
1

1

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Lecture 11: Evolving Requirements
Last Week:

Specification & Validation
Document Standards

Inspections & Prototyping
Prioritization

Last Week:
Specification & Validation

Document Standards
Inspections & Prototyping

Prioritization

Next Week:
How much Formality?

Appropriate use of
Formal methods in RE

Next Week:
How much Formality?

Appropriate use of
Formal methods in RE

This Week:
Evolving Requirements

Change management
Product Families

Traceability
Inconsistency management

This Week:
Evolving Requirements

Change management
Product Families

Traceability
Inconsistency management

2

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Outline
 Basics of Software Evolution

 Laws of software evolution
 Baselines, Change Requests and Configuration Management
 Beyond specification singularity
 Software Families - The product line approach

 Requirements Traceability
 Importance of traceability
 Traceability tools
 Contribution structures

 Inconsistency Management
 Basics of viewpoints
 Expressing consistency rules
 Reasoning in the presence of inconsistency

3

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Program Types
 S-type Programs (“Specifiable”)

 problem can be stated formally and completely
 acceptance: Is the program correct according to its specification?
 This software does not evolve.

 A change to the specification defines a new problem, hence a new program

 P-type Programs (“Problem-solving”)
 imprecise statement of a real-world problem
 acceptance: Is the program an acceptable solution to the problem?
 This software is likely to evolve continuously

 because the solution is never perfect, and can be improved
 because the real-world changes and hence the problem changes

 E-type Programs (“Embedded”)
 A system that becomes part of the world that it models
 acceptance: depends entirely on opinion and judgement
 This software is inherently evolutionary

 changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

4

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare change

change

real world

PROGRAM

abstract
view of worldrequirements

specification

model

change

S-type

P-type

E-type

Source: Adapted from Lehman 1980, pp1061-1063



2

5

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
 Continuing Change

 Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

 change continues until it is judged more cost effective to replace the system

 Increasing Complexity
 As software evolves, its complexity increases…

 …unless steps are taken to control it.

 Fundamental Law of Program Evolution
 Software evolution is self-regulating

 …with statistically determinable trends and invariants

 Conservation of Organizational Stability
 During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

 Conservation of Familiarity
 The amount of change in successive releases is roughly constant

6

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Requirements Growth
Davis’s model:

User needs evolve continuously
Imagine a graph showing growth

of needs over time
May not be linear or continuous

(hence no scale shown)
Traditional development always
lags behind needs growth
first release implements only

part of the original requirements
functional enhancement adds new

functionality
eventually, further enhancement

becomes too costly, and a
replacement is planned

the replacement also only
implements part of its
requirements,

and so on...

Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy 
req

uir
em

ent
s

fir
st 

rel
eas

e

enh
anc

em
ent

 ph
ase

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
ent

 de
live

red

enh
anc

em
ent

 ph
ase

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

7

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Alternative lifecycle models

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Time

Fu
nc

ti
on

al
it
y

User needs

Throwaway Prototyping Evolutionary Prototyping

Incremental Development Automated Software Synthesis

Source: Adapted from Davis 1988, pp1455-1459

8

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Software “maintenance”
Maintenance philosophies

 “throw-it-over-the-wall” - someone else is responsible for maintenance
 investment in knowledge and experience is lost
 maintenance becomes a reverse engineering challenge

 “mission orientation” - development team make a long term commitment to
maintaining/enhancing the software

 Basili’s maintenance process models:
Quick-fix model

 changes made at the code level, as easily as possible
 rapidly degrades the structure of the software

 Iterative enhancement model
 Changes made based on an analysis of the existing system
 attempts to control complexity and maintain good design

 Full-reuse model
 Starts with requirements for the new system, reusing as much as possible
 Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495



3

9

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Traditional Change Management
Managers need to respond to requirements change

 Add new requirements during development
 But not succumbing to feature creep

Modify requirements during development
 Because development is a learning process

 Remove requirements during development
 requirements “scrub” for handling cost/schedule slippage

