i

* Lecture 2: Context for RE

@’ University of Toronto

Department of Computer Science

Last Week:
INTRO
Syllabus
Course Goals
Definitions

This Week:

Context for RE
What is Engineering?
Types of engineering project
RE in the engineering lifecycle
Systems Thinking

Next Week:
Project Starting points:
{Stakeholders, Boundaries,
Goals, Scenarios, Risks}

@’ University of Toronto

i

© 2000-2004, Steve Easterbrook

Department of Computer Science

What is engineering?

A

“Engineering is the development of cost-effective solutions to practical
problems, through the application of scientific knowledge”

“_.Cost-effective..”

% Consideration of design trade-offs, esp. resource usage
% Minimize negative impacts (e.g. environmental and social cost)

"

.. Solutions .."
% Emphasis on building devices

"w

... Practical problems ..”
% solving problems that matter to people
% improving human life in general through technological advance

"w ”n

.. Application of scientific knowledge ...
% Systematic application of analytical techniques

© 2000-2004, Steve Easterbrook 2

@’ University of Toronto

i

Department of Computer Science

A

Devices vs. Systems

- Normal design:

% Old problems, whose solutions are well known
> Engineering codifies standard solutions
> Engineer selects appropriate methods and technologies
% Design focuses on well understood devices
» Devices can be studied independent of context
> Differences between the mathematical model and the reality are minimal

- Radical design:

% Never been done, or past solutions have failed
> Often involves a very complex problem
% Bring together complex assemblies of devices into new systems
» Such systems are not amenable to reductionist theories
> Such systems are often soft: no objective criteria for describing the system

- Examples:
> Most of Computer Engineering involves normal design
> All of Systems Engineering involves radical design (by definition!)
> Much of Software Engineering involves radical design (soft systems!)

@’ University of Toronto

S, A

© 2000-2004, Steve Easterbrook 3

Department of Computer Science

Is software different?

- Software is different!

% software is invisible, intangible, abstract
> Software alone is useless - its purpose is to configure some hardware to do
something

% there are no physical laws underlying software behaviour
% there are no physical constraints on software complexity
% software never wears out

> ..traditional reliability measures don't apply
% software can be replicated perfectly

> ..no manufacturing variability

- Software Myths:

% Myth: Cost of software is lower than cost of physical devices
% Myth: Software is easy to change

% Myth: Computers are more reliable than physical devices

% Myth: Software can be formally proved to be correct

% Myth: Software reuse increases safety and reliability

% Myth? Computers reduce risk over mechanical systems

© 2000-2004, Steve Easterbrook 4

% University of Toronto

i)

Department of Computer Science
Professional Responsibility
- ACM/IEEE code of ethics:

% PUBLIC - act consistently with the public interest.

% CLIENT AND EMPLOYER - act in a manner that is in the best interests of your client
and employer, consistent with the public interest.

% PRODUCT - ensure that your products and related modifications meet the highest
professional standards possible.

% JUDGEMENT - maintain integrity and independence in your professional judgment.

% MANAGEMENT - subscribe to and promote an ethical approach to the management of
software development and maintenance.

% PROFESSION - advance the integrity and reputation of the profession consistent with
the public interest.

% COLLEAGUES - be fair to and supportive of your colleagues.

% SELF - participate in lifelong learning and promote an ethical approach to the practice
of the profession.

- Of particular relevance in RE:
% Competence - never misrepresent your level of competence
% Confidentiality - respect confidentiality of all stakeholders
% Intellectual property rights - respect protections on ideas and designs
% Data Protection - be aware of relevant laws on handling personal data

© 2000-2004, Steve Easterbrook 5

% University of Toronto

i)

Department of Computer Science

Project Management

A

- A manager can control 4 things:
& Resources (can get more dollars, facilities, personnel)
& Time (can increase schedule, delay milestones, etc.)
% Product (can reduce functionality - e.g. scrub requirements)
& Risk (can decide which risks are acceptable)

- To do this, a manager needs to keep track of:
% Effort - How much effort will be needed? How much has been expended?
% Time - What is the expected schedule? How far are we deviating from it?
% Size - How big is the planned system? How much have we built?

% Defects - How many errors are we making? How many are we detecting?
> And how do these errors impact quality?

- Initially, a manager needs good estimates
% ..and these can only come from a thorough analysis of the problem.

