
1	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  1 

Lecture 17: 
Testing Strategies"

Structural Coverage Strategies (White box testing):"
Statement Coverage"
Branch Coverage"
Condition Coverage"
Data Path Coverage"

Function Coverage Strategies (Black box testing):"
Use Cases as Test Cases"
Testing with good and bad data"

Stress Testing"
Quick Test"
Interference Testing"

A radical alternative: Exploratory Testing"
"

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  2 

Developer Testing"
Write the test cases first"

minimize the time to defect discovery"
forces you to think carefully about the requirements first"
exposes requirements problems early"
supports a “daily smoke test”"

But: Limitations of Developer Testing"
Emphasis on clean tests (vs. dirty tests)"

immature organisations have "1 dirty : 5 clean"
mature organisations have "5 dirty : 1 clean"

Developers overestimate test coverage"
Developers tend to focus on statement coverage rather than …"

Summary:"
Test-case first strategy is extremely valuable"
Test-case first strategy is not enough"



2	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  3 

Structured Basis Testing"
The minimal set of tests to cover every branch"
How many tests?"

start with 1 for the straight path"
add 1 for each of these keywords: if, while, repeat, for, and, or"
add 1 for each branch of a case statement"

Example"
int midval (int x, y, z) { 
/* effects: returns median 
value of the three inputs 

*/ 
if (x > y) { 
 if (x > z) return x 
 else return z } 
else { 
 if (y > z) return y 
 else return z } } 

Count 1 + 3 ‘if’s = 4 test cases"
Now choose the cases to exercise the 4 

paths:"
e.g. "x=3, y=2, z=1"
" "x=3, y=2, z=4"
" "x=2, y=3, z=2"
" "x=2, y=3, z=4"

Source: Adapted from McConnell 2004, p506-508 

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  4 

Complex Conditions"

If ((a) & (b) | (c)) then… 

true false 

Branch Coverage:!

If ((a)  &  (b)  |  (c)) then… 

true false true false true false 

Condition Coverage:!

If ((a)  &  (b)  |  (c)) then… 

true false true false 

But can you show that!
each part has an independent!

effect on the outcome?!

Source: Adapted from Christopher Ackermann’s slides 



3	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  5 

MC/DC Coverage"
Show that each basic condition can affect the result"

Source: Adapted from Christopher Ackermann’s slides 

If ((a)  &  (b)  |  (c)) then… (1)  Compute truth table for the 
condition"

(2)  In each row, identify any 
case where flipping one 
variable changes the 
result."

(3)  Choose a minimal set:"
"Eg. {2, 3, 4, 6}"
"or {2, 3, 4, 7}"

(4) Write a test case for each 
element of the set"

Number" ABC" Result" A" B" C"

1! TTT! T! 5!
2! TTF! T! 6! 4!
3! TFT! T! 7! 4!
4! TFF! F! 2! 3!
5! FTT! F! 1!
6! FTF! F! 2!
7! FFT! F! 3!
8! FFF! F!

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  6 

MC/DC versus Branch Coverage"
Compiler can translate conditions in the object code:"
"

"
"
"
Test sets for Condition/Decision coverage:"

{1, 8}  or  {2, 7}  or  {3, 6}"
Covers all paths in the source code, but not all paths in the object code"

Test sets for Modified Condition/Decision Coverage"
{2, 3, 4, 6} or {2, 3, 4, 7}"
Covers all paths in the object code"

Source: Adapted from Christopher Ackermann’s slides 



4	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  7 

About MC/DC"
Advantages:"

Linear growth in the number of conditions"
Ensures coverage of the object code"
Discovers dead code (operands that have no effect)"

Mandated by the US Federal Aviation Administration"
In avionics, complex boolean expressions are common"
Has been shown to uncover important errors not detected by other test 

approaches"

Itʼs expensive"
E.g. Boeing 777 (first fly-by-wire commercial aircraft)"

approx 4 million lines of code, 2.5 million newly developed"
approx 70% of this is Ada (the rest is C or assembler)"

Total cost of aircraft development: $5.5 billion"
Cost of testing to MC/DC criteria: approx. $1.5 billion"

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  8 

Dataflow testing"
Things that happen to data:"

Defined - data is initialized but not yet used"
Used - data is used in a computation"
Killed - space is released"
Entered - working copy created on entry to a method"
Exited - working copy removed on exit from a method"

Normal life:"
Defined once, Used a number of times, then Killed"

Potential Defects:"
D-D:  variable is defined twice"
D-Ex, D-K: variable defined but not used"
En-K: destroying a local variable that wasnʼt defined?"
En-U: for local variable, used before itʼs initialized"
K-K: unnecessary killing - can hang the machine?"
K-U: using data after it has been destroyed"
U-D: redefining a variable after is has been used"

Source: Adapted from McConnell 2004, p506-508 



5	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  9 

Testing all D-U paths"
The minimal set of tests to cover every D-U path"
How many tests?"

