gf’ University of Toronto

Department of Computer Science

Last Week:
Modeling IT
Information

Structure
Behaviour

Lecture 7: Requirements Modeling III

This Week:
Modeling System Qualities
Non-functional Requirements

Satisficing Softgoals
Quality measures

Next Week:
Specification and Validation
Specification Languages
Documentation Standards
Reviews and Inspections

© 2000-2005, Steve Easterbrook

L 4 University of Toronto

Department of Computer Science

v What are Non-functional Requirements?

- Functional vs. Non-Functional

% Functional requirements describe what the system should do
> things that can be captured in use cases
> things that can be analyzed by drawing interaction diagrams, statecharts, etc.
> Functional requirements will probably trace to individual chunks of a program
% Non-functional requirements are global constraints on a software system
> e.g. development costs, operational costs, performance, reliability,
maintainability, portability, robustness etc.
> Often known as the “ilities”
> Usually cannot be implemented in a single module of a program

- The challenge of NFRs

% Hard to model

% Usually stated informally, and so are:
> often contradictory,
> difficult to enforce during development
> difficult to evaluate for the customer prior to delivery

% Hard to make them measurable requirements
> We'd like to state them in a way that we can measure how well they've been met

© 2000-2005, Steve Easterbrook

gf’ University of Toronto

Department of Computer Science

- Interface requirements

% how will the new system interface
with its environment?

>Interfaces with other systems

- Performance requirements

% time/space bounds
>workloads, response time, throughput
and available storage space
»e.g. "the system must handle 1,000
transactions per second"

% reliability
»>the availability of components
»integrity of information maintained and
supplied to the system
>e.g. "system must have less than 1hr
downtime per three months"

% security
>E.g. permissible information flows, or
who can do what

% survivability
>E.g. system will need to survive fire,
natural catastrophes, etc

Example NFRs

»User interfaces and “user-friendliness”

- Operating requirements
% physical constraints (size, weight),
% personnel availability & skill level
% accessibility for maintenance
% environmental conditions
% etc

- Lifecycle requirements

% “Future-proofing”

»Maintainability

»Enhanceability

>Portability

»expected market or product lifespan
% limits on development

»E.g development time limitations,

>resource availability

»methodological standards

retc.

- Economic requirements

% e.g. restrictions on immediate and/or
long-term costs.

© 2000-2005, Steve Easterbrook

L 4 University of Toronto

Department of Computer Science

Approaches to NFRs

- Product vs. Process?

% Product-oriented Approaches

> Focus on system (or software) quality

» Aim is to have a way of measuring the product once it's built
% Process-oriented Approaches

> Focus on how NFRs can be used in the design process

> Aim is to have a way of making appropriate design decisions

- Quantitative vs. Qualitative?

% Quantitative Approaches

> Find measurable scales for the quality attributes

> Calculate degree to which a design meets the quality targets
% Qualitative Approaches

> Study various relationships between quality goals

> Reason about trade-offs etc.

© 2000-2005, Steve Easterbrook

&" Department of Computer Science

University of Toronto

L Software Qualities

- Think of an everyday object

% e.g. a chair

% How would you measure it's "quality”?
> construction quality? (e.g. strength of the joints,..)
> aesthetic value? (e.g. elegance,..)
> fit for purpose? (e.g. comfortable,..)

- All quality measures are relative

% there is no absolute scale

% we can sometimes say A is better than B..
> .. but it is usually hard to say how much better!

- For software:

% construction quality?
> software is not manufactured

% aesthetic value?
> but most of the software is invisible
> aesthetic value matters for the user interface, but is only a marginal concern

% fit for purpose?

% Fitness

&" Department of Computer Science

University of Toronto

Source: Budgen, 1994, pp58-9

- Software quality is all about fitness to purpose

% does it do what is needed?

% does it do it in the way that its users need it to?

% does it do it reliably enough? fast enough? safely enough? securely enough?
% will it be affordable? will it be ready when its users need it?