‘ You cannot control that which you cannot measure! I

© 2000-2004, Steve Easterbrook 6

% University of Toronto

i)

Department of Computer Science

Where Projects Come From

- Initiation of the project

% Problem-driven % Customer-specific
> A problem has arisen that demands a > Specific customer with a specific
response problem
> e.g. existing system is “broken” > The customer is the ultimate authority
% Change-driven % Market-based
> Changes in the business or its > System designed to be sold widely
environment > Marketing team acts as proxy for
> existing system becoming less useful customers & users
% Opportunity-driven > Product must generate customers
> New technology opens up new % Socially-useful

- Source of Requirements:

possibilities; > System is intended as a general benefit
> New markets open up: to society
> etc > No (paying) customer

> E.g. some open source / free software:
software created in scientific research

% Hybrid
> developed for a specific customer, but
want to market the software eventually

% Legacy-driven
> Project created because of prior
commitment
> e.g earlier work left unfinished

© 2000-2004, Steve Easterbrook 7

% University of Toronto

i)

Department of Computer Science

Software Types

A

- Information Systems
% software to support organizational work
% includes files/databases as well as applications
% More than 70% of all software falls in this category, written in languages
such as COBOL, RPG and 46Ls.

> Examples: Payroll and personnel, Financial transactions, Customer relations
database, ..

- Control Systems

% software that drives some sort of a hardware process
> Examples: flight control, industrial plant, an elevator system, credit card reader.

- Generic Services

% systems that provide some services for other systems
> Examples: many internet applications, e.g. search engines, stock quote services,
credit card processing, etc.
% Such systems will be developed using a variety of languages and middleware,
including Java, C++, CORBA, HTML/XML etc.

© 2000-2004, Steve Easterbrook 8

& University of Toronto Department of Computer Science

L 2 Project Context

- Existing System
% There is nearly always an existing system
> May just be a set of ad hoc workarounds for the problem
% Studying it is important:
> If we want to avoid the weaknesses of the old system..
> ..while preserving what the stakeholders like about it

- Pre-Existing Components

% Benefits:

> Can dramatically reduce development cost

> Easier to decompose the problem if some subproblems are already solved
% Tension:

> Solving the real problem vs. solving a known problem (with ready solution)

- Product Families
% Vertical families: e.g. 'basic’, 'deluxe’ and 'pro’ versions of a system

% Horizontal families: similar systems used in related domains
> Need to define a common architecture that supports anticipated variability

& University of Toronto

Department of Computer Science

- Lifecycle models

- Examples:
% Rapid Prototyping

% Iterative Models: Sp

% Sequential models: Waterfall, V model

iral

% Agile Models: eXtreme Programming

- Comparison: Process Models
% Used for capturing and improving the development process

Lifecycle of an Engineering Project

% Useful for comparing projects in general terms
% Not enough detail for project planning

% Phased Models: Incremental, Evolutionary

© 2000-2004, Steve Easterbrook 9 © 2000-2004, Steve Easterbrook 10
8 Universitv of T . ® Universitv of T)
2. University of Toronto Department of Computer Science 2. University of Toronto Department of Computer Science

4 Waterfall Model

per:::;ed - View of development:
R % a process of stepwise refinement
: % largely a high level management
“{requirements view
A ') - Problems:

% Static view of requirements -
ignores volatility

% Lack of user involvement once
specification is written

% Unrealistic separation of
specification from design

% Doesn't accommodate
prototyping, reuse, etc.

design
=)
code
el
“d test
= 1

integrate

©2000-2004, Steve Easterbrook Source: Adapted from Dorfinan, 1997, p7 & Loucopoulos & Karakostas, 1995, p29 n

V-Model
A
§
% system system
g requirements integration
S
s software acceptance
v requirements test
Q
2 \ /
preliminary software
\ design integration ‘
“analyse ad test
and detailed component and
design” design ;sf integrate”
\ code and unit /
debug & test
>
time

© 2000-2004, Steve Easterbrook

12

University of Toronto

Department of Computer Science

Prototyping lifecycle

Source: Adapted from
Dorfinan, 1997, p9

requirements prototype

Preliminary design build evaluate

prototype prototype

Specify full
requirements

design code

test

integrate

- Problems:

- Prototyping is used for:
% understanding the requirements for the user interface
% examining feasibility of a proposed design approach
% exploring system performance issues

% users treat the prototype as the solution
% a prototype is only a partial specification

© 2000-2004, Steve Easterbrook

13

&

1

University of Toronto

Department of Computer Science

Phased Lifecycle Models

Rols

- Incremental development
design | code | test |in‘regr'r.\fe| O&M |
(each release adds more
¥ elease’e functionality)
€ _)I design | code | test |imegra1'e| O&M |
7
3 release 3
% 4’| design | code | test |in‘tegrafe| 0&M |
n
Ir'elease4
)l design | code | test |in‘regmfe| O&M |
version 1
reqts | design | code | test |infegr'afe| 0&M |
lessons learnt
version 2
reqts | design code | test infegra?e| 0&M |

llessons leérnr l

Evolutionary development
(each version incorporates

version 3
reqts

| design | code | test |in‘regra‘re|\

new requirements)

© 2000-2004, Steve Easterbrook

Source: Adapted from Dorfinan, 1997, p10

14

University of Toronto

Department of Computer Science

The Spiral Model

Determine goals,
alternatives,
constraints

Plan

lconcept of
operation

acceptance

implementqs:
tation plan test

Evaluate
alternatives
and risks

Develop
and
test

© 2000-2004, Steve Easterbrook

Source: Adapted from Pfleeger, 1998, p57

University of Toronto

Department of Computer Science

- Basic Philosophy
% Reduce communication barriers
> Programmer interacts with customer
% Reduce document-heavy approach
> Documentation is expensive and of
limited use
% Have faith in the people
> Don't need fancy process models to tell
them what to dol
% Respond to the customer
> Rather than focussing on the contract

- Weaknesses

% Relies on programmer’s memory
> Code can be hard to maintain
% Relies on oral communication
> Mis-interpretation possible
% Assumes single customer
representative
> Multiple viewpoints not possible
% Only short term planning

> No longer term vision

Agile Models

E.g. Extreme Programming
% Instead of a requirements spec,
use:
> User story cards
> On-site customer representative
% Pair Programming
% Small releases
> E.g. every three weeks
% Planning game
> Select and estimate user story cards
at the beginning of each release
% Write test cases before code
% The program code is the design doc
> Can also use CRC cards (Class-
Responsibility-Collaboration)
% Continuous Integration
> Integrate and test several times a day

© 2000-2004, Steve Easterbrook

Source: Adapted from Nawrocki et al, RE02

16

Department of Computer Science

L University of Toronto
Is there a "Requirements Lifecycle”

Department of Computer Science

University of Toronto
Extreme Programming
sl Specification
User stories _\{
Planning /,/”
Each cycle: game T A +
Release approx 2 weeks complete greemen
Write test) .
wev& "
[Jl—" e
T Representation
informal semi-formal formal
© 2000-2004, Steve Easterbrook 17 © 2000-2004, Steve Easterbrook 18
Department of Computer Science L University of Toronto Department of Computer Science
I
can you RAIN, RAIN
60 AwAY!l |

University of Toronto

&

Inquiry Cycle
Note similarity with
Process of scientific
Investigation:
Requirements models are
theories about the world;
Designs are tests of those
theories

Prior Knowledge
(e.g. customer feedback)

Initial hypothesis
Observe

(what is wrong with
the current system?)

Look for anomalies - what can’
the current theory explain?

Model

(describe/explain the
observed problems)

Intervene
Create/refine

(replace the old system)

Design experiments to
test the new theory

Carry out the

‘a better theory

SLALIAN 3,

" Aih,

Al -

jiul - e

_.hllli- H '.' %j
I ‘% Z

stop the

what is it you
really want?

20

© 2000-2004, Steve Easterbrook

Design
(invent a better system)

experiments

19

© 2000-2004, Steve Easterbrook

University of Toronto Department of Computer Science

The story so far:

4

- What is engineering?
% Not that different from science
% Greater awareness of professional responsibility
> because of immediate scope for harm to the public
% Systems and Software Engineering involve radical design

- Engineering Projects
% You cannot control that which you cannot measure
> ..and many important measures are derived from initial problem analysis
% Constraints:
> Is there a customer?
> Existing system / existing components / existing product family

- Project Lifecycles
% Useful for comparing projects in general terms
% Represent different philosophies in software development
% Requirements evolve through their own lifecycles too!