1 test for each path from each definition to each use of the variable"

Example"
if (Cond1) { 
  x = a; 
} 
else { 
  x = b; 
} 
if (Cond2) { 
  y = x + 1 
} 
else { 
  y = x - 1; 
} 

Structured Basis Testing:"
2 test cases is sufficient"
Case 1: Cond1=true, Cond2=true"
Case 2: Cond1=false, Cond2=false"

All DU testing:"
Need 4 test cases"

Source: Adapted from McConnell 2004, p506-508 

D:!

D:!

U:!

U:!

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  10 

Boundary Checking"
Boundary Analysis"

Every boundary needs 3 tests:"
Example:"
"
"
Add a test case for 3 values of x: MAX+1, MAX-1 and MAX"

Compound Boundaries"
When several variables have combined boundaries"
"
"
"
"
"
"
Test when lots of array entries are close to LIMIT?"
Test when lots of entries are close to zero?"

max! boundary!
below!
max!

boundary!
below!
max!if (x < MAX) { 

 … } 

for (i=0; i<Num; i++) { 
  if (a[i] < LIMIT) { 
   y = y+a[i]; 
  } 
} 

Source: Adapted from McConnell 2004, p506-508 



6	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  11 

Generating Tests from Use Cases"
1 Test the Basic Flow"
2 Test the Alternate Flows"

"
"
"
"
"
"
"
Buy a Product"
Precondition: Customer has successfully logged in!
Main Success Scenario:!
1.  Customer browses catalog and selects items to buy!
2.  Customer goes to check out!
3.  Customer fills in shipping information (address, 1-day or 3-day)!
4.  System presents full pricing information!
5.  Customer fills in credit card information!
6.  System authorizes purchase!
7.  System confirms sale immediately!
8.  System sends confirming email to customer!
Postcondition: Payment was received in full, customer has received 
confirmation!
Extensions:!
3a: Customer is Regular Customer:!
  .1 System displays current shipping, pricing and billing information!
  .2 Customer may accept or override defaults, cont MSS at step 6!
6a: System fails to authorize credit card!
  .1 Customer may reenter credit card information or may cancel!

Buy a!
Product!

Customer!

Start Use Case!

End Use Case!

End Use Case! End Use Case!

Basic Flow!

Alternate Flow 1!

Alternate !
Flow 2!

Alternate 
Flow 3!

Alternate !
Flow 4!

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  12 

"
"
"
"
"
"
"
Buy a Product"
Precondition: Customer has successfully logged in!
Main Success Scenario:!
1.  Customer browses catalog and selects items to buy!
2.  Customer goes to check out!
3.  Customer fills in shipping information (address, 1-day or 3-day)!
4.  System presents full pricing information!
5.  Customer fills in credit card information!
6.  System authorizes purchase!
7.  System confirms sale immediately!
8.  System sends confirming email to customer!
Postcondition: Payment was received in full, customer has received 
confirmation!
Extensions:!
3a: Customer is Regular Customer:!
  .1 System displays current shipping, pricing and billing information!
  .2 Customer may accept or override defaults, cont MSS at step 6!
6a: System fails to authorize credit card!
  .1 Customer may reenter credit card information or may cancel!

Generating Tests from Use Cases"

Buy a!
Product!

Customer!

3 Test the Postconditions"
Are they met on all paths 

through the use case?"
Are all postconditions met?"

4 Break the Preconditions"
What happens if this is not met?"
In what ways might it not be 

met?"

5 Identify options for each 
input choice"

select combinations of options 
for each test case"



7	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  13 

Data Classes"
Classes of Bad Data"

Too little data (or no data)"
Too much data"
The wrong kind of data (invalid data)"
The wrong size of data"
Uninitialized data"

Classes of Good Data"
Nominal cases - middle of the road, expected values"
Minimum normal configuration"
Maximum normal configuration"
Compatibility with old data"

Source: Adapted from McConnell 2004, p506-508 

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  14 

Classes of input variables"
Values that trigger alternative 
flows"

e.g. invalid credit card"
e.g. regular customer"

Trigger different error messages"
e.g. text too long for field"
e.g. email address with no “@”"

