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Shenlong Wang



e Why unsupervised learning?

e Old-school unsupervised learning

Ove rVi ew o PCA, Auto-encoder, KDE, GMM

e Deep generative models

o VAEs, GANs



Unsupervised Learning

e No labels are provided during training
e General objective: inferring a function to describe hidden structure from

unlabeled data
o Density estimation (continuous probability)
Clustering (discrete labels)
Feature learning / representation learning (continuous vectors)
Dimension reduction (lower-dimensional representation)
etc.
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Why Unsupervised Learning?

e Density estimation: estimate the probability density function p(x) of a random
variable x, given a bunch of observations {X1, X2, ...}
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Why Unsupervised Learning?

e Density estimation: estimate the probability density function p(x) of a random
variable x, given a bunch of observations {X1, X2, ...}




Why Unsupervised Learning?

e Clustering: grouping a set of input {X1, X2, ...} in such a way that objects in
the same group (called a cluster) are more similar
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Why Unsupervised Learning?

e Feature learning: a transformation of raw data input to a representation that
can be effectively exploited in machine learning tasks
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Why Unsupervised Learning?

Dimension reduction: reducing the number of random variables under
consideration, via obtaining a set of principal variables
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Principle Component Analysis (PCA)

An algorithm that conducts dimension reduction
Intuition:

e Finds the lower-dimension projection that minimizes
reconstruction error
e Keep the most information (maximize variance)

See more details in Raquel’'s CSC411 slides:
http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/14_pca.pdf



Principle Component Analysis (PCA)

An algorithm that conducts dimension reduction
Intuition:

e Finds the lower-dimension projection that minimizes
reconstruction error
e Keep the most information (maximize variance)

Algorithm:

e Conduct eigen decomposition

e Find K-largest eigenvectors

e Linear projection with the matrix composed of K
eigenvectors

See more details in Raquel's CSC411 slides:
http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/14_pca.pdf



Auto-encoder

A neural network that the output is the input itself.
Intuition:

e A good representation should keep the information well (reconstruction error)
e Deep + nonlinearity might help enhance the representation power
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Auto-encoder

A neural network that the output is the input itself.
Intuition:

e A good representation should keep the information well (reconstruction error)
e Deep + nonlinearity might help enhance the representation power
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Auto-encoder

A neural network that the output is the input itself.
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Kernel Density Estimation (KDE)

A nonparametric way to estimate the probability density function of a random variable

Intuition:

e Point with more neighbouring samples have higher density
e Smoothed histogram, centered at data point
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Kernel Density Estimation (KDE)

A nonparametric way to estimate the probability density function of a random variable

Applications:
° Visuali.zation P”ﬁ ”Mw
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Generative models

Task: generate new samples follows the same probabilistic distribution of a given a training dataset




Generative models

Task: generate new samples follows the same probabilistic distribution of a given a training dataset




Generative models

Task: generate new samples follows the same probabilistic distribution of a given a training dataset
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Note: sometimes it’s fine if we cannot estimate the explicit form of p(x), since it might be over complicated



Variational Auto-encoder (VAE)

Intuition: given a bunch of random variables that can be sampled easily, we can generate random
samples following other distributions, through a complicated non-linear mapping x = f(z)

Image Credit: Doersch 2016



Variational Auto-encoder (VAE)

Intuition: given a bunch of random variables that can be sampled easily, we can generate some new
random samples through a complicated non-linear mapping x = f(z)

Image Credit: Doersch 2016



Variational Auto-encoder (VAE)

Intuition: given a bunch of random variables, we can generate some new random samples through a
complicated non-linear mapping x = f(z)
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Variational Auto-encoder (VAE)

You can consider it as a decoder!

Decoder

network

Code z Gaussian
parameters



Variational Auto-encoder (VAE)

How do we learn the parameters of decoder network?

Decoder

network

Code z Gaussian
parameters



Variational Auto-encoder (VAE)

Review: Marginalization

p(x) = / po(x|2)ps (2)dz

Image Credit: Doersch 2016



Variational Auto-encoder (VAE)

Review: Marginalization

plx) = / o (82) po () dz

[0, 0.2, -0.5]

Image Credit: Doersch 2016



Variational Auto-encoder (VAE)

Learning objective: maximize the log-probability

Training images should have high probability

Image Credit: Doersch 2016



Variational Auto-encoder (VAE)

Learning objective: maximize the log-probability

\ Integration over a neural network. Difficult!

Image Credit: Doersch 2016



Variational Auto-encoder (VAE)

Learning objective: maximize the log-probability

\ Integration over a neural network. Difficult!

1
Quiz: Why not do this?  log pe(X) ~ log N E po(x|2;) )
3 Image Credit: Doersch 2016



Variational Auto-encoder (VAE)

Learning objective: maximize the log-probability

many sampled z will have a close-to-zero p(x|z)

1 /
Quiz: Why not do this?  log pe(X) ~ log N ZP@ (x|z;)
i

Image Credit: Doersch 2016




Variational Auto-encoder (VAE)

Learning objective: maximize variational lower-bound

log po(x:) > Egz|log po(x:(z)| — K L[g(2)]|pe(z)]
\ Variational lower-bound

Quiz: How to choose a good proposal distribution?