% can it be changed as the needs change?

- Quality is not a measure of software in isolation

% it measures the relationship between software and its application domain
> cannot measure this until you place the software into its environment...
> ..and the quality will be different in different environments!

% during design, we need to predict how well the software will fit its purpose
> we need good quality predictors (design analysis)

% during requirements analysis, we need to understand how fitness-for-

purpose will be measured

> What is the intended purpose?
> What quality factors will matter to the stakeholders?
> How should those factors be operationalized?

z e
© 2000-2005, Steve Easterbrook 5 © 2000-2005, Steve Easterbrook
& University of Toronto Department of Computer Science & University of Toronto Department of Computer Science
¥ o ¥ , :
Factors vs. Criteria Boehm's NFR list device-independence |
Source: See Blum, 1992, p176

- Quality Factors

% These are customer-related concerns
> Examples: efficiency, integrity, reliability, correctness, survivability, usability,...

- Design Criteria
% These are technical (development-oriented) concerns such as anomaly
management, completeness, consistency, traceability, visibility,...

- Quality Factors and Design Criteria are related:

% Each factor depends on a number of associated criteria:
> E.g. correctness depends on completeness, consistency, traceability,...
> E.g. verifiability depends on modularity, self-descriptiveness and simplicity

% There are some standard mappings to help you...

- During Analysis:
% Identify the relative importance of each quality factor
» From the customer’s point of view!
% Identify the design criteria on which these factors depend

% Make the requirements measurable

© 2000-2005, Steve Easterbrook

self-containedness |

accuracy
completeness

robustness/integrity |

portability
reliability

General
utility

As-is utility

communicativeness |

self-descriptiveness |

Maintainability

legibility

augmentability

modifiability

© 2000-2005, Steve Easterbrook

e University of Toronto Department of Computer Science

‘McCall's NFR list

&

University of Toronto Department of Computer Science

Call's INFK iaiing | Making Requirements Measurable
ource: See van Vliet , pp111- usability E Source: Budgen, 1994, pp60-1
Tl - We have to turn our vague ideas about quality into
measurables
Product operation efficiency) examples. ..
The Quality Concepts
| correctness |< (abstract notions of | reliability || | complexity | | usability |
; ;
reliability ~———> ool quality properties)
\
maintainability — [Erier v \ 4 v
‘. Measurable Quantities | mean time information || [time taken
\\ (define some metrics) to failure? flow between to learn
. modules? how to use?
flexibility «\‘\\\’
reusability éi}\}(lse'f'des“ipﬁve"ess v v v
. ‘
Product transition = }» Counts taken from run it and count minutes
portability <——=3{"s/w system indspendence | Design Representations | count crashes procedure ek e
- - comms. commonalit izati ; per hour??? calls??? SOImEgUcEn
interoperability - (realization of the metrics) tasko??
© 2000-2005, Steve Easterbrook 9 © 2000-2005, Steve Easterbrook IO
& &

University of Toronto Department of Computer Science

Making Requirements Measurable

- Define 'fit criteria’ for each requirement
% Give the ‘fit criteria’ alongside the requirement

% E.g. for new ATM software
» Requirement: “The software shall be intuitive and self-explanatory”
> Fit Criteria: "95% of existing bank customers shall be able to withdraw money
and deposit cheques within two minutes of encountering the product for the first
time”

- Choosing good fit criteria
% Stakeholders are rarely this specific

% The right criteria might not be obvious:
> Things that are easy to measure aren't necessarily what the stakeholders want
> Standard metrics aren't necessary what stakeholders want
% Stakeholders need to construct their own mappings from requirements to fit
criteria

© 2000-2005, Steve Easterbrook 1

University of Toronto Department of Computer Science

Softgoals: the NFR framework

Source: Chung, Nixon, Yu & Mylopoulos, 1999

Accuracy[Account]
- Goal types:
% Non-functional Requirement
% Satisficing Technique
>e.g. a design choice
% Claim

