
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 15:
Introduction to Testing

Defects vs. Failures
Effectiveness of defect detection strategies
Basics of Testing

Testing and integration
Types of test coverage

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Defects and Failures
Many causes of defects in software:

Missing requirement
Specification wrong
Requirement that was infeasible
Faulty system design
Wrong algorithms
Faulty implementation

Defects (may) lead to failures
but the failure may show up somewhere else
tracking the failure back to a defect can be hard



2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Program Defects
Syntax Faults

incorrect use of programming constructs
(e.g. = for ==)

Algorithmic Faults
Branching too soon or too late
Testing for the wrong condition
Failure to initialize correctly
Failure to test for exceptions

e.g. divide by 0
Type mismatch

Precision Faults
E.g. mixed precision, floating point
conversion, etc.

Documentation Faults
design docs or user manual is wrong

Stress Faults
E.g. overflowing buffers, lack of bounds
checking

Timing Faults
processes fail to synchronize
events happen in the wrong order

Throughput Faults
Performance lower than required

Recovery faults
incorrect recovery after another failure
e.g. incorrect restore from backups

Hardware faults
hardware doesn’t perform as expected

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Defect Profiles

so
ur

ce
: a

da
pt

ed
 fr

om
 P

fle
eg

er
 &

 A
tle

e 
20

06
, F

ig
ur

e 
8.

2 

E.g. Data from Hewlett-Packard:



3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Defect Detection Effectiveness

Typical testing strategies
each 30-40% effective,

together 60-80% effective

Inspection strategies
each 50-60% effective

so
ur

ce
: a

da
pt

ed
 fr

om
 M

cC
on

ne
ll 2

00
4,

 T
ab

le
 2

0-
2 

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

XP Practices

Pair Programming

Test-Case First

Daily Smoke Test

XP practices:
cumulatively
90% effective



4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Observations
Use a combination of techniques

Different techniques find different defects
Different people find different defects
Testing alone is only 60-80% effective
Best organisations achieve 95% defect-removal
Inspection, Modeling, Prototyping, system tests, are all important

Costs vary:
e.g. IBM data:
3.5 hours per defect for inspection
15-25 hours per defect for testing

Costs of fixing defects also vary:
100 times more expensive to remove a defect after implementation than in design
1-step methods (e.g. inspection) cheaper than 2-step (e.g. test+debug)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

“Quality is Free!”
Cost of Rework:

Industry average: 10-50 lines of delivered code per day per person
Debugging + re-testing = 50% of effort in traditional SE

Removing defects early saves money
Testing is easier if the defects are removed first
High quality software is delivered sooner at lower cost

How not to improve quality:
“Trying to improve quality by doing more testing

is like trying to diet by weighing yourself more often”



5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

So, why Test?
Find important defects, to get them fixed
Assess the quality of the product
Help managers make release decisions
Block premature product releases
Help predict and control product support costs
Check interoperability with other products
Find safe scenarios for use of the product
Assess conformance to specifications
Certify the product meets a particular standard
Ensure the testing process meets accountability standards
Minimize the risk of safety-related lawsuits
Measure reliability

source: adapted from Kener 2006 

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Testing is Hard
Goal is counter-intuitive

Aim is to find errors / break the software
(all other development activities aim to avoid errors / breaking the software)

Goal is unachievable
Cannot ever prove absence of errors
Finding no errors probably means your tests are ineffective

It does not improve software quality
test results measure existing quality, but don’t improve it
Test-debug cycle is the least effective way to improve quality

It requires you to assume your code is buggy
If you assume otherwise, you probably won’t find them

Oh, and…
Testing is more effective if you removed the bugs first!