%‘} University of Toronto

Department of Computer Science

Systems Thinking

© 2000-2004, Steve Easterbrook 21 © 2000-2004, Steve Easterbrook 22
& University of T i & University of T i
2. niversity ot 1oronto Department of Computer Science 2. niversity ot 1oronto Department of Computer Science

L 2 General Systems Theory

- How scientists understand the world:
% Reductionism - break a phenomena down into its constituent parts
> E.g. reduce to a set of equations governing interactions
% Statistics - measure average behaviour of a very large number of instances

> E.g. gas pressure results from averaging random movements of zillions of atoms
> Error tends to zero when the number of instances gets this large

- But sometimes neither of these work:
% Systems that are too interconnected to be broken into parts
% Behaviour that is not random enough for statistical analysis

- General systems theory

% Originally developed for biological systems:
> E.g. to understand the human body, and the phenomena of ‘life’
% Basic ideas:
> Treat inter-related phenomena as a system
> Study the relationships between the pieces and the system as a whole
> Don't worry if we don't fully understand each piece

© 2000-2004, Steve Easterbrook 23

Role of the Observer

- Achieving objectivity in scientific inquiry
1. Eliminate the observer
> E.g. ways of measuring that have no variability across observers
2. Distinguish between scientific reasoning and value-based judgement
> Science is (supposed to be) value-free
> (but how do scientists choose which theories to investigate?)

- For complex systems, this is not possible

% Cannot fully eliminate the observer
> E.g. Probe effect - measuring something often changes it
> E.g. Hawthorne effect - people react to being studied
% Our observations biased by past experience
> We look for familiar patterns to make sense of complex phenomena
> E.g. try describing someone’s accent

- Achieving objectivity in systems thinking
% Study the relationship between observer and observations
% Look for observations that make sense from many perspectives

© 2000-2004, Steve Easterbrook 24

% University of Toronto Department of Computer Science

V. Relativism

- Truth is relative to many things

% The meanings of the words we use
> E.g. law of gravity depends on correct understanding of “mass”, “distance”,
“force"” etc
% The assumptions we make about context
» E.g. law of gravity not applicable at subatomic level, or near the speed of light
» E.g. Which is the step function:

Transistor switching

The agricultural revolution

c
2 +f
°)
3 ~
k=]]
° h o 1
o 1 1
°
8 1 1
° 1 1
i 1 1
i 1 1
TT - T | —
N Tin6 1 €—10° sec —pi Tirfle
R_-4000 years
© 2000-2004, Steve Easterbrook 25

% University of Toronto Department of Computer Science

Relativism is everywhere

- Truth often depends on the observer

% “Emergent properties of a system are not predictable from studying the
parts”
> Whose ability to predict are we talking about?

% “Purpose of a system is a property of the relationship between system &

environment”
> What is the purpose of: General Motors? A University? A birthday party?

- Weltanshaungen (= “worldviews")

% Our Weltanshaungen permeate everything
> The set of categories we use for understanding the world
» The language we develop for describing what we observe

- Ethno-centrism (or ego-centrism)

% The tendency to assume one's own category system is superior
> E.g. "In the land of the blind, the one-eyed man is king”
> But what use would visually-oriented descriptions be in this land?

© 2000-2004, Steve Easterbrook 26

% University of Toronto Department of Computer Science

¥ The principle of complementarity

- Raw observation is too detailed

% We systematically ignore many details
> E.g. the idea of a 'state’ is an abstraction
% All our descriptions (of the world) are partial, filtered by:
> Our perceptual limitations
> Our cognitive ability
> Our personal values and experience

- Complementarity:

% Two observers' descriptions of system may be:

> Redundant - if one observer's description can be reduced to the other

> Equivalent - if redundant both ways

> Independent - if there is no overlap at all in their descriptions

> Complementary - if none of the above hold
% Any two partial descriptions (of the same system) are likely to be complementary
% Complementarity should disappear if we can remove the partiality

> E.g. ask the observers for increasingly detailed observations

% But this is not always possible/feasible

©2000-2004, Steve Easterbrook 27

¥ Definition of a system

% University of Toronto Department of Computer Science

- Ackoff's definition:

% “A system is a set of two or more elements that satisfies the following
conditions:
> The behaviour of each element has an effect on the behaviour of the whole
> The behaviour of the elements and their effect on the whole are interdependent
> However subgroups of elements are formed, each has an effect on the behaviour
of the whole and none has an independent effect on it"”

- Other views:
% Weinberg: “"A system is a collection of parts, none of which can be changed
on its own”
> ..because the parts of the system are so interconnected
% Wieringa: “A system is any actual or possible part of reality that, if it
exists, can be observed”
» ..suggests the importance of an observer
% Weinberg: “"A system is a way of looking at the world”
» Systems don't really exist!
> Just a convenient way of describing things (like 'sets’)

©2000-2004, Steve Easterbrook 28

University of Toronto

Department of Computer Science

- Boundary
% Separates a system from its
environment
% Often not sharply defined
% Also known as an “interface”

- Environment
% Part of the world with which the
system can interact
% System and environment are inter-
related

- Observable Interactions
% How the system interacts with its
environment
% E.g. inputs and outputs

v Elements of a system

- Subsystems
% Can decompose a system into parts
% Each part is also a system
% For each subsystem, the remainder
of the system is its environment
% Subsystems are inter-dependent

- Control Mechanism
% How the behaviour of the system is
regulated to allow it to endure
% Often a natural mechanism

- Emergent Properties
% Properties that hold of a system, but
not of any of the parts
% Properties that cannot be predicted
from studying the parts

© 2000-2004, Steve Easterbrook

29

i

Conceptual Picture of a System

University of Toronto

Department of Computer Science

How the system’s properileé
evolve over time

How the system Is
controlled

© 2000-2004, Steve Easterbrook

30

éf’ University of Toronto

Department of Computer Science

A4 Hard vs.

Hard Systems:
- The system is...

% _.precise,
% ..well-defined
% ..quantifiable

- No disagreement about:
% Where the boundary is
% What the interfaces are
% The internal structure
% Control mechanisms
% The purpose ??

- Examples
% A car (?)

Soft Systems

Soft Systems:

- The system...
% ..is hard to define precisely
% ..is an abstract idea
% ..depends on your perspective

- Not easy to get agreement

% The system doesn't “really” exist

% Calling something a system helps us
to understand it

% Identifying the boundaries,
interfaces, controls, helps us to
predict behaviour

% The “system” is a theory of how
some part of the world operates

- Examples:
% All human activity systems

© 2000-2004, Steve Easterbrook

31

University of Toronto

Department of Computer Science

¥ Types of System

- Natural Systems
% E.g. ecosystems, weather, water
cycle, the human body, bee colony, ...
% Usually perceived as hard systems

- Abstract Systems
% E.g. set of mathematical equations,
computer programs,...
% Interesting property: system and
description are the same thing

- Symbol Systems

% E.g. languages, sets of icons,
streetsigns, ...
% Soft because meanings change

- Designed Systems

% E.g. cars, planes, buildings,
freeways, telephones, the internet,..

- Human Activity Systems
% E.g. businesses, organizations,
markets, clubs, ..
% E.g. any designed system when we
also include its context of use

> Similarly for abstract and symbol
systems!

- Information Systems

% Special case of designed systems
> Part of the design includes the
representation of the current state of
some human activity system
% E.g. MIS, banking systems,
databases, ...

- Control systems

% Special case of designed systems
> Designed to control some other system
(usually another designed system)

% E.g. thermostats, autopilots, ...

© 2000-2004, Steve Easterbrook

32

&’ University of Toronto

Department of Computer Science

Information Systems

Needs 'Mam'ram.s
information

information AN
Subject System = —‘
M & \
- ’ Uses I
70 ‘ =
o o VAT

\ -
Usage System Information system
contracts builds

©2000-2004, Steve Easterbrook Source: Adapted from Loucopoulos & Karakostas, 1995, p73

33

&’ University of Toronto

Department of Computer Science

Control Systems

Tracks and controls

4&*0”0]‘

’ -
Uses > ‘i’f’

Control system

Needs to ensure
safe control of

1
Subject system

Lo
1|

builds

Development System

© 2000-2004, Steve Easterbrook

34

&’ University of Toronto

Department of Computer Science

Software-Intensive Systems

Software-Intensive Human Activity System

Caontains Caontains Cémains

Subject

Infarmation Computar-Based System

Usage System Information System {about which

info is stared)

