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Building effective program analysis tools is a challenging endeavor: analysis designers must balance
multiple competing objectives, including scalability, fraction of false alarms, and the possibility
of missed bugs. Not all of these design decisions are optimal when the analysis is applied to a
new program with different coding idioms, environment assumptions, and quality requirements.
Furthermore, the alarms produced are typically accompanied by limited information such as their
location and abstract counter-examples. We present a framework DIFFLOG that fundamentally extends
the deductive reasoning rules that underlie program analyses with numerical weights. Each alarm is
now naturally accompanied by a score, indicating quantities such as the confidence that the alarm
is a real bug, the anticipated severity, or expected relevance of the alarm to the programmer. To the
analysis user, these techniques offer a lens by which to focus their attention on the most important
alarms and a uniform method for the tool to interactively generalize from human feedback. To the
analysis designer, these techniques offer novel ways to automatically synthesize analysis rules in
a data-driven style. DIFFLOG shows large reductions in false alarm rates and missed bugs in large,
complex programs, and it advances the state-of-the-art in synthesizing non-trivial analyses.

1 Introduction

The ideal program analysis tool successfully flags the most serious bugs, produces no false alarms, and
gracefully scales to arbitrarily large codebases. The challenges involved in building these tools always
force a compromise between these competing requirements. Analysis designers strive to identify highly
scalable approximations that still produce results with acceptable accuracy, while analysis users demand
greater control over the number of alarms produced, ways to prioritize reports that are most likely to be
relevant and represent real bugs, and would like the tool to learn these preferences from past interaction.

Traditional approaches to program reasoning rely on deductive techniques where these limitations
manifest either as unsound or as incomplete analysis rules. Applied to a large codebase, these analysis rules
produce false alarms in statistically regular ways. Furthermore, because multiple alarms share portions of
their derivation trees, it follows that they are correlated in their ground truth, an observation which has also
been exploited by previous research in improving analysis accuracy [25, 28, 39]. In this paper, we draw
inspiration from the large body of research reconciling logical reasoning with machine learning, which
has appeared variously as work on probabilistic databases [9, 12], inductive logic programming [29],
statistical relational learning [13], and probabilistic programming (e.g. [11] and [14]).
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(a) Existing approach. (b) Our approach.

Figure 1: Existing approaches require the analysis designer to completely specify an analysis whose
reports have to be inspected in their entirety by the analysis user. In contrast, DIFFLOG uses richly labelled
data to satisfy both the needs of the analysis designer and user. For the designer, it can learn the analysis
from a partially labelled training corpus. For the analysis user, it generates labelled reports, given the
analysis and the program to be analyzed.

We present DIFFLOG (Figure 1), a framework by which we associate weights with individual deduction
rules of the analysis. The notion of semiring provenance from databases [15, 8] provides a mechanism to
use these weights to associate numerical values with analysis conclusions. Depending on the choice of the
underlying semiring, these quantities could have different interpretations, such as the confidence that the
alarm represents a real bug, or the expected severity or relevance of the alarm to the user.

For the analysis user, the confidence values we output provide a metric by which to rank the alarms
and focus on those which are most likely to be true. Furthermore, the system can naturally update the
confidence values by conditioning on user feedback. The information gained from repeated rounds of
human interaction allows the resulting program analysis system to discover many more bugs and have
greatly improved accuracy compared to non-interactive systems.

For the analysis designer, DIFFLOG provides a way to exploit numerical techniques such as Newton’s
method and gradient descent and automatically synthesize analyses from training corpora. This also raises
the intriguing possibility of automatically tuning the precision, recall, and scalability of an analysis sketch
based on its performance on a repository of training data. In preliminary experiments, we show that
numerical learning techniques synthesize several non-trivial program analyses significantly faster than
previous state-of-the-art methods.

2 Overview of the Framework

We describe our technique using the example of Andersen’s analysis [2] shown in Figure 2a. We
express the analysis using Datalog, a popular formalism to declaratively specify complex program
reasoning algorithms [35, 38, 6, 4, 27, 3]. A Datalog program is a collection of rules, each of the form
h :− b1,b2, . . . ,bk, where each component, h, b1, b2, . . . , bk, is called a literal. The free variables, p, q,
. . . , are implicitly universally quantified, and :− is interpreted as implication. For example, the rule R3
may be read as “If the program contains the statement p := *q, and q may point to r, and r may point to
s, then p may point to s.” The meaning of a Datalog program is defined as a fixpoint: to apply the analysis,
one iteratively accumulates conclusions until no further tuples can be derived.