 Elements of Change Management
 Configuration Items

 Each distinct product during development is a configuration item
 version control of each item
 control which version of each item belongs in which build of the system

 Baselines
 A baseline is a stable version of a document that can be shared among the team
 Formal approval process for changes to be incorporated into the next baseline

 Change Management Process
 All proposed changes are submitted formally as change requests
 A review board reviews change requests periodically and decides which to accept
 Review board considers interaction between change requests

10

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Beyond “Product Singularity”
Most RE techniques focus on individual models

 “Build a model, get it consistent and complete, then validate it”
 Assumes that RE is a process with a single definite output

 The output is a complete, consistent, valid specification of the requirements.

 This ignores reality!
 Requirements Engineering isn’t just about obtaining a specification

 Requirements are volatile; changes need to be managed continuously
 The specification is never complete anyway!

 There is never just one model:
 There are multiple versions of models over time
 There are multiple variants of models that explore different issues
 There are multiple components of models representing different decompositions
 Families of models evolve over time (add, delete, merge, restructure the family)

 RE must address requirements evolution
 How do we manage incremental change to requirements models?
 How can multiple models (specifications) be compared?
 How will changes to a model affect the properties established for it?
 How do you capture the rationale for each change?
 How do we reason about inconsistent and incomplete models?

11

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Towards Software Families
 Software reuse aims to cut costs

 Developing software is expensive, so aim to reuse for related systems
 Successful approaches focus on reusing knowledge and experience rather than

just software products
 Economics of reuse are complex as it costs more to develop reusable software

 Libraries of Reusable Components
 domain specific libraries (e.g. Math libraries)
 program development libraries (e.g. Java AWT, C libraries)

 Domain Engineering
 Divides software development into two parts:

 domain analysis - identifies generic reusable components for a problem domain
 application development - uses the domain components for specific applications.

 Software Families
Many companies offer a range of related software systems

 Choose a stable architecture for the software family
 identify variations for different members of the family

 Represents a strategic business decision about what software to develop
12

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Requirements Traceability

 Definition (DOD-STD-2167A):
“(1) The document in question contains or implements all applicable

stipulations in the predecessor document
(2) a given term, acronym, or abbreviation means the same thing in all

documents
(3) a given item or concept is referred to by the same name or description

in the documents
(4) all material in the successor document has its basis in the predecessor

document, that is, no untraceable material has been introduced
(5) the two documents do not contradict one another”

 In short:
 A demonstration of completeness, necessity and consistency
 a clear allocation/flowdown path (down through the document hierarchy)
 a clear derivation path (up through the document hierarchy)

Source: Adapted from Palmer, 1996, p 367



4

13

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Importance of Traceability
 Verification and Validation

 assessing adequacy of test suite
 assessing conformance to

requirements
 assessing completeness, consistency,

impact analysis
 assessing over- and under-design
 investigating high level behavior

impact on detailed specifications
 detecting requirements conflicts
 checking consistency of decision

making across the lifecycle

 Maintenance
 Assessing change requests
 Tracing design rationale

 Document access
 ability to find information quickly in

large documents

 Process visibility
 ability to see how the software was

developed
 provides an audit trail

 Management
 change management
 risk management
 control of the development process

Source: Adapted from Palmer, 1996, p365 14

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Traceability Difficulties
 Cost

 very little automated support
 full traceability is very expensive and time-consuming

 Delayed gratification
 the people defining traceability links are not the people who benefit from it

 development vs. V&V
much of the benefit comes late in the lifecycle

 testing, integration, maintenance

 Size and diversity
Huge range of different document types, tools, decisions, responsibilities,…
No common schema exists for classifying and cataloging these
 In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6

15

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Current Practice
 Coverage:

 links from requirements forward to designs, code, test cases,
 links back from designs, code, test cases to requirements
 links between requirements at different levels

