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v Lecture 16:
Non-Functional Requirements (NFRs)

- Refresher:
% Modeling notations we've met

-» What are NFRs?

% Quality factors, design criteria; metrics
% Example NFRs

- Product-oriented approaches to NFRs

Y Making quality factors specific
%, Example: Reliability

- Process-oriented approaches to NFRs
% Softgoal analysis for design tradeoffs
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v ..and the following non-UML diagrams:

% Goal Models
> Capture strategic goals of stakeholders
» Good for exploring ‘how’ and ‘why’ questions with stakeholders
» Good for analysing trade-offs, especially over design choices

Y% Fault Tree Models (as an example risk analysis technique)
> Capture potential failures of a system and their root causes
> 6Good for analysing risk, especially in safety-critical applications
% Strategic Dependency Models (i*)
> Capture relationships between actors in an organisational setting
> Helps to relate stakeholders's goals to their organisational setting
» Good for understanding how the organisation will be changed
% Entity-Relationship Models
> Capture the relational structure of information to be stored
» Good for understanding constraints and assumptions about the subject domain
» Good basis for database design
& Mode Class Tables, Event Tables and Condition Tables (SCR)
> Capture the dynamic behaviour of a real-time reactive system
» Good for representing functional mapping of inputs to outputs
» Good for making behavioural models precise, for automated reasoning
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What are Non-functional Requirements?

- Functional vs. Non-Functional

% Functional requirements describe what the system should do
> functions that can be captured in use cases
> behaviours that can be analyzed by drawing sequence diagrams, statecharts, etc.
> .. and probably trace to individual chunks of a program

% Non-functional requirements are global constraints on a software system

> e.g. development costs, operational costs, performance, reliability,
maintainability, portability, robustness etc.

» Often known as software qualities, or just the “ilities”
» Usually cannot be implemented in a single module of a program

- The challenge of NFRs

% Hard to model

Y Usually stated informally, and so are:
> often contradictory,
> difficult to enforce during development
> difficult to evaluate for the customer prior to delivery

Y Hard to make them measurable requirements
> We'd like to state them in a way that we can measure how well they've been met
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- Interface requirements

% how will the new system interface
with its environment?
>User interfaces and “user-friendliness”
»>Interfaces with other systems

- Performance requirements

% time/space bounds

>workloads, response time, throughput
and available storage space

>e.g. “the system must handle 1,000
transactions per second"

% reliability
>the availability of components
>integrity of information maintained and
supplied to the system

»>e.g. "system must have less than 1hr
downtime per three months"

% security
>E.g. permissible information flows, or
who can do what

% survivability

»>E.g. system will need to survive fire,
natural catastrophes, etc

Example NFRs

- Operating requirements
% physical constraints (size, weight),
% personnel availability & skill level
% accessibility for maintenance
% environmental conditions
Y etc

- Lifecycle requirements

% “Future-proofing”
> Maintainability
»>Enhanceability
>Portability
»>expected market or product lifespan
% limits on development
»>E.g development time limitations,
>resource availability
»methodological standards
»>etc.

- Economic requirements

% e.g. restrictions on immediate and/or
long-term costs.
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7 Approaches to NFRs

- Product vs. Process?

% Product-oriented Approaches
> Focus on system (or software) quality
> Capture operational criteria for each requirement
> .. so that we can measure it once the product is built

% Process-oriented Approaches
> Focus on how NFRs can be used in the design process
> Analyze the interactions between NFRs and design choices
> .. so that we can make appropriate design decisions

- Quantitative vs. Qualitative?

% Quantitative Approaches

> Find measurable scales for the quality attributes

> Calculate degree to which a design meets the quality targets
% Qualitative Approaches

> Study various relationships between quality goals

> Reason about trade-offs etc.
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Software Qualities

- Think of an everyday object

% e.g. a chair - how would you measure it's “quality”?
> construction quality? (e.g. strength of the joints,..)
> aesthetic value? (e.g. elegance,...)
> fit for purpose? (e.g. comfortable,...)

- All quality measures are relative

Y there is no absolute scale

%, we can sometimes say A is better than B...
> .. but it is usually hard to say how much better!

- For software:

% construction quality?
> software is not manufactured

% aesthetic value?
> but most of the software is invisible
> aesthetic value is a marginal concern
% fit for purpose?
> Need to understand the purpose
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Fitness

Source: Budgen, 1994, pp58-9

- Software quality is all about fitness to purpose

% does it do what is needed?

% does it do it in the way that its users need it to?

Y does it do it reliably enough? fast enough? safely enough? securely enough?
Y will it be affordable? will it be ready when its users need it?

% can it be changed as the needs change?

- Quality is not a measure of software in isolation

Y it measures the relationship between software and its application domain
» cannot measure this until you place the software into its environment..
> ..and the quality will be different in different environments!

% during design, we need to predict how well the software will fit its purpose
> we need good quality predictors (design analysis)
% during requirements analysis, we need to understand how fitness-for-
purpose will be measured
> What is the intended purpose?
> What quality factors will matter to the stakeholders?
> How should those factors be operationalized?
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Factors vs. Criteria
- Quality Factors

Y These are customer-related concerns
> Examples: efficiency, integrity, reliability, correctness, survivability, usability,...