Now consider the program of Figure 2b. We show a portion of the reasoning induced by applying
Andersen’s analysis in Figure 3. Note that the variable a initially points to the memory location b1, and
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R1 pt(p,q) :− “p := &q”
R2 pt(p,r) :− “p := q”,pt(q,r)
R3 pt(p,s) :− “p := *q”,pt(q,r),pt(r,s)
R4 pt(r,s) :− “*p := q”,pt(p,r),pt(q,s)

(a)

a := &b1;
b1 := &c1;
if (*) b1 := &c2;
· · ·
a := &b2;
b2 := &c3;
k := *a;

(b)

a b1

b2

c1

c2

c3

k

(c)

Figure 2: Description of Andersen’s pointer analysis [2]. The tuple pt(p,q) indicates that the memory
location p may point to the memory location q. When applied to the program of Figure 2b, it results in
the heap graph shown in Figure 2c. The analysis is flow-insensitive, so that it combines the assignment
k:=*a with the obsolete conclusion pt(a,b1) to erroneously conclude pt(k,c1) and pt(k,c2).

b1:=&c1

R1(b1,c1)

pt(b1,c1)

a:=&b1

R1(a,b1)

pt(a,b1)

b1:=&c2

R1(b1,c2)

pt(b1,c2)k:=*a

R3(k,a,b1,c1)

pt(k,c1)

k:=*a

R3(k,a,b1,c2)

pt(k,c2)

Figure 3: A portion of the derivation graph leading to each conclusion of the analysis. Each rectangle
denotes a tuple, where input tuples are shaded in gray, and output tuples are unshaded. Unboxed nodes
indicate rule instances, so for example R1(b1,c1) indicates the instance of the rule R1 with p = b1 and
q = c1. The arrows indicate logical dependencies between these entities.

later to the memory location b2. The assignment k := *a can therefore only result in k pointing to c3.
However, because the analysis is flow-insensitive, it disregards the order of program statements, and
concludes that k may also point to c1 and c2.

The erroneous conclusions arise because the rule R3 is incomplete: even if all of the hypotheses,
p := *q, pt(q,r), and pt(r,s), are true, it is possible for the conclusion pt(p,s) to be spurious. We call this
situation a misfiring of the rule R3. Observe that since both pt(k,c1) and pt(k,c2) share the intermediate
tuple pt(a,b1), they are correlated, in an informal sense, in their ground truth. Suppose the user examines
the results of the analysis, and indicates that pt(k,c1) is false. Is it possible for us to generalize from this
feedback, and automatically infer that pt(k,c2) is also likely to be false?

Note that it is difficult to characterize this correlation in a purely deductive manner: any of the rule
instances leading to the faulty conclusion could have misfired, and ¬pt(k,c1) does not logically entail
¬pt(k,c2). However, on large programs, rules misfire in statistically regular ways. Therefore, our first
idea is to associate each rule R with a probability pR of correctly firing; we postulate that each instance
of R fires independently and with identical probability pR. We can now associate individual conclusions
of the analysis with the probability of being true. For example, if we associate each rule of Andersen’s
analysis with the probability pRi = 0.9, and treat each input tuple as being known with certainty, then

Pr(pt(k,c2)) = Pr(R3(k,a,b1,c2)∩R1(b1,c2)∩R1(a,b1)) = 0.93 = 0.729. (1)

The idea is that alarms with higher probability are more likely to be true than alarms with low probability,
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Analysis Rules Program Size Alarms Last True Rank
LOC Tuples Clauses Total Bugs DIFFLOG Baseline

Datarace 102 FTP Server 152K 2067K 2182K 522 75 103 368
Taint 62 AndorsTrail 81K 13K 72K 156 7 14 48

Table 1: Experimental performance of an interactive program analysis system based on DIFFLOG [33]. The
column Rules measures the number of analysis rules. The columns labelled Last True Rank indicates
the number of alarms that the user needs to inspect before discovering all bugs in the program.

and therefore guide the user towards the real bugs in their program. Observe that we have also automatically
obtained a way to generalize from user feedback, i.e. by computing conditional probabilities:

Pr(pt(k,c2) | ¬pt(k,c1) =
Pr(pt(k,c2)∩¬pt(k,c1)

Pr(¬pt(k,c1))
= 0.51� Pr(pt(k,c2)). (2)

Observe that the unrelated alarm pt(k,c3) is unaffected: Pr(pt(k,c3) | ¬pt(k,c1) = Pr(pt(k,c3)) = 0.729.
The key challenge behind formalizing this intuition is to succinctly describe how each output tuple

came to be derived. We do this by adapting the concept of semiring provenance from databases [15, 8].
Briefly, we first fix a semiring (K,+,×,0K ,1K), and each instance g of a rule with a token kg ∈ K. For
our example of computing probabilities, kg is the event that g has correctly fired, the semiring operations
+ and × represent union and intersection respectively—k+ k′ = k∪ k′, and k× k′ = k∩ k′—and 0K = /0
and 1K = Ω, the set of outcomes of the probability space. The provenance kt of a tuple t is given by:

kt = ∑
τ

∏
g∈τ

kg, (3)

where τ ranges over all derivation trees whose conclusion is t, and g ∈ τ ranges over all rule instances
occurring in τ . The probability of a tuple t is now given by the probability of its associated event:
Pr(t)= Pr(kt). We have implemented this idea in recent work [33] to obtain an interactive program analysis
system. The user repeatedly inspects the alarm with highest confidence, and the system incorporates their
feedback and reranks the remaining alarms. We present an excerpt of our experimental results in Table 1.
On average, across two static analyses—a datarace analysis applied to Java programs, and a taint analysis
applied to Android apps—and on a suite of 16 real-world benchmark programs, the user has to inspect
44.2% fewer alarms than the baseline to discover all bugs.