Proposal distribution



Variational Auto-encoder (VAE)

Learning objective: maximize variational lower-bound

log po(x:) > Eglog pe(x:|z)] — K L[g(2)]|pe(2)]
\ Variational lower-bound

Proposal distribution . T
P Quiz: How to choose a good proposal distribution?

e Easytosample

e Differentiable wrt parameters
e Given a training sample X, the sampled z is likely to have a non-zero p(x|z)



Variational Auto-encoder (VAE)

Learning objective: maximize variational lower-bound

log po(x;) = Eq¢(Z|Xi)[logp9(Xi‘Z)] — K L{gg(2]%3) | |po(2)]

Answer: Another neural network + Gaussian to approximate the posterior!




Variational Auto-encoder (VAE)

Learning objective: maximize variational lower-bound

log pa(Xi) > By, (zx,)[log pe(Xi|2z)] — K L{qy(z|x;)||pe(2)]

Reconstruction error: Prior:

e Training samples have higher probability e Proposal distribution should be like Gaussian



Variational Auto-encoder (VAE)

Learning objective: maximize variational lower-bound

log pp(Xi) = Eq, (z1x:) [log pe(Xi|2)] — K L|qy(z|x:)||pe(z)]

e KL-Divergence: closed-form and differentiable if
both are Gaussians

e Reconstruction error: approximate by just
sampling one z
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Variational Auto-encoder (VAE)

Why it is the variational lower-bound?

log po(x) = log / o (%l (2) g

(Z ' ' Jenson inequalit
log ps(x) = log/p( q(z) e
. " () log [ px)g(x)dx > [ plx)log g(x)d

Kingma et al. 2014



Variational Auto-encoder (VAE)

The whole learning structure

- KL-Divergence

Reconstruction Loss

Encoder Decoder

network network

Input Image x Code z Reconstruction



Variational Auto-encoder (VAE)

Results
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Variational Auto-encoder (VAE)

VAE Demo

Kingma et al. 2014



Generative Adversarial Network (GAN)

Generator

Code 7 Generated
Image



Generative Adversarial Network (GAN)
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Generative Adversarial Network (GAN)

Intuitions

Crook

Google



Generative Adversarial Network (GAN
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Generative Adversarial Network (GAN
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Generative Adversarial Network (GAN

Intuitions
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Generative Adversarial Network (GAN)

Intuitions:

e Generator tries the best to cheat
the discriminator by generating
more realistic images

e Discriminator tries the best to
distinguish whether the image is
generated by computers or not
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Generative Adversarial Network (GAN)

Objective function:

m(_}n max V(D,G) = Expyiaxollog D(X)] + Egep, (2)|1 — log D(G(2))]

For each iteration:

e Sample a mini-batch of fake images and true images
e Update G using back-prop
e Update D using back-prop

Very difficult to optimize:

e Min-max problem: finding a saddle point instead of a local optimum, unstable



Generative Adversarial Network (GAN)
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GANSs for face and bedroom

Credit: Denton



GANSs for Japanese Anime
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GANSs for Videos

Credit: Vondrick



GANs for Image Upsampling

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

" g
‘M‘ -

S

S

Credit: Ledig



Conditional GAN

Labels to Street Scene _ _ BW to Color

output
Edges to Photo

Credit: Zhu et al.



Generative Adversarial Network (GAN)

Extensions:

DCGANSs: some hacks that work well

LAPGANSs: coarse-to-fine conditional generation through Laplacian pyramids

f-GANs: more general GANs with different loss other than cross-entropy

infoGANSs: additional objective that maximize mutual-information between the latent and the sample
EBGANSs: Discriminative as energy functions

GVMs: using GANSs as an energy term for interactive image manipulation

Conditional GANs: not random z, instead z is some data from other domain



Generative Adversarial Network (GAN)

Hacks:

e How to train a GAN?
e 17 hacks that make the training work.
e https://github.com/soumith/ganhacks



Generative Adversarial Network (GAN)

GAN Demo



GANSs vs VAEs

GANs:

e High-quality visually appealing result
e Difficult to train
e The idea of adversarial training can be applied in many other domains

VAEs:

e Easy to train
e Blurry result due to minimizing the MSE based reconstruction error
e Nice probabilistic formulation, easy to introduce prior



Demos

VAEs:

e https://qithub.com/oduerr/dl tutorial/blob/master/tensorflow/vae/vae demo.ipynb

GANs:

e https://qithub.com/ericjang/genadv tutorial/blob/master/genadv1.ipynb
e https://qgist.github.com/wiseodd/b2697c620e39cb5b134bc6173cfe0f56



https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/vae/vae_demo.ipynb
https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/vae/vae_demo.ipynb
https://github.com/ericjang/genadv_tutorial/blob/master/genadv1.ipynb
https://github.com/ericjang/genadv_tutorial/blob/master/genadv1.ipynb
https://gist.github.com/wiseodd/b2697c620e39cb5b134bc6173cfe0f56
https://gist.github.com/wiseodd/b2697c620e39cb5b134bc6173cfe0f56
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