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Lecture 4:
Software Lifecycles

➜ The Software Process
�Waterfall model
� Rapid Prototyping Cycle
� Phased Models:

� Incremental Development
� Evolutionary Development
� Spiral Model

� V-model and Systems Engineering
� The ‘essential’ software process

➜ Verification and Validation
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Waterfall Model
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Source: Adapted from Dorfman, 1997, p7
see also: van Vliet 1999, p50
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Why not a waterfall?
➜ Waterfall model describes a process of stepwise

refinement
� Based on hardware engineering models
�Widely used in defense and aerospace industries

➜ But software is different:
�No fabrication step

� Program code is just another design level
� Hence, no ‘commit’ step - software can always be changed…!

�No body of experience for design analysis (yet)
� Most analysis (testing) is done on program code
� Hence, problems not detected until late in the process

�Waterfall model takes a static view of requirements
� ignores changing needs
� Lack of user involvement once specification is written

� Unrealistic separation of specification from design
� Doesn’t accommodate prototyping, reuse, etc.

Source: Adapted from Blum 1992, pp28-31
see also: van Vliet 1999, p50-1
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Prototyping lifecycle

➜ Prototyping is used for:
� understanding the requirements for the user interface
� examining feasibility of a proposed design approach
� exploring system performance issues

➜ Problems:
� users treat the prototype as the solution
� a prototype is only a partial specification

Source: Adapted from
van Vliet 1999, p53
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design code test integrate O&Mreqts

Phased Lifecycle Models
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Source: Adapted from Dorfman, 1997, p10
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Source: Adapted from
Dorfman, 1997, p10

see also: van Vliet 1999, p56
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The Spiral Model
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Source: Adapted from
Pfleeger, 1998, p57

see also: van Vliet 1999, p63
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Comments on phased models
➜ Incremental development

� avoids ‘big bang’ implementation
� but:

�  assumes all requirements known up-front

➜ Evolutionary development
� allows for lessons from each version to be incorporated into the next
� but…

� hard to plan for versions beyond the first;
� lessons may be learnt too late

➜ Spiral model
� incorporates prototyping and risk analysis
� but…

� cannot cope with unforeseen changes (e.g. new business objectives)
� not clear how to analyze risk
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V-Model
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The “essential” software process
Source: Adapted from Blum, 1992, p32

see also: van Vliet p11
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Verification and Validation

➜ For V&V, we need to worry about:
� The properties of the computer hardware (C)
� The properties of the program (P)
� The properties of the machine in the application domain (the specification, S)
� The properties of the domain, independent of the machine (D)
� The requirements for the machine (R)

➜ Demonstrating that P satisfies R is then a two step
process:
� Do C and P imply S? (Verification)
� Do S and D imply R? (Validation)

Application Domain Machine Domain
Source: Adapted from Jackson, 1995, p170-171
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Validation Example
➜ Requirement R:

� “Reverse thrust shall only be enabled when the aircraft is moving on the
runway”

➜ Domain Properties D:
�Wheel pulses on if and only if wheels turning
�Wheels turning if and only if moving on runway

➜ Specification S:
� Reverse thrust enabled if and only if wheel pulses on

➜ S + D imply R
� But what if the domain model is wrong?

Source: Adapted from Jackson, 1995, p172
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Summary
➜ Software is different

�many assumptions from other engineering models don’t apply
� there is no fabrication step
� the underlying science of software behaviour is not well developed
� (software engineering is still an immature discipline)

➜ Many different views of the software process
� waterfall model is too rigid (doesn’t allow for change)
� other models incorporate prototyping, evolution, risk, etc.
� no lifecycle model is perfect

➜ Essential process:
� describe the problem
� describe the solution
� verify (does the solution solve the stated problem?)
� validate (did we solve the right problem?)
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