R University of Toronto Department of Computer Science

o

v Lecture 16:
Non-Functional Requirements (NFRs)

- Refresher:
% Modeling notations we've met

-» What are NFRs?

% Quality factors, design criteria; metrics
% Example NFRs

- Product-oriented approaches to NFRs

Y Making quality factors specific
%, Example: Reliability

- Process-oriented approaches to NFRs
% Softgoal analysis for design tradeoffs

[_® | ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

SOME RIGHTS RESERVED

ﬂ University of Toronto Department of Computer Science

=
w [°
¥ We've seen these UML diagrams...
% Use Cases * 0 o o Sequence Diagrams
l% |% \ user's view < :['F' ; ; individual scenario
b Lists functions o > interactions between
: : : users and system
visual overview of the ; : :
main requirements — o Sequence of
)] : messages
Activity diagrams qm— Statecharts
_é) business processes i responses to events

—}— ()
C% :;:Ea:r;?:z,r;?‘d Pl iR l‘u‘{ dynamic behavior

dependencies ‘L EJ event or‘dering,
é} : 3 reachability,
I between tasks _ W, deadlock. ot

Class Diagrams
information structure

relationships between
?T? | data items

modular structure for
the system

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

FQ University of Toronto Department of Computer Science

v ..and the following non-UML diagrams:

% Goal Models
> Capture strategic goals of stakeholders
» Good for exploring ‘how’ and ‘why’ questions with stakeholders
» Good for analysing trade-offs, especially over design choices

Y% Fault Tree Models (as an example risk analysis technique)
> Capture potential failures of a system and their root causes
> 6Good for analysing risk, especially in safety-critical applications
% Strategic Dependency Models (i*)
> Capture relationships between actors in an organisational setting
> Helps to relate stakeholders's goals to their organisational setting
» Good for understanding how the organisation will be changed
% Entity-Relationship Models
> Capture the relational structure of information to be stored
» Good for understanding constraints and assumptions about the subject domain
» Good basis for database design
& Mode Class Tables, Event Tables and Condition Tables (SCR)
> Capture the dynamic behaviour of a real-time reactive system
» Good for representing functional mapping of inputs to outputs
» Good for making behavioural models precise, for automated reasoning

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

ey

r§ University of Toronto Department of Computer Science

What are Non-functional Requirements?

- Functional vs. Non-Functional

% Functional requirements describe what the system should do
> functions that can be captured in use cases
> behaviours that can be analyzed by drawing sequence diagrams, statecharts, etc.
> .. and probably trace to individual chunks of a program

% Non-functional requirements are global constraints on a software system

> e.g. development costs, operational costs, performance, reliability,
maintainability, portability, robustness etc.

» Often known as software qualities, or just the “ilities”
» Usually cannot be implemented in a single module of a program

- The challenge of NFRs

% Hard to model

Y Usually stated informally, and so are:
> often contradictory,
> difficult to enforce during development
> difficult to evaluate for the customer prior to delivery

Y Hard to make them measurable requirements
> We'd like to state them in a way that we can measure how well they've been met

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

SOME RIGHTS RESERVED

sl

- University of Toronto

Department of Computer Science

- Interface requirements

% how will the new system interface
with its environment?
>User interfaces and “user-friendliness”
»>Interfaces with other systems

- Performance requirements

% time/space bounds

>workloads, response time, throughput
and available storage space

>e.g. “the system must handle 1,000
transactions per second"

% reliability
>the availability of components
>integrity of information maintained and
supplied to the system

»>e.g. "system must have less than 1hr
downtime per three months"

% security
>E.g. permissible information flows, or
who can do what

% survivability

»>E.g. system will need to survive fire,
natural catastrophes, etc

Example NFRs

- Operating requirements
% physical constraints (size, weight),
% personnel availability & skill level
% accessibility for maintenance
% environmental conditions
Y etc

- Lifecycle requirements

% “Future-proofing”
> Maintainability
»>Enhanceability
>Portability
»>expected market or product lifespan
% limits on development
»>E.g development time limitations,
>resource availability
»methodological standards
»>etc.

- Economic requirements

% e.g. restrictions on immediate and/or
long-term costs.

SOME RIGHTS RESERVED

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

r§ University of Toronto Department of Computer Science

7 Approaches to NFRs

- Product vs. Process?

% Product-oriented Approaches
> Focus on system (or software) quality
> Capture operational criteria for each requirement
> .. so that we can measure it once the product is built

% Process-oriented Approaches
> Focus on how NFRs can be used in the design process
> Analyze the interactions between NFRs and design choices
> .. so that we can make appropriate design decisions

- Quantitative vs. Qualitative?

% Quantitative Approaches

> Find measurable scales for the quality attributes

> Calculate degree to which a design meets the quality targets
% Qualitative Approaches

> Study various relationships between quality goals

> Reason about trade-offs etc.

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

SOME RIGHTS RESERVED

University of Toronto Department of Computer Science

Software Qualities

- Think of an everyday object

% e.g. a chair - how would you measure it's “quality”?
> construction quality? (e.g. strength of the joints,..)
> aesthetic value? (e.g. elegance,...)
> fit for purpose? (e.g. comfortable,...)

