6 University of Toronto Department of Computer Science

> Lecture 15:
Modelling System Interactions

- Interactions with the new system

% How will people interact with the system?
Y When/Why will they interact with the system?

- Use Cases

% introduction to use cases
% identifying actors

% identifying cases

% Advanced features

- Sequence Diagrams

Y, Temporal ordering of events involved in a use case

[_® | ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

SOME RIGHTS RESERVED

gﬁ University of Toronto Department of Computer Science

‘ Moving towards specification

- What functions will the new system provide?

% How will people interact with it?
% Describe functions from a user's perspective

-» UML Use Cases

L Used to show:
> the functions to be provided by the system
> which actors will use which functions

Y Each Use Case is:

> a pattern of behavior that the new system is required to exhibit

> a sequence of related actions performed by an actor and the system via a
dialogue.

- An actor is:

% anything that needs to interact with the system:
> a person
> a role that different people may play
> another (external) system.

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

R University of Toronto Department of Computer Science

og

v Use Case Diagrams

- Capture the relationships between actors and Use
Cases

-

C) Change a“\\\\\ C)
;K‘ client contact ¥
' N\
Campailgn
Manager O Staff contact

Add a new client

o _——» T

;K> Record client payment

Accountant

[® 1©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SOME RIGHTS RESERVED

8 University of Toronto Department of Computer Science

v Notation for Use Case Diagrams

Use case

Change client

contact

>0

Staff contact

Actor Communication

association System
boundary

[_® | ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

SOME RIGHTS RESERVED

“ University of Toronto Department of Computer Science

S

nd Example

Add new
staff member

Change rate
or staff gradg

AN

>0

Accountan \\\‘\\\\\

/

Change grade
for staff membe

falculate staf
bonuses

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

& University of Toronto Department of Computer Science

v <<extends>> and <<uses>>

- <<extends>> when one use case adds behaviour to a base case

% used to model a part of a use case that the user may see as optional system behavior;
% also models a separate sub-case which is executed conditionally.

- <<uses>>: one use case invokes another (like a procedure call);

% used to avoid describing the same flow of events several times
% puts the common behavior in a use case of its own.

Print
Campaign
Summary

<<extends>>

Check Campaign
Budget

N

N
<<us;;>§\
~

Find Campaign

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

R University of Toronto Department of Computer Science

v Sample use cases for a car

) Mechanic
Driver GasAttendant

Q

<<uses>>
<<uses>>

|
e

<ext

<<uses>> nds>>

<<uses>>

Turn On
Engine

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

R University of Toronto Department of Computer Science

og

g Meeting Scheduler Example

Initiator Participant

Edit Provide
constraints

Generate
Schedule

Constrainty/. .o+t ends>>

Schedule

- -7
<<uses> mee|ng g @4
® 2
® LO
® L
\ 977
v . P e
Validate X ,29°

User

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

r§ University of Toronto Department of Computer Science

Generalizations

- Actor classes
% It's sometimes useful to identify classes

of actor
> E.g. where several actors belong to a
single class
Record completion > Some use cases are needed by all members
in the class

of an advert
> Other use cases are only needed by some
members of the class

Staff Y% Actors inherit use cases from the class
Contact
Change a client
contact - Use Case classes
Y Sometimes useful to identify a
Ge/vwralwatz’,ow relatiowy generalization of several use cases
Rea,d/auy “ AN
« .,
or just "y Assign individual
staff to work on a
campaign
Assign stalf towork
Campaign on a campaigrn
Manager Assign team of staff

to work on a
campaign

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

SOME RIGHTS RESERVED

7 University of Toronto Department of Computer Science

Identifying Actors

- Ask the following questions:

Y, Who will be a primary user of the system? (primary actor)
» Who will need support from the system to do her daily tasks?
» Who or what has an interest in the results that the system produces ?

Y, Who will maintain, administrate, keep the system working? (secondary
actor)

Y Which hardware devices does the system need?
Y With which other systems does the system need to interact with?