 Traceability process
 Assign each sentence or paragraph a unique id number
Manually identify linkages
 Use manual tables to record linkages in a document
 Use a traceability tool (database) for project wide traceability
 Tool then offers ability to

 follow links
 find missing links
 measure overall traceability

Source: Adapted from Palmer, 1996, p367-8 16

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Traceability Tools
 Approaches:

 hypertext linking
 hotwords are identified manually, tool

records them
 unique identifiers

 each requirement gets a unique id;
database contains cross references

 syntactic similarity coefficients
 searches for occurrence of patterns of

words

 Limitations
 All require a great deal of manual

effort to define the links
 All rely on purely syntactic

information, with no semantics or
context

 Examples
 single phase tools:

TeamWork (Cadre) for structured
analysis

 database tools, with queries and
report generation

RTM (Marconi)
SLATE (TD Technologies)
DOORS (Zycad Corp)

 hypertext-based tools
Document Director
Any web browser

 general development tools that
provide traceability

RDD-100 (Ascent Logic) - documents
system conceptual models
Foresight - maintains data dictionary
and document management

Source: Adapted from Palmer, 1996, p372



5

17

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Limitations of Current Tools
 Informational Problems

 Tools fail to track useful traceability information
 e.g cannot answer queries such as “who is responsible for this piece of

information?”
 inadequate pre-requirements traceability

 “where did this requirement come from?”

 Lack of agreement…
 …over the quantity and type of information to trace

 Informal Communication
 People attach great importance to personal contact and informal

communication
 These always supplement what is recorded in a traceability database

 But then the traceability database only tells part of the story!
 Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100 18

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook
Source: Adapted from Gotel & Finkelstein, 1997, p100

Problematic Questions
 Involvement

Who has been involved in the production of this requirement and how?

 Responsibility & Remit
Who is responsible for this requirement?

 who is currently responsible for it?
 at what points in its life has this responsibility changed hands?

Within which group’s remit are decisions about this requirement?

 Change
 At what points in the life of this requirements has working arrangements of

all involved been changed?

Notification
Who needs to be involved in, or informed of, any changes proposed to this

requirement?

 Loss of knowledge
What are the ramifications regarding the loss of project knowledge if a

specific individual or group leaves?

19

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Contribution Structures
 ‘author’ attribute too weak

 does not adequately capture ownership of information
 refers to person that wrote the document rather than the person who

originated the content
 fail to capture situations where many people participate
 fail to capture changing patterns of participation

 Contribution structures
 link requirements artifacts (contributions) to agents (contributors) via

contribution relations

 Roles
 Principal

 who motivated the artefact (responsible for consequences)
 Author

 who chose the structure and content (responsible for semantics)
 Documentor

 who recorded/transcribed the content (responsible for appearance)

20

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Conflict Resolution - basics
 Defining Conflict

 In Social psychology, focus is on interdependence and perception:
 “the interaction of interdependent people who perceive opposition of goals, aims,

and values, and who see the other party as potentially interfering with the
realization of these goals” [Putnam & Poole, 1987]

 In RE, focus typically is on logical inconsistency:
 E.g. conflict is a divergence between goals - there is a feasible boundary

condition that makes the goals inconsistent [van Lamsweerde et al. 1998]
Note:

 conflict may occur between individuals, groups, organizations, or different roles
played by one person

 Resolution Method:
 The approach used to settle a conflict

 Methods include negotiation, competition, arbitration, coercion, and education
 Not all conflicts need a resolution method: not all conflicts need to be resolved.

 Three broad types of resolution method can be distinguished:
 Co-operative (or collaborative) methods, which include negotiation and education;
 Competitive methods, which include combat, coercion and competition;
 Third Party methods, which include arbitration and appeals to authority.



6

21

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Basic approaches to conflict resolution
 Negotiation

 …is collaborative exploration:
 participants attempt to find a settlement

that satisfies all parties as much as
possible.

 also known as:
 integrative behaviour
 constructive negotiation

 distinct from:
 distributive/competitive negotiation

 Competition
 is maximizing your own gain:

 no regard for the degree of satisfaction
of other parties.

 but not necessarily hostile!
 Extreme form:

 when all gains by one party are at the
expense of others

 I.e a zero-sum game.

