
1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 22:
Managing People

Organizational Structures
Building high Performance teams
Dealing with problems with team assignments
Discussion: Poisonous People

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Starting point
You have a project
You have been given a team

a mixed set of skills
a mixed set of motivations

Problem:
How do you get everyone to work together?
…and get the job done?



2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Scaling up…
Communication overhead is exponential

Exploit Modularity:

?

? ?

?

?

?

?
?

help!

?

X 

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Team Organization

Conway’s Law:
The structure of the software reflects

the structure of the organisation that built it

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe

pipe

pipe

pipe pipe

pipe

object

object

object

object

object

method
invocation method

invocation

method
invocation method

invocation

broadcast
medium

agent

agent

agent

agent

announce
event

announce
eventlisten for

event

listen for
eventbroadcast

medium

Layer N
Layer N-1

Layer 2
Layer 1

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent



3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Coordination Mechanisms
Direct supervision

simple structure - little formalization

Standardization of work processes
“machine bureaucracy” e.g. mass production and assembly

Standardization of work outputs
“divisionalized form” e.g. each division has performance targets

Standardization of worker skills
“professional bureaucracy” e.g. hospitals, law firms,…

Mutual adjustment
“adhocracy” e.g. skunkworks, high innovation, open source teams

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Hierarchical Teams
Team structure = top down decomposition

Disadvantage: vertical communication is ineffective

Project
Manager

OS interface
Manager

Database
Manager

Application
Manager

GUI
Manager

Documentation
Manager

Testing
Manager

Development
Manager

Design
Manager

Mouse
Manager

Screen
Manager

Sound
Manager

GUI Lib
Manager



4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Chief Programmer Teams
Based on hospital surgical teams

Chief programmer is not a manager - concentrates on technical issues

Chief
Programmer

TestersLibrarianSenior
Programmers

AdministrationAssistant
Chief Programmer

Junior
Programmers Project

database

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Matrix Organization
Identify specific skill sets

Assign people to projects according to needed skills
People work on multiple projects

XXXXProject 3

XXXXProject 2

XXXProject 1

TestingQAdata-
basesgraphics

real-time
program-

ming



5

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Open Source - Onion Model

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

General Principles
Use fewer, better people

Performance of best programmers better by an order of magnitude!

Fit tasks to capabilities and motivations of people
Help people to get the most out of themselves

opportunity to accept new challenges and be rewarded

Balance the team
E.g. team players vs. star performers
Practice “egoless” programming

Remove people who do not fit the team



6

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

High Performance Teams
Nurture a team culture

A team is not a family
Team members help one another, but don’t tolerate freeloaders

Instill the right values
Discuss examples
Reward people who uphold the team values

Build trust
all feedback is constructive
lively & healthy debate about issues and risks

Effective Communication
Use face-to-face whenever possible
Use phone or F2F to resolve email debates
Get everyone using IM
Encourage social events for the team
Physical layout of office space is important

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Organizational Clarity
Things every team member should know:

What is the mission of the team?
What is the vision for the system to be delivered?
How will you measure team success?
Who are the project stakeholders?
How will you measure project success?
Who is responsible for what?
What procedures should you follow to do the work?



7

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Who can change the code?
Collective Ownership

Anyone can change any code or model
Works well for small teams
Promotes shared responsibility
(Needs good version management tools)

Change Control
Each sub-team can only change their subsystem
Reduces unexpected problems when code changed by others
Promotes development of expertise
More important on larger projects

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Poisonous People: Anna
Anna knows more about every subject than everyone

else on the team put together…
…at least, she thinks she does.
No matter what you say, she'll correct you;
no matter what you know, she knows better.
“Anna”s are pretty easy to spot: if you keep track in team meetings of how often

people interrupt one another, her score is usually higher than everyone else's
put together.



8

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Poisonous People: Bao
Bao is a contrarian:

no matter what anyone says, he'll take the opposite side.
This is healthy in small doses, but when Bao does it, there's always another

objection lurking behind the first half dozen.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Poisonous People: Caitlin
Caitlin lacks confidence…

She has so little confidence in her own ability (despite her good grades) that she
won't make any decision, no matter how small, until she has checked with
someone else.

Everything has to be spelled out in detail for her so that there's no possibility of
her getting anything wrong.



9

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Poisonous People: Frank
Frank believes that knowledge is power.

He enjoys knowing things that other people don't
To be more accurate, he enjoys it when people know he knows things they don't.
Frank can actually make things work, but when asked how he did it, he'll grin and

say, "Oh, I'm sure you can figure it out."

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Poisonous People: Hediyeh
Hediyeh is quiet. Very quiet.

She never speaks up in meetings, even when she knows that what other people
are saying is wrong.

She might contribute to the mailing list, but she's very sensitive to criticism, and
will always back down rather than defending her point of view.

Hediyeh isn't a troublemaker, but rather a lost opportunity.



10

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Poisonous People: Kenny
Kenny is a hitchhiker.

He has discovered that most people would rather shoulder some extra work than
snitch, and he takes advantage of it at every turn.

The frustrating thing is that he's so damn plausible when someone finally does
confront him:

"There have been mistakes on all sides," he says, or, "Well, I think you're nit-
picking.”

The only way to deal with Kenny is to stand up to him: remember, if he's not
doing his share, he's the bad guy, not you.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Poisonous People: Melissa
Melissa would easily have made the varsity

procrastination team if she'd bothered to show up to
tryouts.

She means well---she really does feel bad about letting people down---but
somehow something always comes up.

Her tasks are never finished until the last possible moment.
Of course, that means that everyone who is depending on her can't do their work

until after the last possible moment...



11

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

Poisonous People: Petra
Petra's favorite phrase is "why don't we?”

Why don't we write a GUI to help people edit the program's configuration files?
Hey, why don't we invent our own little language for designing GUIs?
Her energy and enthusiasm are hard to argue with, but argue you must.
Otherwise, for every step you move forward, the project's goalposts will recede

by two.
This is called feature creep, and has ruined many projects that might otherwise

have delivered something small, but useful.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

Poisonous People: Raj
Raj is rude.

"It's just the way I talk," he says.
"If you can't hack it, maybe you should find another team."
His favorite phrase is, "That's stupid," and he uses obscenity as casually as

minor characters in Tarantino films.
His only redeeming grace is that he can't dissemble in front of the instructor as

well as Kenny, so he's easier to get rid of.



12

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

Poisonous People: Sergei
Sergei is simply incompetent.

He doesn't understand the problem.
He hasn't bothered to master the tools and libraries he's supposed to be using.
The code he checks in doesn't compile
His thirty-second bug fixes introduce more problems than they solve.
If he means well, try to re-partition the work so that he'll do less damage. If he

doesn't, he should be treated like any other hitchhiker.


