
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 9:
Requirements Modelling

 A little refresher:
 What are we modelling?
 Requirements; Systems; Systems Thinking

 Role of Modelling in RE
 Why modelling is important
 Limitations of modelling

 Brief overview of modelling languages

Modelling principles
 Abstraction
 Decomposition
 Projection
 Modularity



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Refresher: Definitions

 Some distinctions:
 Domain Properties - things in the application domain that are true whether or not we

ever build the proposed system
 Requirements - things in the application domain that we wish to be made true by

delivering the proposed system
 A specification - a description of the behaviours the program must have in order to

meet the requirements

 Two correctness (verification) criteria:
 The Program running on a particular Computer satisfies the Specification
 The Specification, in the context of the given domain properties, satisfies the

requirements

 Two completeness (validation) criteria:
 We discovered all the important requirements
 We discovered all the relevant domain properties

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Source: Adapted from Loucopoulos & Karakostas, 1995, p73

Subject System

Information system

Uses

builds

Maintains 
information

about

Needs 
information

about

contracts

Usage System

Development System

Refresher: Systems to model



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Refresher: Systems Thinking



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Modelling…
Modelling can guide elicitation:

 It can help you figure out what questions to ask
 It can help to surface hidden requirements

 i.e. does it help you ask the right questions?

Modelling can provide a measure of progress:
 Completeness of the models -> completeness of the elicitation (?)

 i.e. if we’ve filled in all the pieces of the models, are we done?

Modelling can help to uncover problems
 Inconsistency in the models can reveal interesting things…

 e.g. conflicting or infeasible requirements
 e.g. confusion over terminology, scope, etc
 e.g. disagreements between stakeholders

Modelling can help us check our understanding
 Reason over the model to understand its consequences

 Does it have the properties we expect?
 Animate the model to help us visualize/validate the requirements



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Source: Adapted from Jackson, 1995, p120-122

For every B, at
least one P exists
such that R(P, B)

The
application

domain

Designations for
the application

domain

Common
Properties

The
modelling
domain

Designations
for the model’s
domain

B = Book
P = Person
R = Wrote

Book: entity
Person: entity

author: relation

RE involves a lot of modelling
 A model is more than just a description

 it has its own phenomena, and its own relationships among those phenomena.
 The model is only useful if the model’s phenomena correspond in a systematic way

to the phenomena of the domain being modelled.
 Example:

Book
title

author (0,n)
(1,n)

name
ISBN

Person



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

“It’s only a model”
 There will always be:

 phenomena in the model that are not present in the application domain
 phenomena in the application domain that are not in the model

 A model is never perfect
 “If the map and the terrain disagree, believe the terrain”
 Perfecting the model is not always a good use of your time...

Source: Adapted from Jackson, 1995, p124-5

…every book has at
least one author…
…every book has a

unique ISBN…

Common
Phenomena

…ghost writers…
…pseudonyms…

…anonymity…

…no two people
born on same

date with same
name…

Book
title

author (0,n)
(1,n)

name
ISBN

Person

DOB

Phenomena
not captured
in the model

Phenomena
not true

in the world



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Source: Adapted from Loucopoulos & Karakostas, 1995, p72-73

UML fits in here

Choice of modelling notation
 natural language

 extremely expressive and flexible
 useful for elicitation, and to annotate models for readability

 poor at capturing key relationships

 semi-formal notation
 captures structure and some semantics
 can perform (some) reasoning, consistency checking, animation, etc.

 E.g. diagrams, tables, structured English, etc.
 mostly visual - for rapid communication with a variety of stakeholders

 formal notation
 precise semantics, extensive reasoning possible

 Underlying mathematical model (e.g. set theory, FSMs, etc)
 very detailed models (may be more detailed than we need)

 RE formalisms are for conceptual modelling, hence differ from most computer
science formalisms



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Desiderata for Modelling Notations
 Implementation Independence

 does not model data representation,
internal organization, etc.

 Abstraction
 extracts essential aspects

e.g. things not subject to frequent
change

 Formality
 unambiguous syntax
 rich semantic theory

 Constructability
 can construct pieces of the model to

handle complexity and size
 construction should facilitate

communication

 Ease of analysis
 ability to analyze for ambiguity,

incompleteness, inconsistency

 Traceability
 ability to cross-reference elements
 ability to link to design,

implementation, etc.