 Third Party Resolution
 participants appeal to outside source

 the rule-book, a figure of authority, or
the toss of a coin.

 can occur with the breakdown of either
negotiation or competition as resolution
methods.

 types of third party resolution
 judicial: cases presented by each

participant are taken into account
 extra-judicial: a decision is determined

by factors other than the cases
presented (e.g. relative status of
participants).

 arbitrary: e.g. toss of a coin

 Bidding and Bargaining
 Bidding:

 participants state their desired terms
 Bargaining:

 participants search for a satisfactory
integration of bids.

22

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Conflict in Social Psychology
 Causes of Conflict

 Deutsch (1973):
 control over resources
 preferences and nuisances (tastes or activities of one party impinge upon another)
 values (a claim that a value or set of values should dominate)
 beliefs (dispute over facts, information, reality, etc.)
 the nature of the relationship between the parties.

 Robbins (1989):
 communicational (insufficient exchange of information, noise, selective perception)
 structural (goal compatibility, jurisdictional clarity, leadership style)
 personal factors, (individual value systems, personality characteristics.

 Interesting Results
 deviant behaviour & conflict are normal in small group decision making
more aggression and less co-operation when communication is restricted

 a decrease in communication tends to intensify a conflict (the contact hypothesis)
 heterogeneous teams experience more conflict;
 homogeneous groups are more likely to make high risk decisions (groupthink)
 effect of personality is overshadowed by situational and perceptual factors

23

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Using Argumentation Structuring…
 gIBIS

 developed by Conklin [1989]
 Represents argumentatation process as a hypertextual graph
 Basic Process

 Identify issues
 Identify positions that one can adopt with respect to the positions
 link arguments that support or refute positions

 Synoptic
 Developed by Easterbrook [1991]
 Tool support for collaborative task-focussed negotiation
 Basic Process:

 Get each participant to externalise their conceptual model(s)
 Find correspondences between the models
 Classify mismatches
 Generate options for resolving each mismatch

24

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

gIBIS argumentation structure

Issue1Issue1

Issue3Issue3

Issue2Issue2

Issue4Issue4

Position1Position1

Position2Position2

Argument1Argument1

Argument2Argument2

Argument3Argument3

Argument4Argument4

Argument5Argument5

generalizes
respondsTo

respondsTo

questions objectsTo

objectsTo

objectsTo

objectsTo

supports

isSuggestedBy



7

25

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Using Pre-existing Domain Models…
Oz

 developed by Robinson [1992]
 Uses pre-existing domain model to compare conflicting perspectives
 Basic process:

 Identify perspectives (collections of beliefs)
 Record perspectives by annotating a domain model of goals and objectives
 Domain model links product attributes to goals
 Choose combinations of product attributes to maximise participants’ satisfaction

WinWin
 developed by Boehm & colleagues [mid 1990s]
 explicitly identifies win-conditions for each participant
 Incorporates domain knowledge-base of quality requirements and product

attribute links
 Basic Process:

 Enter win conditions for each participant
 identify attribute strategies for win conditions
 determine negative effects for each strategy on each win condition
 resolve disagreements manually

26

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Viewpoints - Motivations

 Delaying Resolution of Inconsistency
 Inconsistency caused by:

Conflict between knowledge sources
Different interpretations
Communication problems between developers
Different development speeds
Divergence from prescribed method
Mistakes

 Single model with consistency enforcement is too restrictive
Single model becomes a bottleneck for distributed modeling process
Consistency enforcement prevents entry of divergent/tentative ideas

 Inconsistencies generally arise where there is the most uncertainty
Premature resolution may entail premature design decisions
Inconsistency implies more knowledge acquisition needed!
More radically: Some inconsistencies never get fixed…

Distributed Modeling
 Collaborating analysts & stakeholders
 Multiple modeling methods
 Continuous evolution of requirements
 Imperfect communication links

