
sig

n

validated,

verified design

de
ta

ile
d

de
si

gn

co
de

uni
t

test

system
test

acceptance
test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan

Source: Adapted from
Pfleeger, 1998, p57

see also: van Vliet 1999, p63

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Comments on phased models
➜ Incremental development

� avoids ‘big bang’ implementation
� but:

� assumes all requirements known up-front

➜ Evolutionary development
� allows for lessons from each version to be incorporated into the next
� but…

� hard to plan for versions beyond the first;
� lessons may be learnt too late

➜ Spiral model
� incorporates prototyping and risk analysis
� but…

� cannot cope with unforeseen changes (e.g. new business objectives)
� not clear how to analyze risk

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

V-Model

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

“analyse
and

design”

“test
and

integrate”

time

Le
ve

l
of

 a
bs

tr
ac

ti
on

Source: Adapted from
Forsberg & Mooz 1997

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

The “essential” software process
Source: Adapted from Blum, 1992, p32

see also: van Vliet p11

Problem
Statement

Implementation
Statement

System

Co
rr

es
po

nd
en

ce

Co
rr

ec
tn

es
s

Va
lid

at
io
n

Ve
ri
fi
ca

ti
on

Real World

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Verification and Validation

➜ For V&V, we need to worry about:
� The properties of the computer hardware (C)
� The properties of the program (P)
� The properties of the machine in the application domain (the specification, S)
� The properties of the domain, independent of the machine (D)
� The requirements for the machine (R)

➜ Demonstrating that P satisfies R is then a two step
process:
� Do C and P imply S? (Verification)
� Do S and D imply R? (Validation)

Application Domain Machine Domain
Source: Adapted from Jackson, 1995, p170-171

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Validation Example
➜ Requirement R:

� “Reverse thrust shall only be enabled when the aircraft is moving on the
runway”

➜ Domain Properties D:
�Wheel pulses on if and only if wheels turning
�Wheels turning if and only if moving on runway

➜ Specification S:
� Reverse thrust enabled if and only if wheel pulses on

➜ S + D imply R
� But what if the domain model is wrong?

Source: Adapted from Jackson, 1995, p172

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Summary
➜ Software is different

�many assumptions from other engineering models don’t apply
� there is no fabrication step
� the underlying science of software behaviour is not well developed
� (software engineering is still an immature discipline)

➜ Many different views of the software process
� waterfall model is too rigid (doesn’t allow for change)
� other models incorporate prototyping, evolution, risk, etc.
� no lifecycle model is perfect

➜ Essential process:
� describe the problem
� describe the solution
� verify (does the solution solve the stated problem?)
� validate (did we solve the right problem?)

13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)”

Wiley, 1999.
Chapter 3 provides a very good overview of lifecycle models.

Blum, B. “Software Engineering: A Holistic View”. Oxford University
Press, 1992.

Dorfman, M. “Requirements Engineering”. In Thayer, R. H and Dorfman,
M. (eds.) “Software Requirements Engineering, Second Edition”. IEEE
Computer Society Press, 1997, p7-22

Forsberg, K and Mooz, H. “System Engineering Overview”. In Thayer, R.
H and Dorfman, M. (eds.) “Software Requirements Engineering, Second
Edition”. IEEE Computer Society Press, 1997, p44-72

Jackson, M. “Software Requirements & Specifications: A Lexicon of
Practice, Principles and Prejudices”. Addison-Wesley, 1995.

Pfleeger, S. “Software Engineering: Theory and Practice”. Prentice Hall,
1997.