Inputs that cause changes in the 
appearance of the UI"

e.g. a prompt for additional information"

Inputs that cause different 
options in dropdown menus"

e.g. US/Canada triggers menu of states/
provinces"

Cases in a business rule"
e.g. No next day delivery after 6pm"

Border conditions"
if password must be min 6 characters,"
test password of 5,6,7 characters"

Check the default values"
e.g. when cardholderʼs name is filled 
automatically"

Override the default values"
e.g. when the user enters different name"

Enter data in different formats"
e.g. phone numbers:"
(416) 555 1234"
416-555-1234"
416 555 1234"

Test country-specific 
assumptions"

e.g. date order: 3/15/12 vs. 15/3/12"



8	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  15 

Limits of Use Cases as Test Cases"
Use Case Tests good for:"

User acceptance testing"
“Business as usual” functional testing"
Manual black-box tests"
Recording automated scripts for common 
scenarios"

Limitations of Use Cases"
Likely to be incomplete"
Use cases donʼt describe enough detail of 
use"
Gaps and inconsistencies between use 
cases"
Use cases might be out of date"
Use cases might be ambiguous"

Defects you wonʼt discover:"
System errors (e.g. memory leaks)"
Things that corrupt persistent data"
Performance problems"
Software compatibility problems"
Hardware compatibility problems"
"

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  16 

Quick Tests"
A quick, cheap test "

e.g. Whittaker “How to Break Software”"

Examples:"
The Shoe Test (key repeats in any input field)"
Variable boundary testing"
Variability Tour: find anything that varies, and vary it as far as possible in every 

dimension"



9	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  17 

Whittakerʼs QuickTests"
Explore the input domain"

1.  Inputs that force all the error 
messages to appear"

2.  Inputs that force the software to 
establish default values"

3.  Explore allowable character sets and 
data types"

4.  Overflow the input buffers"
5.  Find inputs that may interact, and test 

combinations of their values"
6.  Repeat the same input numerous 

times"

Explore the outputs"
7.  Force different outputs to be 

generated for each input"
8.  Force invalid outputs to be generated"
9.  Force properties of an output to 

change"
10. Force the screen to refresh"

Explore stored data constraints"
11. Force a data structure to store too 

many or too few values"
12. Find ways to violate internal data 

constraints"

Explore feature interactions"
13. Experiment with invalid operator/

operand combinations"
14. Make a function call itself recursively"
15. Force computation results to be too 

big or too small"
16. Find features that share data"

Vary file system conditions"
17. File system full to capacity"
18. Disk is busy or unavailable"
19. Disk is damaged"
20. invalid file name"
21. vary file permissions"
22. vary or corrupt file contents"

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  18 

Interference Testing"
Generate Interrupts"

From a device related to the task"
From a device unrelated to the task"
From a software event"

Change the context"
Swap out the CD"
Change contents of a file while program 
is reading it"
Change the selected printer"
Change the video resolution"

Cancel a task"
Cancel at different points of completion"
Cancel a related task"

Pause the task"
Pause for short or long time"

Swap out the task"
Change focus to another application"
Load the processor with other tasks"
Put the machine to sleep"
Swap out a related task"

Compete for resources"
Get the software to use a resource that is 
already being used"
Run the software while another task is 
doing intensive disk access"



10	



University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  19 

Exploratory Testing"
Start with idea of quality:"

Quality is value to some person"

So a defect is:"
something that reduces the value of the 
software to a favoured stakeholder"
or increases its value to a disfavoured 
stakeholder"

Testing is always done on behalf 
of stakeholders"

Which stakeholder this time?"
e.g. programmer, project manager, 
customer, marketing manager, attorney…"
What risks are they trying to mitigate?"

You cannot follow a script"
It’s like a crime scene investigation"
Follow the clues…"
Learn as you go…"

Kaner’s definition:"
Exploratory testing is"

…a style of software testing"

…that emphasizes personal 
freedom and responsibility"

…of the tester"

…to continually optimize the value 
of their work"

…by treating test-related learning, 
test design, and test execution"

…as mutually supportive activities"

…that run in parallel throughout the 
project"

University of  Toronto Department of Computer Science 

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.  20 

Things to Explore"
Function Testing: Test what it can do. "
Domain Testing: Divide and conquer the data. "

Stress Testing: Overwhelm the product. "
Flow Testing: Do one thing after another. "
Scenario Testing: Test to a compelling story. "

Claims Testing: Verify every claim. "
User Testing: Involve the users. "

Risk Testing: Imagine a problem, then find it. "

Automatic Testing: Write a program to generate and run a zillion tests. "