- Look for:

% the users who directly use the system
Y also others who need services from the system

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

10

ﬁq University of Toronto Department of Computer Science

|
- %
sl

Finding Use Cases

- For each actor, ask the following questions:

Y Which functions does the actor require from the system?
Y What does the actor need to do ?

% Does the actor need to read, create, destroy, modify, or store some kinds
of information in the system ?

Y Does the actor have to be notified about events in the system?
% Does the actor need to notify the system about something?
Y, What do those events require in terms of system functionality?

% Could the actor's daily work be simplified or made more efficient through
new functions provided by the system?

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

11

»” University of Toronto

Department of Computer Science

Documenting Use Cases

- For each use case:

% prepare a “flow of events” document, written from an actor’'s point of view.

% describe what the system must provide to the actor when the use case is
executed.

- Typical contents

Y How the use case starts and ends;
% Normal flow of events;

% Alternate flow of events;

% Exceptional flow of events:

- Documentation style:

% Choice of how to represent the use case:
> English language description
> Activity Diagrams - good for business process
> Collaboration Diagrams - good for high level design
> Sequence Diagrams - good for detailed design

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

12

)

- University of Toronto

Department of Computer Science

Modelling Sequences of Events

- Objects “own” information and behaviour

% they have attributes and operations relevant to their responsibilities.
Y They don't “know” about other objects' information, but can ask for it.

% To carry out business processes, objects have to collaborate.
> ..by sending messages to one another to invoke each others’ operations

%, Objects can only send messages to one another if they “know” each other
> I.e. if there is an association between them.

- Describe a Use Case using Sequence Diagrams

% Sequence diagrams show step-by-step what's involved in a use case
> Which objects are relevant to the use case
> How those objects participate in the function

Y% You may need several sequence diagrams to describe a single use case.
> Each sequence diagram describes one possible scenario for the use case
%, Sequence diagrams...

> ..should remain easy to read and understand.
> ..do not include complex control logic

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

13

8 University of Toronto Department of Computer Science

. Example Sequence Diagram

i i participating
ob j ect \

Initiator Staff Scheduler Participant
:Person :Person :Person :Person
Call : ; i : :
all() b Respond() iteration
_4 What's up?() ¢
: Give mtg details() ’_
:l : [for all participants] *Inform() ’
S 4 Acknowledge()
® : : :
[for all participants] *Remind() : }
: 4 Acknowledge() : '
conditioh :

: : Prompt() ’_
\4\ Show schedule()

A :
[decision=0K] ScheduleOK’ed()

’
: [for all par’umpantsJ
*Inform()

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

2 University of Toronto

Department of Computer Science

o

v Another Example

A

Campaign
Manager
— :Client :Campaign :Advert
getName() ' '
listCampaigns() || *getCampaign ! 5
L Details() ! ;
listAdverts() ’[; *getAdvert |
: P Details() _ |
addNewAdvert() ; —.} |
E P Advert() : newAd:Advert
E A N
_J : // -T :$:
//’7 : /// ' ! : I
o Activation E
Object lifeline :

Object creation

SOME RIGHTS RESERVED

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

15

6 University of Toronto Department of Computer Science

Branching messages, etc

O O
x X :Printer :Queue

:CustomerP :PrinterP
Llfel!z\e PrintFile(file) > GetStatus() Inepfive
[Ready]Print() , Active
4 i !
............... 5 [:Btg:y] D
B ina’ utinQueue i,
ranching (D)
[OgtOfService]
lIRepai !
Done allRepair O :
' , Ready(file) §
- | Ready(file) " GetNext() !
A >
>:< Asynchronous |:|

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

5&‘ University of Toronto Department of Computer Science

Don't forget what we're modelling

- During analysis
Y, we want to know about the application domain and the requirements

Y ..so we develop a course-grained model to show where responsibilities are,

and how objects interact
» Our models show a message being passed, but we don't worry too much about the
contents of each message
> To keep things clear, use icons to represent external objects and actors, and
boxes to represent system objects.

- During design
%, we want to say how the software should work

% ... so we develop fine-grained models to show exactly what will happen when

the system runs
> E.g. show the precise details of each method call.

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

