Techniques for Symbol Grounding with SATNet

Sever Topan^{1, 2}, David Rolnick^{1, 3}, Xujie Si^{1, 3}

¹McGill University, ²NVIDIA, ³Mila

October 2021

$$Neural
ight] - [Symbolic$$

Merge advances in statistical (neural) models with symbolic knowledge representation and logical reasoning

$$Neural
ight] - [Symbolic$$

Merge advances in statistical (neural) models with symbolic knowledge representation and logical reasoning

Potential to address limitations in DNN's:

$$Neural
ight] - [Symbolic$$

Merge advances in statistical (neural) models with symbolic knowledge representation and logical reasoning

Potential to address limitations in DNN's:

• Explainability

$$Neural
ight] - [Symbolic$$

Merge advances in statistical (neural) models with symbolic knowledge representation and logical reasoning

Potential to address limitations in DNN's:

- Explainability
- Adversarial Robustness

$$Neural - [Symbolic]$$

Merge advances in statistical (neural) models with symbolic knowledge representation and logical reasoning

Potential to address limitations in DNN's:

• Explainability

• Data Efficiency

Adversarial Robustness

$$Neural - [Symbolic]$$

Merge advances in statistical (neural) models with symbolic knowledge representation and logical reasoning

Potential to address limitations in DNN's:

- Explainability
- Adversarial Robustness

- Data Efficiency
- Solve hard logic problems

Introduction: Symbol Grounding

Neural]
$$-$$
 [Symbolic \uparrow

Symbol Grounding

At the interface between a neural and a symbolic module, the meaning of the symbols must be established

Introduction: Symbol Grounding

Neural]
$$-$$
 [Symbolic \uparrow

Symbol Grounding

At the interface between a neural and a symbolic module, the meaning of the symbols must be established

This is known as Symbol Grounding

• MNIST digits visually represent input cells

- MNIST digits visually represent input cells
- Expected outputs represented numerically

- MNIST digits visually represent input cells
- Expected outputs represented numerically
- To solve this problem, the system must:
 - Learn the meanings of digits (neural)
 - Learn the rules of Sudoku (symbolic)

- MNIST digits visually represent input cells
- Expected outputs represented numerically
- To solve this problem, the system must:
 - Learn the meanings of digits (neural)
 - Learn the rules of Sudoku (symbolic)
- Symbol Grounding: understanding that the shape of the handwritten digit corresponds to one of 9 unique symbols

- MNIST digits visually represent input cells
- Expected outputs represented numerically
- To solve this problem, the system must:
 - Learn the meanings of digits (neural)
 - Learn the rules of Sudoku (symbolic)
- Symbol Grounding: understanding that the shape of the handwritten digit corresponds to one of 9 unique symbols
- Two levels of supervision for the problem:

- MNIST digits visually represent input cells
- Expected outputs represented numerically
- To solve this problem, the system must:
 - Learn the meanings of digits (neural)
 - Learn the rules of Sudoku (symbolic)
- Symbol Grounding: understanding that the shape of the handwritten digit corresponds to one of 9 unique symbols
- Two levels of supervision for the problem:

Grounded Dataset Trivial Symbol Grounding **Ungrounded Dataset** Difficult Symbol Grounding

Introduction: This Work

Grounded Dataset Trivial Symbol Grounding **Ungrounded Dataset** Difficult Symbol Grounding

Previously, Ungrounded Visual Sudoku was an open problem

Introduction: This Work

Trivial Symbol Grounding

Ungrounded Dataset Difficult Symbol Grounding

Previously, Ungrounded Visual Sudoku was an open problem

We present a framework for solving Ungrounded Visual MAXSAT problems, like Visual Sudoku, using SATNet (Wang et al. 2019)

• A differentiable MAXSAT solver based on a semidefinite relaxation approach

- A differentiable MAXSAT solver based on a semidefinite relaxation approach
- Can be integrated into larger DNN pipelines

- A differentiable MAXSAT solver based on a semidefinite relaxation approach
- Can be integrated into larger DNN pipelines
- Can learn to solve grounded Visual Sudoku, while traditional DNN's cannot

Background: SATNet Limitations (Chang et al. 2020)

• **But**, SATNet previously could not solve Ungrounded problems, having 0% accuracy

Background: SATNet Limitations (Chang et al. 2020)

- **But**, SATNet previously could not solve Ungrounded problems, having 0% accuracy
- this issue is known as label leakage

Background: SATNet Limitations (Chang et al. 2020)

- **But**, SATNet previously could not solve Ungrounded problems, having 0% accuracy
- this issue is known as label leakage
- limits usefulness of DNN-SATNet hybrid architectures