6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Appropriate Testing
Imagine:

 you are testing a program that performs
some calculations

Four different contexts:
1. It is used occasionally as part of a

computer game

2. It is part of an early prototype of a
commercial accounting package

3. It is part of a financial software
package that is about to be shipped

4. It is part of a controller for a medical
device

For each context:
What is your mission?
How aggressively will you hunt for bugs?
Which bugs are the most important?
How much will you worry about:
 performance?
 polish of the user interface?
 precision of calculations?
 security & data protection?
How extensively will you document your

test process?
What other information will you provide

to the project?

source: adapted from Kener 2006 

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Good tests have…
Power

when a problem exists, the test will find it

Validity
problems found are genuine problems

Value
test reveals things clients want to know

Credibility
test is a likely operational scenario

Non-redundancy
provides new information

Repeatability
easy and inexpensive to re-run

Maintainability
test can be revised as product is revised

Coverage
Exercises the product in a way not
already tested for

Ease of evaluation
results are easy to interpret

Diagnostic power
helps pinpoint the cause of problems

Accountability
You can explain, justify and prove you
ran it

Low cost
time & effort to develop + time to execute

Low opportunity cost
is a better use of you time than other
things you could be doing…

source: adapted from Kener 2006 



7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Unit
test

Unit
test

Integration
test

Function
test

Performance
test

Acceptance
test

Installation
test

Unit
test

.

.

.

Co
m

po
ne

nt
 c

od
e

Co
m

po
ne

nt
 c

od
e

Co
m

po
ne

nt
 c

od
e

Design
Specs

Functional
Requirements

Quality
Requirements

Customer
Goals

User
environment

Types of Testing

source: adapted from Pfleeger & Atlee 2006

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Integration Testing
Unit testing

each unit is tested separately to check it meets its specification

Integration testing
units are tested together to check they work together
two strategies:

Integration testing is hard:
much harder to identify equivalence classes
problems of scale
tends to reveal specification errors rather than integration errors

Bottom up
for this dependency
graph, test order is:

1) d
2) e and r
3) q
4) p

p

q r

e
d

Top down
for this structure chart

the order is:
1) test a with stubs for b,

c, and d
2) test a+b+c+d with

stubs for e…k
3) test whole system

b

a

e f g

c

h i

d

j k

Source: Adapted from van Vliet 1999, section 13.9



8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Other system tests
Other things to test:

facility testing - does the system provide all the functions required?
volume testing - can the system cope with large data volumes?
stress testing - can the system cope with heavy loads?
endurance testing - will the system continue to work for long periods?
usability testing - can the users use the system easily?
security testing - can the system withstand attacks?
performance testing - how good is the response time?
storage testing - are there any unexpected data storage issues?
configuration testing - does the system work on all target hardware?
installation testing - can we install the system successfully?
reliability testing - how reliable is the system over time?
recovery testing - how well does the system recover from failure?
serviceability testing - how maintainable is the system?
documentation testing - is the documentation accurate, usable, etc.
operations testing - are the operators’ instructions right?
regression testing - repeat all testing every time we modify the system!

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Partitioning
Systematic testing depends on partitioning

partition the set of possible behaviours of the system
choose representative samples from each partition
make sure we covered all partitions

How do you identify suitable partitions?
That’s what testing is all about!!!
Methods:

black box, white box, ...
path based, state based, risk based, scenario based, …

Source: Adapted from Horton, 1999



9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

boolean equal (int x, y) {
/* effects: returns true if
x=y, false otherwise

*/
if (x == y)
return(TRUE)

else
return(FALSE)

}

Coverage 1: Structural

Naïve Test Strategy
pick random values for x and y and test ‘equals’ on them

But:
...we might never test the first branch of the ‘if’ statement

So:
Need enough test cases to cover every branch in the code

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

int maximum (list a)
/* requires: a is a list of
integers
effects: returns the maximum
element in the list

*/

Input Output Correct?

3 16 4 32 9 32 Yes

9 32 4 16 3 32 Yes

22 32 59 17 88 1 88 Yes

1 88 17 59 32 22 88 Yes

1 3 5 7 9 1 3 5 7 9 Yes

7 5 3 1 9 7 5 3 1 9 Yes

9 6 7 11 5 1 Yes

5 11 7 6 9 1 Yes

561 13 1024 79 86 222 97 1024 Yes

97 222 86 79 1024 13 561 1024 Yes

Coverage 2: Functional

Naïve Test Strategy
generate lots of lists and test

maximum on them

But:
we haven’t tested off-nominal cases:

empty lists,
non-integers,
negative integers, ….

So:
Need enough test cases to cover every kind of input the program might have to

handle



10

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Coverage 3: Behavioural
Naïve Test Strategy:

Push and pop things off the
stack and check it all works

But:
Might miss full and empty stack
exceptions

So:
Need enough tests to exercise
every event that can occur in
each state that the program can
be in