Unfortunately, each conclusion of a Datalog program may have many (possibly even infinitely many)
derivation trees. Therefore, the main technical difficulty in instantiating our framework is the algorithmic
complexity of Equation 3. The system we describe in Table 1 tackles this problem by only performing
approximate marginal inference in a Bayesian network along with aggressive constraint pruning. Another
approach is to change the underlying semiring, for example to the max-times semiring. As before,
each rule R is associated with a truth value pR ∈ [0,1], and each instance g of R with the same token
kg = pR. The semiring operations are defined as k+ k′ = max(k,k′) and k× k′ = kk′, 0K = 0 and 1K = 1.
Equation 3 can now be efficiently evaluated using previously known algorithms such as seminaive
evaluation. Furthermore, the partial derivatives, ∂kt/∂ pR can also be readily computed: we can now adapt
popular numerical optimization techniques such as gradient descent and Newton’s method to the task
of synthesizing rule weights, and even the analysis itself. In preliminary experiments that we present in
Table 2, we show that this technique greatly outperforms the state-of-the-art in learning Datalog programs
such as Andersen’s analysis and mod/ref analysis.
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Program Relations Rules Time (in seconds)
Input Output Synthesized Candidate DIFFLOG ALPS Zaatar

Andersen 4 1 4 27 5.02 148 295
Mod/ref 7 5 10 36 11.1 5307 Timeout

Table 2: Performance of DIFFLOG-based gradient descent in synthesizing program analyses, compared to
two state-of-the-art combinatorial algorithms, ALPS [36], and Zaatar [1]. Each system was given 3 hours
to synthesize the analysis.

3 Challenges and Opportunities

Interpretability and scalability. The most important challenge in instantiating DIFFLOG is choosing
a semiring so that: (a) the output values come with useful guarantees and are readily interpretable by
programmers, and (b) Equation 3 can be evaluated efficiently on real-world codebases. One option we
discussed was using the max-times semiring so that efficient Datalog evaluation algorithms can be adapted
in a straightforward way. Connecting this to other well-studied problems such as min-cuts is an exciting
direction of future research.
Learning. In Section 2, we discussed how the max-times semiring enables fast gradient-descent based
learning. In the case of the probabilistic semiring, we may also use the expectation-maximization algorithm
to learn rule firing probabilities. The most important problem involving learning is that of invented / hidden
predicates. Furthermore, while we have assumed a corpus of labelled training data, human feedback is
often inaccurate. Can our learning algorithms operate in unsupervised or weakly supervised settings? On
the opposite side, can we build standard candles and large repositories of well-labelled programs?
Rethinking the analysis–user interface. We have discussed how we may associate alarms with the
probability that they represent true bugs. Programmers are also interested in the severity and relevance
of individual alarms. We are investigating the applicability of DIFFLOG to produce this information.
Furthermore, instead of a passive model where the user chooses which alarm to inspect, there is great value
in actively soliciting feedback from the user on alarms and intermediate conclusions of high value [10, 39].
We are investigating the problem of determining tuples whose ground truth would be most effective in
reducing uncertainty in remaining alarms.

4 Related Work

There is a large body of research which applies statistical methods to syntactic features of the program
to determine which alarms are likely to be true [19, 37, 21]. The z-ranking algorithm [23, 22] is one
prominent example, which uses the z-test and ranks alarms according to code locality. By modelling the
alarm generation process through Equation 3, our work can be seen as explaining why these techniques
tend to work. Statistical methods have also been used to find cost-effective abstractions which are still
sufficiently precise to prove the properties of interest [16, 31, 17, 7, 18], predict likely types [34, 20], and
mine likely specifications and find anomalies [30, 26, 24]. Human-in-the-loop program analysis systems
have largely been based on non-statistical optimization techniques, such as abduction [10], integer linear
programming [39], and MaxSMT [28]. They are also often formulated to pinpoint the root cause of
errors in the analysis [39, 32], which we encode probabilistically in DIFFLOG. Finally, Bielik et al [5]
consider the problem of automatically learning a static analyzer from data, but focus on a restricted class
of analyses which can be expressed using decision trees over program syntax, as opposed to the deeper
properties which we can model using fixpoints.
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