Department of Computer Science

ge} University of Toronto

k> 4

Lecture 4:
Software Lifecycles

0 The Software Process
% Waterfall model
% Rapid Prototyping Cycle
% Phased Models:
» Incremental Development

» Evolutionary Development
» Spiral Model

% V-model and Systems Engineering
% The 'essential’ software process

0 Verification and Validation

© 2001, Steve Easterbrook

Department of Computer Science

@ University of Toronto

k> &

Waterfall Model

Source: Adapted from Dorfinan, 1997, p7

see also: van Vliet 1999, p50

requirements

S

~

integrate
—

maintain

© 2001, Steve Easterbrook

@ University of Toronto Department of Computer Science

V. Why not a waterfall?

Source: Adapted from Blum 1992, pp28-31
see also: van Vet 1999, p50-1

0 Waterfall model describes a process of stepwise
refinement
% Based on hardware engineering models
% Widely used in defense and aerospace industries

0 But software is different:

% No fabrication step

> Program code is just another design level

> Hence, no ‘commit’ step - software can always be changed..!
% No body of experience for design analysis (yet)

> Most analysis (testing) is done on program code

» Hence, problems not detected until late in the process
% Waterfall model takes a static view of requirements

» ignores changing needs

> Lack of user involvement once specification is written
% Unrealistic separation of specification from design
% Doesn't accommodate prototyping, reuse, etc.

7

© 2001, Steve Easterbrook 3

@ University of Toronto

Department of Computer Science

Pr.ofo-ryping Iifecycle van Viiet 1999, p53

Source: Adapted from

v
require- design build test —
ments prototype prototype prototype [
L document
require- design code test integrate
ments

0 Problems:

0 Prototyping is used for:
% understanding the requirements for the user interface
% examining feasibility of a proposed design approach
& exploring system performance issues

% users treat the prototype as the solution
% a prototype is only a partial specification

© 2001, Steve Easterbrook

Source: Adapted from Dorfinan, 1997, p10

@ University of Toronto Department of Computer Science

Source: Adapted from

¥ Phased Lifecycle Models i,

Release 1
le—d - | y | test |,‘r 1‘| —_ | Incremental development
esign | code est |integrate
........ 9 9 (each release adds more
® refease 2 functionality)
€ _)lTesign | code | test |infegmte| O&M |
§' release 3
g —)lTsign | code | test |integra1'e| 0&M |
........... i £
)l design | code | test |in1'egra1'e| O&M |
version 1
reqts | design | code | test |infegmfe| O&M |
lessons learnt
version 2
reqts | design code | test infegr-ute| 0&M |
Q I le T
Evolutionary development versian 3 lem"s etm l
(each version incorporates reqts | design | code | test |in‘regr‘aTe|
new requirements)
© 2001, Steve Easterbrook 5

@ University of Toronto

Department of Computer Science

. £

The Spiral Model

Source: Adapted from
Pfleeger, 1998, ps7
see also: van Viiet 1999, p63

Determine goals,

alternatives,
constraints

© 2001, Steve Easterbrook

:mplemenrarion plan

concept of
operation

Evaluate
alternatives
and risks

Develop

@ University of Toronto Department of Computer Science

L 2 Comments on phased models

0 Incremental development

% avoids 'big bang' implementation
% but:

> assumes all requirements known up-front

0 Evolutionary development
% allows for lessons from each version to be incorporated into the next
% but...

> hard to plan for versions beyond the first;
> lessons may be learnt too late

0 Spiral model
% incorporates prototyping and risk analysis
% but...

» cannot cope with unforeseen changes (e.g. new business objectives)
» not clear how to analyze risk

© 2001, Steve Easterbrook

@ University of Toronto

Department of Computer Science

V-Model

Source: Adapted from
Forsberg & Mooz 1997

A
<
2 system system
§ requirements integration
£
v
5 \5 /
= software acceptance
= TIWANE O e e ene e ees /GuEeN
5 requirements test
>
S \ /
preliminary software
\ design integration ’
“analyse ~a P test
and detailed | 7 | component and
design” design test integrate”
\ code and N unit /
debug test
time

© 2001, Steve Easterbrook

%‘; University of Toronto Department of Computer Science & University of Toronto Department of Computer Science

¥ The “essential” software process ¥ Verification and Validation

Source: Adapted from Blum, 1992, 32 Source: Adapted from Jackson, 1995, p170-171
e et Application Domain Machine Domain
— Real World —- @ @
o Problem K3 0 For V&V, we need to worry about:
g 9 Statement c c % The properties of the computer hardware (C)
T :E’ y ;g 2 % The properties of the program (P)
vg' 9 kY] :g % The properties of the machine in the application domain (the specification, S)
o £ Y ':—: E % The properties of the domain, independent of the machine (D)
5 S Implementation § % The requirements for the machine (R)
© Statement
; -~ 0 Demonstrating that P satisfies R is then a two step
process:
% Do C and P imply S? (Verification)
- System v % Do S and D imply R? (Validation)
© 2001, Steve Easterbrook 9 © 2001, Steve Easterbrook 10
% University of Toronto Department of Computer Science % University of Toronto Department of Computer Science
Validation Example Summary
Source: Adapted from Jackson, 1995, p172
0 Requirement R: 0 Software is different
% “"Reverse thrust shall only be enabled when the aircraft is moving on the % many assumptions from other engineering models don't apply
runway % there is no fabrication step

% the underlying science of software behaviour is not well developed
% (software engineering is still an immature discipline)

0 Domain Properties D:
% Wheel pulses on if and only if wheels turning
% Wheels turning if and only if moving on runway 0 Many different views of the software process
% waterfall model is too rigid (doesn't allow for change)
% other models incorporate prototyping, evolution, risk, etfc.
% no lifecycle model is perfect

0S + D imply R 0 Essential process:

% But what if the domain model is wrong?

0 Specification S:
% Reverse thrust enabled if and only if wheel pulses on

% describe the problem

% describe the solution

% verify (does the solution solve the stated problem?)
% validate (did we solve the right problem?)

© 2001, Steve Easterbrook 1 © 2001, Steve Easterbrook 12

&,
é“é University of Toronto Department of Computer Science

V. References

van Vliet, H. "Software Engineering: Principles and Practice (2nd Edition)”
Wiley, 1999.

Chapter 3 provides a very good overview of lifecycle models.

Blum, B. "Software Engineering: A Holistic View”. Oxford University
Press, 1992.

Dorfman, M. "Requirements Engineering”. In Thayer, R. H and Dorfman,
M. (eds.) "Software Requirements Engineering, Second Edition”. TEEE
Computer Society Press, 1997, p7-22

Forsberg, K and Mooz, H. "System Engineering Overview”. In Thayer, R.
H and Dorfman, M. (eds.) “"Software Requirements Engineering, Second
Edition”. IEEE Computer Society Press, 1997, p44-72

Jackson, M. "Software Requirements & Specifications: A Lexicon of
Practice, Principles and Prejudices”. Addison-Wesley, 1995.

Pfleeger, S. "Software Engineering: Theory and Practice”. Prentice Hall,
1997.

© 2001, Steve Easterbrook 13