Distributed Modeling
 Collaborating analysts & stakeholders
 Multiple modeling methods
 Continuous evolution of requirements
 Imperfect communication links

Multiple Perspectives
 Many different stakeholders
 Diverse kinds of Domain Knowledge
 Conflicting views (& negotiation)
 Many representation schemes

Multiple Perspectives
 Many different stakeholders
 Diverse kinds of Domain Knowledge
 Conflicting views (& negotiation)
 Many representation schemes

27

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

The basic framework
 Requirements model is a collection of viewpoints:

 Viewpoints are instantiated from viewpoint templates
 Template only has style and work plan slots filled
 Development of templates is a separate “method engineering” task
 A method provides a set of templates designed to be used together

 Viewpoints contain consistency rules (no central control)
 Internal consistency rules for checking a viewpoint’s specification
 External consistency rules for inter-viewpoint checks
 Work plan provides guidance for when to apply each consistency rule

specification

owner

domain

style

work plan

work
record

viewpoint

specification

owner

domain

style

work plan

work
record

viewpoint

specification

owner

domain

style

work plan

work
record

viewpoint
Only the owner

can edit the viewpoint
What does this

viewpoint describe?

Notation used, &
rules for well-formedness

Process model, including
consistency obligations
with other viewpoints

History of changes

Contents evolve
as the owner
makes changes

28

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Advantages of the approach
 Stakeholder buy-in and Traceability

 Viewpoint owners can be roles, people, teams,…
 Each stakeholder’s contribution is modeled in an appropriate notation

 Stakeholders can identify and validate their own contributions
 Increases stakeholder ‘ownership’ of the requirements process

 Requirements can be traced back to a source/authority

 Structuring the development process
 Each viewpoint is an independent ‘workpiece’

 viewpoints as a distributed, loosely-coupled, suite of development tools
No global control, no global enforcement of consistency

 supports synchronous and asynchronous working
 consistency checking rules act as explicit re-synchronization points

 Structuring the descriptions
 Different stakeholders’ contributions are modeled separately

 Separation of concerns
 Richer models through the use of multiple problem structures

 Resolution of inconsistency can be delayed
 Supports negotiation by allowing detailed comparison of viewpoints
 Encourages early modeling and expression of divergent views



8

29

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Inconsistency Management
 Inconsistency arises from:

 Conflict between knowledge sources
 Different interpretations
 Communication problems between developers
 Different development speeds
 Divergence from prescribed method
Mistakes

 Definition of inconsistency
 “two parts of a specification do not obey some relationship that should hold

between them”. (Easterbrook & Nuseibeh, 1995)
 Relationships may link

 syntactic elements of partial specifications;
 semantics of elements in partial specifications;
 sub-processes of the overall development process.

 Relationships arise from:
 definition of the method;
 practical experience with the method;
 local contingencies during development.

30

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Example Consistency Rules
 E.g 1: in structured analysis:

 In a data flow diagram, if a process is decomposed in a separate diagram,
then the input flows into the parent process must be the same as the input
flows into child data flow diagram.

 E.g. 2: Use of domain concepts:
 For a particular Library System, the concept of operations document states

that “User” and “Borrower” are synonyms. Hence, the list of user actions
described in the help manuals must correspond to the list of borrower
actions in the requirements specification.

 E.g. 3: Process rules:
 Coding should not begin until the Systems Requirement Specification has

been signed off by the Project Review Board (PRB). Hence, the program
code repository should be empty until the SRS has the status ‘approved by
PRB’.

31

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Lessons about inconsistency in practice
 some inconsistencies never get fixed

 because the cost of changing the documentation outweighs the benefit
 humans are good at inventing workarounds

 living with inconsistency is a risky decision
 risk factors change, so the risk must be constantly re-evaluated

 some consistency checks are not worth performing
 waste of money to establish consistency where change is anticipated
 … also where documents are early drafts, or are full of known errors

 inconsistency is deniable
 e.g. because of face saving and defensiveness - inconsistency seen as bad!
 e.g. because you can always question the formalization!