 Executability
 can animate the model, to compare it

to reality

 Minimality
 No redundancy of concepts in the

modelling scheme
i.e. no extraneous choices of how to
represent something

Source: Adapted from Loucopoulos & Karakostas, 1995, p77



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Survey of Modelling Techniques
Modelling Enterprises

 Goals & objectives
 Organizational structure
 Tasks & dependencies
 Agents, roles, intentionality

Modelling Information & Behaviour
 Information Structure
 Behavioral views

 Scenarios and Use Cases
 State machine models
 Information flow

 Timing/Sequencing requirements

Modelling System Qualities (NFRs)
 All the ‘ilities’:

 Usability, reliability, evolvability, safety,
security, performance, interoperability,…

Organization modelling:
i*, SSM, ISAC
Goal modelling:
KAOS, CREWS

Information modelling:
E-R, Class Diagrams
Structured Analysis:
SADT, SSADM, JSD
Object Oriented Analysis:
OOA, OOSE, OMT, UML
Formal Methods:
SCR, RSML, Z, Larch, VDM

Quality tradeoffs:
QFD, win-win, AHP,
Specific NFRs:
Timed Petri nets (performance)
Task models (usability)
Probabilistic MTTF (reliability)



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

the Unified Modelling Language (UML)
 Third generation OO method

 Booch, Rumbaugh & Jacobson are principal authors
 Still evolving
 Attempt to standardize the proliferation of OO variants

 Is purely a notation
 No modelling method associated with it!
 Was intended as a design notation (some features unsuitable for RE)

 Has become an industry standard
 But is primarily owned by IBM/Rational (who sell lots of UML tools and services)

 Has a standardized meta-model
 Use case diagrams
 Class diagrams
 Message sequence charts
 Activity diagrams
 State Diagrams
 Module Diagrams
 Platform diagrams



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Meta-Modelling
 Can compare modelling schema using meta-models:

 What phenomena does each scheme capture?
 What guidance is there for how to elaborate the models?
 What analysis can be performed on the models?

 Example meta-model:

Goals

TasksAgents

own

refine

implement

refine

assigned to



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Modelling principles
 Facilitate Modification and Reuse

 Experienced analysts reuse their past experience
 they reuse components (of the models they have built in the past)
 they reuse structure (of the models they have built in the past)

 Smart analysts plan for the future
 they create components in their models that might be reusable
 they structure their models to make them easy to modify

 Helpful ideas:
 Abstraction

 strip away detail to concentrate on the important things
 Decomposition (Partitioning)

 Partition a problem into independent pieces, to study separately
 Viewpoints (Projection)

 Separate different concerns (views) and describe them separately
 Modularization

 Choose structures that are stable over time, to localize change
 Patterns

 Structure of a model that is known to occur in many different applications



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Modelling Principle 1: Partitioning
 Partitioning

 captures aggregation/part-of relationship

 Example:
 goal is to develop a spacecraft
 partition the problem into parts:

 guidance and navigation;
 data handling;
 command and control;
 environmental control;
 instrumentation;
 etc

 Note: this is not a design, it is a problem decomposition
 actual design might have any number of components, with no relation to these

sub-problems
 However, the choice of problem decomposition will probably be reflected in

the design



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Source: Adapted from Davis, 1990, p48 and Loucopoulos & Karakostas, 1995, p78

based on symptoms:
 no response from device;

 incorrect response;
 self-test failure;

 etc...

based on location:
 instrumentation fault,
 communication fault,

 processor fault,
 etc

Modelling Principle 2: Abstraction
 Abstraction

 A way of finding similarities between concepts by ignoring some details
 Focuses on the general/specific relationship between phenomena

 Classification groups entities with a similar role as members of a single class
 Generalization expresses similarities between different classes in an ‘is_a’

association

 Example:
 requirement is to handle faults on the spacecraft
 might group different faults into fault classes



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Modelling Principle 3: Projection
 Projection:

 separates aspects of the model into multiple viewpoints
 similar to projections used by architects for buildings

 Example:
 Need to model the requirements for a spacecraft
 Model separately:

 safety
 commandability
 fault tolerance
 timing and sequencing
 Etc…

Note:
 Projection and Partitioning are similar:

 Partitioning defines a ‘part of’ relationship
 Projection defines a ‘view of’ relationship

 Partitioning assumes a the parts are relatively independent

Source: Adapted from Davis, 1990, p48-51



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

A brief UML example

:patient
Name
Date of Birth
physician
history

:in-patient
Room
Bed
Treatments
food prefs

:out-patient
Last visit
next visit
prescriptions

:patient
Name
Date of Birth
physician
history

:heart
Natural/artif.
Orig/implant
normal bpm

:eyes
Natural/artif.
Vision
colour

:kidney
Natural/artif.
Orig/implant
number

Source: Adapted from Davis, 1990, p67-68

1

0..1

0..21..2

0..1 0..1

Generalization 
(an abstraction hierarchy)

Aggregation
(a partitioning hierarchy)



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

What is this a model of?



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Summary
Modelling plays a central role in RE

 Allows us to study a problem systematically
 Allows us to test our understanding

Many choices for modelling notation
 In this course, we’ll use (and adapt) various UML notations

 All models are inaccurate (to some extent)
 Use successive approximation
 …but know when to stop perfecting the model
 Every model is created for a purpose
 The purpose is not usually expressed in the model
 …So every model needs an explanation