Method

Our proposed framework consists of the following steps:

- Clustering
- Self-Grounded Training
- Proofreading

Method

Our proposed framework consists of the following steps:

Clustering

- 2 Self-Grounded Training
- Proofreading

Method: Clustering

 Intuition: extract semantically relevant aspect of input images using clustering

Method: Clustering

- Intuition: extract semantically relevant aspect of input images using clustering
- Unsupervised pre-training using InfoGAN (Chen et al. 2016)

Method: Clustering

- Intuition: extract semantically relevant aspect of input images using clustering
- Unsupervised pre-training using InfoGAN (Chen et al. 2016)
- InfoGAN is able to cluster MNIST digits with about 95% accuracy

• Inputs are clustered with 95% accuracy, but we don't know which number corresponds to which label

- Inputs are clustered with 95% accuracy, but we don't know which number corresponds to which label
- We cannot use ground truth labels out of the box

- Inputs are clustered with 95% accuracy, but we don't know which number corresponds to which label
- We cannot use ground truth labels out of the box
- Example: imagine we had a correct sudoku solver but assigned random labels to our clusters

- Inputs are clustered with 95% accuracy, but we don't know which number corresponds to which label
- We cannot use ground truth labels out of the box
- Example: imagine we had a correct sudoku solver but assigned random labels to our clusters

1	8	3	9	4	5	7	6	2
4	2	5	8	3	6	1	7	9

Table: Two rows of a board predicted by a perfect sudoku model which uses InfoGAN clusters

7	5		8	9	
	8	7			1

1	8	3	9	4	5	7	6	2
4	2	5	8	3	6	1	7	9

Table: Two rows of a board predicted by a perfect model which uses InfoGAN.

7	5		8	9	
	8	7			1

Table: Two rows of the corresponding Ground Truth

• Labels can be different as long as they are consistent

1	8	3	9	4	5	7	6	2
4	2	5	8	3	6	1	7	9

Table: Two rows of a board predicted by a perfect model which uses InfoGAN.

7	5		8	9	
	8	7			1

Table: Two rows of the corresponding Ground Truth

• Labels can be different as long as they are **consistent**

1	8	3	9	4	5	7	6	2
4	2	5	8	3	6	1	7	9

Table: Two rows of a board predicted by a perfect model which uses InfoGAN.

7	5		8	9	
	8	7			1

- Labels can be different as long as they are **consistent**
- This applies to other SAT-solvable games, beyond Sudoku

1	8	3	9	4	5	7	6	2
4	2	5	8	3	6	1	7	9

Table: Two rows of a board predicted by a perfect model which uses InfoGAN.

7	5		8	9	
	8	7			1

- Labels can be different as long as they are **consistent**
- This applies to other SAT-solvable games, beyond Sudoku
- Common loss functions, such as *l*₂ norm or binary cross-entropy (BCE), will not work

1	8	3	9	4	5	7	6	2
4	2	5	8	3	6	1	7	9

Table: Two rows of a board predicted by a perfect model which uses InfoGAN.

7	5		8	9	
	8	7			1

- Labels can be different as long as they are **consistent**
- This applies to other SAT-solvable games, beyond Sudoku
- Common loss functions, such as *l*₂ norm or binary cross-entropy (BCE), will not work
- Need a different loss function

Method

Our proposed framework consists of the following steps:

- Clustering
- **2** Self-Grounded Training
- Proofreading

Introduce the Symbol Grounding Loss (SGL):

$$\mathcal{L}(\hat{y}_{out}^{PTE}, y^{LE}) := 1 - i \left(\max_{j} (\exp[-(y^{LE}(j), \hat{y}_{out}^{PTE}(i))]) \right),$$

Learn F, and Iram End-to-End

Introduce the Symbol Grounding Loss (SGL):

$$\mathcal{L}(\hat{y}_{out}^{PTE}, y^{LE}) := 1 - i \left(\max_{j} (\exp[-(y^{LE}(j), \hat{y}_{out}^{PTE}(i))]) \right),$$

 SGL infers a permutation matrix between predictions and labels (See paper for further details)

Learn P, and Train End-to-End

Introduce the Symbol Grounding Loss (SGL):

$$\mathcal{L}(\hat{y}_{out}^{PTE}, y^{LE}) := 1 - i \left(\max_{j} (\exp[-(y^{LE}(j), \hat{y}_{out}^{PTE}(i))]) \right),$$

- SGL infers a permutation matrix between predictions and labels (See paper for further details)
- System is trained end-to-end under the Symbol Grounding Loss