- Design Criteria

Y These are technical (development-oriented) concerns such as anomaly
management, completeness, consistency, traceability, visibility, ...

- Quality Factors and Design Criteria are related:

% Each factor depends on a number of associated criteria:
> E.g. correctness depends on completeness, consistency, traceability,...
> E.g. verifiability depends on modularity, self-descriptiveness and simplicity

Y There are some standard mappings to help you...

- During Analysis:
% Identify the relative importance of each quality factor
> From the customer's point of view!
% Identify the design criteria on which these factors depend
%, Make the requirements measurable
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¥ McCall's-NFR- list--

Source éee van Vliet 2000, pp111-3
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measurables

The Quality Factors
(abstract notions of
quality properties)

Measurable Criteria
(define some metrics)

¥

Counts taken from
Design Representations
(realization of the metrics)

Making Requirements Measurable

Source: Budgen, 1994, pp60-1

- We have to turn our vague ideas about quality into

examples. ..
reliability complexity usability
v v v
mean time information time taken
to failure? flow between to learn
modules? how to use?
v \ 4
run it and count minutes
count crashes procedure taken for
per hour??? calls??? some user
task???
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Example: Measuring Reliability

7|7|~ !

- Example Definition

% the ability of the system to behave consistently in a user-acceptable
manner when operating within the environment for which it was intended.

-» Comments:

% Reliability can be defined in terms of a percentage (say, 99.999%)

% This may have different meaning for different applications:

> Telephone network: the entire network can fail no more than, on average, 1hr per
year, but failures of individual switches can occur much more frequently

> Patient monitoring system: the system may fail for up to 1hr/year, but in those
cases doctors/nurses should be alerted of the failure. More frequent failure of
individual components is not acceptable.

%, Best we can do may be something like:

> "...No more than X bugs per 10KLOC may be detected during integration and
testing. no more than Y bugs per 10KLOC may remain in the system after
delivery, as calculated by the Monte Carlo seeding technique of appendix Z: the

system must be 100% operational 99.9% of the calendar year during its first
year of operation..."
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v Measuring Reliability...

- Example reliability requirement:
% "The software shall have no more than X bugs per thousand lines of code”
¢ ...But is it possible to measure bugs at delivery time?

- Use bebugging
Y, Measures the effectiveness of the testing process

Y a number of seeded bugs are introduced to the software system
> then testing is done and bugs are uncovered (seeded or otherwise)

Estimated number = # of seeded bugs x # of detected bugs
of bugs in system # of detected seeded bugs

% ...BUT, not all bugs are equally important!
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L4 Example model: Reliability growth

Source: Adapted from Pfleeger 1998, p359

- Motorola’'s Zero-failure testing model

% Predicts how much more testing is needed to establish a given reliability goal
% basic model: empirical constant

1
failures = Ge o) ‘éA
. of s . . \’res'ring time %’
- Reliability estimation process 8
Test Time

% Inputs needed:
> fd = target failure density (e.g. 0.03 failures per 1000 LOC)
> tf = total test failures observed so far
> th = total testing hours up to the last failure

% Calculate number of further test hours needed using:

In(fd/(0.5 + fd)) x th
In((0.5 + fd)/(+f + fd))
% Result gives the number of further failure free hours of testing needed to

establish the desired failure density
> if a failure is detected in this time, you stop the clock and recalculate

Y Note: this model ignores operational profiles!
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Making Requirements Measurable

- Define ‘fit criteria’ for each requirement
Y Give the 'fit criteria’ alongside the requirement

% E.g. for new ATM software
> Requirement: "The software shall be intuitive and self-explanatory”

> Fit Criteria: "95% of existing bank customers shall be able to withdraw money
and deposit cheques within two minutes of encountering the product for the first
time”

- Choosing good fit criteria

& Stakeholders are rarely this specific

Y The right criteria might not be obvious:
> Things that are easy to measure aren't necessarily what the stakeholders want
» Standard metrics aren't necessary what stakeholders want

Y Work with stakeholders to find good fit criteria

- Proxies

Y, Sometimes the quality is not directly measurable. Seek indicators instead:
> E.g. "Few data entry errors” as proxy for Usability
> E.g. "Loose coupling” as a proxy for Maintainability
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- Goal types:
% Non-functional Requirement
% Satisficing Technique

>e.g. a design choice

G Claim

»>supporting/explaining a choice

- Contribution Types:
% AND links (decomposition)
% OR links (alternatives)
% Sup links (supports)
% Sub links (necessary subgoal)

- Evaluation of goals
% Satisficed
% Denied
% Conflicting
% Undetermined

Using softgoal analysis

Source: Chung, Nixon, Yu & Mylopoulos, 1999
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£ 4 NFR Catalogues

Source: Cysneiros & Yu, 200

- Predefined catalogues of NFR decomposition

Y% Provides a knowledge base to check coverage of an NFR

% Provides a tool for elicitation of NFRs
Y% Example: m
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