Contains Contains Gontains Contains

4

»
Query

Hardware Software language
System System (symbol
L system

Contains

| Software
Subsystems

© 2000-2004, Steve Easterbrook

35

&’ University of Toronto

Department of Computer Science

Open and Living Systems

- Openness

% The degree to which a system can be distinguished from its environment
% A closed system has no environment

> If we describe a system as closed, we ignore its environment

> E.g. an egg can be described as a closed system
% A fully open system merges with its environment

- Living systems
% Special kind of open system that can preserve its identity and reproduce
» Also known as “neg-entropy” systems
% E.g. biological systems
> Reproduction according to DNA instructions
% E.g. Social systems

> Rules of social interaction act as a kind of DNA

© 2000-2004, Steve Easterbrook

36

@’ University of Toronto

Department of Computer Science

W Purposefulness

- Types of behaviours:

% Reaction to a stimulus in the environment

>The stimulus is necessary and sufficient to cause the reaction
% Response to a stimulus in the environment

>The stimulus is necessary but not sufficient to cause the response
% Autonomous act:

>A system event for which a stimulus is not necessary

- Systems can be:

% State-maintaining
»>System reacts to changes in its environment to maintain a pre-determined state
>E.g. thermostat, some ecosystems
% Goal-directed
»System can respond differently to similar events in its environment and can act autonomously in an
unchanging environment to achieve some pre-determined goal state
>E.g. an autopilot, simple organisms
% Purposive
»System has multiple goals, can choose how to pursue them, but no choice over the goals themselves
»E.g. computers, animals (?)
% Purposeful
»System has multiple goals, and can choose to change its goals
»E.g. people, governments, businesses, animals

© 2000-2004, Steve Easterbrook

37

&

University of Toronto Department of Computer Science

% Scoping a system

- Choosing the boundary

% Distinction between system and environment depends on your viewpoint

% Choice should be made to maximize modularity

% Examples:

> Telephone system - include: switches, phone lines, handsets, users, accounts?
> Desktop computer - do you include the peripherals?

% Tips:

> Exclude things that have no functional effect on the system
> Exclude things that influence the system but which cannot be influenced or
controlled by the system

!

Include things that can be strongly influenced or controlled by the system

> Changes within a system should cause minimal changes outside
> More ‘energy’ is required to transfer something across the system boundary than
within the system boundary

% Choose the boundary that:
> increases regularities in the behaviour of the system
> simplifies the system behavior

- System boundary should ‘divide nature at its joints'

© 2000-2004, Steve Easterbrook

38

' University of Toronto

Department of Computer Science

Example Scoping Problem

S Departmer;

phone Compa,,y m
gevesHousg ><] " integfupts "-.._f’sl)%

Exchange

phone —— s

Marsha

charge
rates I

©2000-2004, Steve Easterbrook Source: Adapted from Carter et. al., 1988, p6

39

e

University of Toronto

Department of Computer Science

Layers of systems

Subsystems Environment
appropriate for:
Analysis of repair Wires, connectors, ﬁubsc':iblgr’sh 0 Teleohone cal
problems receivers BT e SIS CEllE,
system
;‘,\,’:17(,},,;’3 7’ - Subscribers’ phone Teleohone call Regional phone
UALPHORE systems D EES network
calls
Analysis of regional Regional phone National telephone
sales strategy IEERIEDE]D network market and trends
?g::y::'s f)st;:)I:'one Regional phone National telephone Global communication
pany’s 'ong networks market and trends systems
term planning

© 2000-2004, Steve Easterbrook

% University of Toronto

i)

A

Describing System Behaviour

- State

% a system will have memory of its past interactions, i.e. 'state’
% the state space is the collection of all possible states

- Discrete vs continuous
% a discrete system:
> the states can be represented using natural numbers

% a continuous system:
> state can only be represented using real numbers

% a hybrid system:

> some aspects of state can be represented using natural numbers

- Observability

% the state space is defined in terms of the observable behavior
% the perspective of the observer determines which states are observable

Department of Computer Science

©2000-2004, Steve Easterbrook Source: Adapted from Wieringa, 1996, pl6-17

41

% University of Toronto

i)

Department of Computer Science

Summary: Systems Thinking

Makes Comparisons

© 2000-2004, Steve Easterbrook

42