Learn P, and Train End-to-End

Introduce the Symbol Grounding Loss (SGL):

$$\mathcal{L}(\hat{y}_{out}^{PTE}, y^{LE}) := 1 - i \left(\max_{j} (\exp[-(y^{LE}(j), \hat{y}_{out}^{PTE}(i))]) \right),$$

- SGL infers a permutation matrix between predictions and labels (See paper for further details)
- System is trained end-to-end under the Symbol Grounding Loss
- A permutation matrix P is implicitly learned by SGL

Learn P, and Train End-to-End

Introduce the Symbol Grounding Loss (SGL):

$$\mathcal{L}(\hat{y}_{out}^{PTE}, y^{LE}) := 1 - i \left(\max_{j} (\exp[-(y^{LE}(j), \hat{y}_{out}^{PTE}(i))]) \right),$$

- SGL infers a permutation matrix between predictions and labels (See paper for further details)
- System is trained end-to-end under the Symbol Grounding Loss
- A permutation matrix P is implicitly learned by SGL
- Once P has converged, continue training under standard BCE

Topan, Rolnick & Si

Method

Our proposed framework consists of the following steps:

- Clustering
- Self-Grounded Training
- Proofreading

• Insert a linear layer before SATNet

- Insert a linear layer before SATNet
- Initialize to a slightly noisy identity transform

- Insert a linear layer before SATNet
- Initialize to a slightly noisy identity transform
- Freeze rest of system, train proofreader

- Insert a linear layer before SATNet
- Initialize to a slightly noisy identity transform
- Freeze rest of system, train proofreader
- Improves accuracy marginally in both our method and prior SATNet architectures

Method

Our proposed framework consists of the following steps:

- Clustering
- Self-Grounded Training
- Proofreading

Results: Ungrounded Visual Sudoku

Model	Grounded vs.	Total Board	Per-Cell
Configuration	Ungrounded Data	Accuracy (%)	Accuracy (%)
Original SATNet	grounded	66.5 ± 1.0	98.8 ± 0.1
Original SATNet	ungrounded	0 ± 0.0	11.2 ± 0.1
Our Method	ungrounded	$\textbf{64.8} \pm \textbf{3.0}$	$\textbf{98.4} \pm \textbf{0.2}$

Results: Effect of Proofreader

Model	Proofreader	Total Board
Configuration	Present?	Accuracy (%)
Original Non-visual Original Non-visual	no yes	$\begin{array}{c} 96.6\pm0.3\\ \textbf{97.1}\pm\textbf{0.3}\end{array}$
Original Visual	no	66.5 ± 1.0
Original Visual	yes	67.6 ± 1.2
Our Method Our Method	no yes	$\begin{array}{c} 62.8 \pm 3.2 \\ \textbf{64.8} \pm \textbf{3.0} \end{array}$

Limitations & Future Work

 In an ablation test, we find that our system requires roughly at least 88% clustering accuracy in order for the rest of the pipeline to progress

Limitations & Future Work

- In an ablation test, we find that our system requires roughly at least 88% clustering accuracy in order for the rest of the pipeline to progress
- Our approach requires prior knowledge of the *number* of symbols

Limitations & Future Work

- In an ablation test, we find that our system requires roughly at least 88% clustering accuracy in order for the rest of the pipeline to progress
- Our approach requires prior knowledge of the *number* of symbols
- Above can be alleviated but Symbol Grounding Loss supporting a general surjective mapping instead of permutation

In this work we:

• Distinguish between grounded and ungrounded variants of Visual MAXSAT problems

- Distinguish between grounded and ungrounded variants of Visual MAXSAT problems
- Present a framework which enables SATNet to solve ungrounded datasets

- Distinguish between grounded and ungrounded variants of Visual MAXSAT problems
- Present a framework which enables SATNet to solve ungrounded datasets
- New state-of-the-art for Ungrounded Visual Sudoku, previously 0%

- Distinguish between grounded and ungrounded variants of Visual MAXSAT problems
- Present a framework which enables SATNet to solve ungrounded datasets
- New state-of-the-art for Ungrounded Visual Sudoku, previously 0%
- Describe a proofreading methodology which improves both our architecture and prior models

- Distinguish between grounded and ungrounded variants of Visual MAXSAT problems
- Present a framework which enables SATNet to solve ungrounded datasets
- New state-of-the-art for Ungrounded Visual Sudoku, previously 0%
- Describe a proofreading methodology which improves both our architecture and prior models
- Available: github.com/SeverTopan/SATNet

Techniques for Symbol Grounding with SATNet

Sever Topan^{1, 2}, David Rolnick^{1, 3}, Xujie Si^{1, 3}

¹McGill University, ²NVIDIA, ³Mila

October 2021