- All quality measures are relative

Y there is no absolute scale

%, we can sometimes say A is better than B...
> .. but it is usually hard to say how much better!

- For software:

% construction quality?
> software is not manufactured

% aesthetic value?
> but most of the software is invisible
> aesthetic value is a marginal concern
% fit for purpose?
> Need to understand the purpose

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

SOME RIGHTS RESERVED

5&‘ University of Toronto Department of Computer Science

Fitness

Source: Budgen, 1994, pp58-9

- Software quality is all about fitness to purpose

% does it do what is needed?

% does it do it in the way that its users need it to?

Y does it do it reliably enough? fast enough? safely enough? securely enough?
Y will it be affordable? will it be ready when its users need it?

% can it be changed as the needs change?

- Quality is not a measure of software in isolation

Y it measures the relationship between software and its application domain
» cannot measure this until you place the software into its environment..
> ..and the quality will be different in different environments!

% during design, we need to predict how well the software will fit its purpose
> we need good quality predictors (design analysis)
% during requirements analysis, we need to understand how fitness-for-
purpose will be measured
> What is the intended purpose?
> What quality factors will matter to the stakeholders?
> How should those factors be operationalized?

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

kﬁ University of Toronto Department of Computer Science

Factors vs. Criteria
- Quality Factors

Y These are customer-related concerns
> Examples: efficiency, integrity, reliability, correctness, survivability, usability,...

- Design Criteria

Y These are technical (development-oriented) concerns such as anomaly
management, completeness, consistency, traceability, visibility, ...

- Quality Factors and Design Criteria are related:

% Each factor depends on a number of associated criteria:
> E.g. correctness depends on completeness, consistency, traceability,...
> E.g. verifiability depends on modularity, self-descriptiveness and simplicity

Y There are some standard mappings to help you...

- During Analysis:
% Identify the relative importance of each quality factor
> From the customer's point of view!
% Identify the design criteria on which these factors depend
%, Make the requirements measurable

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

ﬂ University of Toronto

Department of Computer Science

¥ Boehm's NPR [it+~~.

/

-~ Design cril

eria

~

l

I » device-independence ||
SourceyS% Blum, 1992, p176 . I I
7 > self-containedness | |
4 portability | I
/) | » accuracy |
/ > I I
,/ completeness I
/ reliability v I
/ w robustness/integrity | |
4 : I
o pro a consistency ,
eneral ernciency N I
utility N T As-is utility \w accountability I
I
. device efficienc
: usability A’ y :
\ .} accessibility :
‘)ﬂ" I
\\ testability)I communicativeness | |
T |
\\ \’V self-descriptiveness | |
ar I
63%4)} Maintainability (—>| understandability K7} structuredness I
\\;}2 ,/ N conciseness :
o (A
N modifiability | legibility :
Yy P d
RN o P > augmentability AI
[®© __1©2004-5 Steve Easterbroaa'n._\ ,.—cﬁm:nercial use with attribution under a creative Comons Igenge. — — — = = 10

SOME RIGHTS RESERVED

-—
_ e e — -

-

& University of Toronto

Department of Computer Science

¥ McCall's-NFR- list--

Source éee van Vliet 2000, pp111-3

Product operation

usabﬂﬂy

: —> efficien
, efficiency \ Storage efficiency |
); \ execution efficiency |

operability

===

Y

integrit
grity Access control |
y R I Access audit |

communicatativeness |

d

/0 volume |

|
|
|
|
|
|
|
|
|
correctness \ | >/ traceability | I
—— \\\\:\H completeness | 'g :
I’ellablllty ﬂ accuracy | .g. I
error tolerance | S
maintainability consistency | g:
Product revision § . Smplielty | 9 |
testability conciseness | O |
instrumentation | I
flexibility —> expandability | |
) generality | I
\\ reusability Self-des:I:riptiveness | :
N modularity | I
Product transition — machine independence | |
\\ § portability s/w system independence | |
S \QUQ//f . ST |\ comms. commonality | II
y,eacr in eroPerazl ity —>| data commonality | P
| © 2004-5 Steve East\bm ~OPS _ wen-commercial use with attribution underacreatwe_corr?noﬁs s — — — = " 11

6 University of Toronto

Department of Computer Science

ae

measurables

The Quality Factors
(abstract notions of
quality properties)

Measurable Criteria
(define some metrics)

¥

Counts taken from
Design Representations
(realization of the metrics)

Making Requirements Measurable

Source: Budgen, 1994, pp60-1

- We have to turn our vague ideas about quality into

examples. ..
reliability complexity usability
v v v
mean time information time taken
to failure? flow between to learn
modules? how to use?
v \ 4
run it and count minutes
count crashes procedure taken for
per hour??? calls??? some user
task???

[® 1©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SOME RIGHTS RESERVED

12

FQ University of Toronto Department of Computer Science

Example: Measuring Reliability

7|7|~ !

- Example Definition

% the ability of the system to behave consistently in a user-acceptable
manner when operating within the environment for which it was intended.

