
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 6:
Software Re-Engineering

 Why software evolves continuously
 Costs of Software Evolution
 Challenges of Design Recovery
 What reverse engineering tools can and can’t do

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Software Evolves Continuously

corrective

adaptive
user

enhancements

pe
rf
ec
tiv

e

efficiency
other

preventative
Data from:
van Vliet, H., Software Engineering: Principles
and Practices, Wiley 1999, p449

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Program Types
S-type Programs (“Specifiable”)

problem can be stated formally and completely
acceptance: Is the program correct according to its specification?
This software does not evolve.

A change to the specification defines a new problem, hence a new program

P-type Programs (“Problem-solving”)
imprecise statement of a real-world problem
acceptance: Is the program an acceptable solution to the problem?
This software is likely to evolve continuously

because the solution is never perfect, and can be improved
because the real-world changes and hence the problem changes

E-type Programs (“Embedded”)
A system that becomes part of the world that it models
acceptance: depends entirely on opinion and judgement
This software is inherently evolutionary

changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare

P-type

real world

PROGRAM

abstract
view of worldrequirements

specification

model

E-type

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to

change

change

change

S-type

Source: Adapted from Lehman 1980, pp1061-1063

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
Continuing Change

Any software that reflects some external reality undergoes continual change or
becomes progressively less useful

change continues until it is judged more cost effective to replace the system

Increasing Complexity
As software evolves, its complexity increases…

…unless steps are taken to control it.

Fundamental Law of Program Evolution
Software evolution is self-regulating

…with statistically determinable trends and invariants

Conservation of Organizational Stability
During the active life of a software system, the work output of a development

project is roughly constant (regardless of resources!)

Conservation of Familiarity
The amount of change in successive releases is roughly constant

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

User requirements always grow

Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy
req

uir
em

en
ts

fir
st

rel
ea

se

en
ha

nce
men

t p
ha

se

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
en

t d
eli

ver
ed

en
ha

nce
men

t p
ha

se

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

E.g. Logica Financial Software
(Source: Lehman et al, 2000)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

E.g. Linux Kernal
(Source: Godfrey & Tu, 2000)

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

E.g. Hadley Centre Climate Model

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Software Geriatrics
Causes of Software Aging

Failure to update the software to meet changing needs
Customers switch to a new product if benefits outweigh switching costs

Changes to software tend to reduce coherence & increase complexity

Costs of Software Aging
Owners of aging software find it hard to keep up with the marketplace
Deterioration in space/time performance due to deteriorating structure
Aging software gets more buggy

Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity
Design for change
Document the software carefully
Requirements and designs should be reviewed by those responsible for its

maintenance
Software Rejuvenation…

Source: Adapted from Parnas, “Software Aging” 1996

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Reducing Maintenance Costs

corrective

adaptive
user

enhancements

pe
rf
ec
tiv

e

efficiency
other

preventative

Higher quality code
Better testing (verification)
Use of standards

Platform independence
Design for change
Good architecture

Better requirements analysis
prototyping, iterative development
Design for change

General
Modular structure
Comprehensibility

Good documentation

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

E.g. The Altimeter Example

IF not-read1(V1) GOTO DEF1;

display (V1);

GOTO C;

DEF1: IF not-read2(V2) GOTO DEF2;

display(V2);

GOTO C;

DEF2: display(3000);

C:

if (read-meter1(V1))

 display(V1);

else {

 if (read-meter2(V2))

 display(V2);

 else

 display(3000);

}

Questions:
Should you refactor this code?
Should you fix the default value?

Source: Adapted from van Vliet 1999

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Why maintenance is hard
Poor code quality

opaque code
poorly structured code
dead code

Lack of knowledge of the application domain
understanding the implications of change

Lack of documentation
code is often the only resource
missing rationale for design decisions

Lack of glamour

Source: Adapted from van Vliet 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Rejuvenation
Reverse Engineering

Re-documentation (same level of abstraction)
Design Recovery (higher levels of abstraction)

Restructuring
Refactoring (no changes to functionality)
Revamping (only the user interface is changed)

Re-Engineering
Real changes made to the code
Usually done as round trip:

design recovery -> design improvement -> re-implementation

Source: Adapted from van Vliet 1999

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Program Comprehension
During maintenance:

programmers study the code about 1.5 times as long as the documentation
programmers spend as much time reading code as editing it

Experts have many knowledge chunks:
programming plans
beacons
design patterns

Experts follow dependency links
…while novices read sequentially

Much knowledge comes from outside the code

Source: Adapted from van Vliet 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Example 1
What does this do?

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 if (A[i,j]) {

 for (k=0; k<n; k++) {

 if (A[j,k])

 A[i,k]=true;

 }

 }

 }

}

Source: Adapted from van Vliet 1999

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Example 2

procedure A(var x: w);

begin

 b(y, n1);

 b(x, n2);

 m(w[x]);

 y := x;

 r(p[x]);

end;

procedure change_window(var nw: window);

begin

 border(current_window, no_highlight);

 border(nw, highlight);

 move_cursor(w[nw]);

 current_window := nw;

 resume(process[nw]);

end;

Source: Adapted from van Vliet 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

What tools can do
Reformatters / documentation generators

Make the code more readable
Add comments automatically

Improve Code Browsing
E.g visualize and traverse a dependency graph

(simple) Code transformation
E.g. Refactoring class browsers
E.g. Clone detectors

(simple) Design Recovery
E.g. build a basic class diagram
E.g. use program traces to build sequence diagrams