»supporting/explaining a choice

Accuracy
[PremierAccount]

Accuracy

Accuracy
[RegularAccount] GoldAccount]

Accuracy
[GoldAccount.credit]
Accuracy

I [GoldAccount.highSpending]

- Contribution Types: (GoidAszount debi]
% AND links (decomposition)
% OR links (alternatives)
% Sup links (supports)

% Sub links (necessary subgoal) Auditing
[GoldAccount.highSpending]

+* Dclaim [one of vital few:

acc. of high spendings in gold accts]
Validation
[GoldAccount.highSpending]

- Evaluation of goals *

isfi ValidatedB:
® Saﬂ.sflced [GoIdAccot}’nt.highSpending,
% Denied
% Confllcflng Claim
% Undetermined fexists ..]
Available
Available [class-I-secretary]
[policy-on-spending-pattern]
_Claim [Policy of Available)
rigorous exam. on high spénding] [GoldAccount.highSpending,
© 2000-2005, Steve Easterbrook 12

@ University of Toronto

NFR Catalo ogues

Source: Cysneiros & Yu, 201

- Predefined catalogues of NFR decomposition
% Provides a knowledge base to check coverage of an NFR
% Provides a tool for elicitation of NFRs
% Example:

i, D (D)

P _ﬂ_.rhmxo o

Department of Computer Science

© 2000-2005, Steve Easterbrook

13

@ University of Toronto Department of Computer Science

Example: Reliability

- Definition
% the ability of the system to behave consistently in a user-acceptable
manner when operating within the environment for which it was intended.

- Comments:
% Reliability can be defined in terms of a percentage (say, 99.999%)

% This may have different meaning for different applications:
» Telephone network: the entire network can fail no more than, on average, 1hr
per year, but failures of individual switches can occur much more frequently
> Patient monitoring system: the system may fail for up to 1hr/year, but in those
cases doctors/nurses should be alerted of the failure. More frequent failure of
individual components is not acceptable.
% Best we can do may be something like:
> "...No more than X bugs per 10KLOC may be detected during integration and
testing: no more than Y bugs per 10KLOC may remain in the system after
delivery, as calculated by the Monte Carlo seeding technique of appendix Z: the
system must be 100% operational 99.9% of the calendar year during its first
year of operation..."

© 2000-2005, Steve Easterbrook 14

ﬂ

@ University of Toronto

», 4

Measuring Reliability...

- Example reliability requirement:
% "The software shall have no more than X bugs per thousand lines of code”
% ...But how do we measure bugs at delivery time?

- Use bebugging

% a number of seeded bugs are introduced to the software system, then
testing is done and bugs are uncovered (seeded or otherwise)

of seeded bugs x # of detected bugs
of detected seeded bugs

Number of bugs =
in system

% ...BUT, not all bugs are equally important!

Department of Computer Science

© 2000-2005, Steve Easterbrook

15

@ University of Toronto Department of Computer Science

¥ Other Reliability Metrics

- How to identify suitable metrics

% Analyze the loss incurred by software system failure,
> eg., destruction of the panet, destruction of a city, death of some people, injury
to some people, major financial loss, major embarrassment, minor financial loss.

% Different metrics are more appropriate in different situations

- Example metrics
% Probability of failure on demand.

> measures the likelihood that the system will behave in an unexpected way when
some demand is made of it. This is most relevant to safety-critical systems.
% Rate of Failure Occurrence (ROCOF).
> measures the frequency of unexpected behaviour. For example, ROCOF=2/100
means that 2 failures are likely to occur within every 100 time units.
% Mean Time to Failure (MTTF)
> Measures average interval between failures

% Availability
> Measures the likelihood that the system will be available for use.
> This is a good measure for applications such as telecommunications, where the
repair/restart time is significant and the loss of service is important.

© 2000-2005, Steve Easterbrook 16