-» Comments:

% Reliability can be defined in terms of a percentage (say, 99.999%)

% This may have different meaning for different applications:

> Telephone network: the entire network can fail no more than, on average, 1hr per
year, but failures of individual switches can occur much more frequently

> Patient monitoring system: the system may fail for up to 1hr/year, but in those
cases doctors/nurses should be alerted of the failure. More frequent failure of
individual components is not acceptable.

%, Best we can do may be something like:

> "...No more than X bugs per 10KLOC may be detected during integration and
testing. no more than Y bugs per 10KLOC may remain in the system after
delivery, as calculated by the Monte Carlo seeding technique of appendix Z: the

system must be 100% operational 99.9% of the calendar year during its first
year of operation..."

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

‘L‘ University of Toronto Department of Computer Science

| a5

v Measuring Reliability...

- Example reliability requirement:
% "The software shall have no more than X bugs per thousand lines of code”
¢ ...But is it possible to measure bugs at delivery time?

- Use bebugging
Y, Measures the effectiveness of the testing process

Y a number of seeded bugs are introduced to the software system
> then testing is done and bugs are uncovered (seeded or otherwise)

Estimated number = # of seeded bugs x # of detected bugs
of bugs in system # of detected seeded bugs

% ...BUT, not all bugs are equally important!

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

14

ﬁq University of Toronto Department of Computer Science

L4 Example model: Reliability growth

Source: Adapted from Pfleeger 1998, p359

- Motorola’'s Zero-failure testing model

% Predicts how much more testing is needed to establish a given reliability goal
% basic model: empirical constant

1
failures = Ge o) ‘éA
. of s . . \’res'ring time %’
- Reliability estimation process 8
Test Time

% Inputs needed:
> fd = target failure density (e.g. 0.03 failures per 1000 LOC)
> tf = total test failures observed so far
> th = total testing hours up to the last failure

% Calculate number of further test hours needed using:

In(fd/(0.5 + fd)) x th
In((0.5 + fd)/(+f + fd))
% Result gives the number of further failure free hours of testing needed to

establish the desired failure density
> if a failure is detected in this time, you stop the clock and recalculate

Y Note: this model ignores operational profiles!

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

sl

% University of Toronto Department of Computer Science

Making Requirements Measurable

- Define ‘fit criteria’ for each requirement
Y Give the 'fit criteria’ alongside the requirement

% E.g. for new ATM software
> Requirement: "The software shall be intuitive and self-explanatory”

> Fit Criteria: "95% of existing bank customers shall be able to withdraw money
and deposit cheques within two minutes of encountering the product for the first
time”

- Choosing good fit criteria

& Stakeholders are rarely this specific

Y The right criteria might not be obvious:
> Things that are easy to measure aren't necessarily what the stakeholders want
» Standard metrics aren't necessary what stakeholders want

Y Work with stakeholders to find good fit criteria

- Proxies

Y, Sometimes the quality is not directly measurable. Seek indicators instead:
> E.g. "Few data entry errors” as proxy for Usability
> E.g. "Loose coupling” as a proxy for Maintainability

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

16

I University of Toronto

Department of Computer Science

|88

e ;
sl

- Goal types:
% Non-functional Requirement
% Satisficing Technique

>e.g. a design choice

G Claim

»>supporting/explaining a choice

- Contribution Types:
% AND links (decomposition)
% OR links (alternatives)
% Sup links (supports)
% Sub links (necessary subgoal)

- Evaluation of goals
% Satisficed
% Denied
% Conflicting
% Undetermined

Using softgoal analysis

Source: Chung, Nixon, Yu & Mylopoulos, 1999

Accuracy[Account]

Accuracy
[PremierAccount]
Accuracy) A
cecuracy
[RegularAccount] GoldAccount]
Accuracy
[GoldAccount.credit]
AccuracE/ _ Accuracy
[GoldAccount.debit] l[GoldAccount.highSpending]

Claim [one of vital few:
acc. of high spendings in gold accts]

+*

Validation
Auditing [GoldAccount.highSpending]
[GoldAccount.highSpending] +

ValidatedBy]
[GoldAccount.highSpending,

Claim
[exists ...] ;
P Available
Available [class-I-secretary]
[policy-on-spending-pattern]
Claim [Policy of Available

rigorous exam. on high spénding] [GoldAccount.highSpending,

SOME RIGHTS RESERVED

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

sl

% University of Toronto Department of Computer Science

£ 4 NFR Catalogues

Source: Cysneiros & Yu, 200

- Predefined catalogues of NFR decomposition

Y% Provides a knowledge base to check coverage of an NFR

% Provides a tool for elicitation of NFRs
Y% Example: m

Have Polcies

"
0
o
o

&

omplance

jse reguiar
o mai

Use Digkal ol
Labels 7 O
@
&)

Jse Revised
ICC Moded
Contract

SOME RIGHTS RESERVED

Educate
wnee Orf ™A Cofrpanies
Asclosure an :
:-,’r'.k;:ta'?nn ; Negotiate
‘ Onfine
“Personal Data *
Disclosure
Help per sonal datd
Sode T = g o 1 Change over "
¥ : Firne
© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

