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Abstract

Scenario planning is a commonly used method that various
organizations use to develop their long term plans. Scenario
planning for risk management puts an added emphasis on
identifying the extreme yet possible risks that are not usually
considered in daily operations. While a variety of methods
and tools have been proposed for this purpose, we show that
formulating an AI planning problem, and applying AI plan-
ning techniques to develop the scenarios provides a unique
advantage for scenario planning. Our system, the Scenario
Planning Advisor (SPA), takes as input the relevant news
and social media trends that characterize the current situa-
tion, where a subset of them is selected to represent key ob-
servations, as well as the domain knowledge. The domain
knowledge is acquired using a graphical tool, and then au-
tomatically translated to a planning domain. We use a plan-
ner to generate multiple plans explaining the observations and
projecting future states. The resulting plans are clustered and
summarized to generate the scenarios for use in scenario plan-
ning. We discuss our knowledge engineering methodology,
lessons learned, and the feedback received from the pilot de-
ployment of the SPA system in a large international company.
We also show our experiments that measure planning perfor-
mance and how balanced and informative the generated sce-
narios are as we increase the complexity of the problem.

1 Introduction
Scenario planning is a commonly used method for strategic
planning (Schoemaker 1995). Scenario planning involves
analyzing the relationship between forces such as social,
technical, economic, environmental, and political trends in
order to explain the current situation in addition to providing
insights about the future. A major benefit to scenario plan-
ning is that it helps businesses or policy-makers learn about
the possible alternative futures and anticipate them. While
the expected scenarios are interesting for verification pur-
poses, scenarios that are surprising to the users (e.g., policy-
makers businesses) are the ones that are the most important
and significant (Peterson et al. 2003).

Risk management is a set of principles that focus on the
outcome for risk-taking (Stulz 1996). A variety of methods
and standards for risk management under different assump-
tions have been developed (Avanesov 2009). In this paper,
we address scenario planning for risk management, the prob-
lem of generating scenarios with a significant focus on iden-

tifying the extreme yet possible risks that are not usually
considered in daily operations. The approach we take in this
paper is different from previous work in that we reason about
emerging risks based on observations from the news and so-
cial media trends, and produce scenarios that both describe
the current situation and project the future possible effects
of these observations. Our objective is not to find a precise
answer, that is to predict or forecast, but rather to project the
possible alternative scenarios that may need consideration.
Each scenario we produce highlights the potential leading
indicators, the set of facts that are likely to lead to a sce-
nario, the scenario and emerging risk, the combined set of
consequences or effects in that scenario, and the business im-
plications, a subset of potential effects of that scenario that
the users (e.g., policy-makers, businesses) care about. The
business implications are akin to the set of possible goals.

For example, given a high inflation observation, economic
decline followed by a decrease in government spending can
be the consequences or the possible effects in a scenario,
while decreased client investment in the company offerings
is an example of a business implication (i.e., the resulting
goal). Furthermore, an increase in the cost of transporta-
tion could have been the leading indicator for that scenario.
To the best of our knowledge, we are the first to apply AI
planning in addressing scenario planning for enterprise risk
management. We believe that AI planning provides a very
natural formulation for the efficient exploration of possible
outcomes required for scenario planning.

In this paper, we propose to view the scenario planning
problem for enterprise risk management as a problem that
can be translated to an AI planning problem. An intermedi-
ate step is a plan recognition problem, where the set of given
business implications forms the set of possible goals, and the
observations are selected from the news and social media
trends. The domain knowledge is acquired from the domain
expert via a graphical tool and is then automatically trans-
lated to an AI planing domain. AI planning is in turn used to
address the plan recognition problem (Ramı́rez and Geffner
2009; Sohrabi et al. 2016a; 2017). Top-k planning or find-
ing a set of high-quality plans is used to generate multiple
plans that can be grouped into a scenario (Riabov et al. 2014;
Sohrabi et al. 2016b). The set of plans is then clustered and
summarized to generate the scenarios. Hence, each scenario
is a collection of plans that explain the observations and con-



siders the possible cascading effects of the actions to identify
potential future outcomes.

2 System Architecture
The system architecture for our system, Scenario Planning
Adviser (SPA), is shown in Figure 1. There are three ma-
jor components. The planning engine, shown under the Sce-
nario Generation and Presentation component, takes as in-
put the output of the other two components: the News Aggre-
gation component and the Domain Knowledge component.
The News Aggregation component deals with analyzing the
raw data coming from the news and social media feeds. To
this end, several text analytics are implemented in order to
find the information that is relevant for a particular domain
as filtered by the provided Topic Model. The Topic Model,
provided by the domain expert, includes the list of impor-
tant people, organization, and keywords. The result of the
News Aggregation component is a set of relevant key ob-
servations, a subset of which can be selected by the busi-
ness user and is fed into the Scenario Generation compo-
nent. The Domain Knowledge component captures the nec-
essary domain knowledge in two forms, Forces Model and
Forces Impact. The Forces Model is a description of the
causes and effects for a certain force, such as social, tech-
nical, economic, environmental, and political trends, and is
provided by a domain expert who have little or no AI plan-
ning background. Forces Model are captured by a Mind Map
(http://freemind.sourceforge.net/wiki/), a
graphical tool that encodes concepts and relations. An ex-
ample of a Mind Map for the currency depreciation force
is shown in Figure 3. The Forces Impact, describes poten-
tial likelihoods and impact of a cause (i.e., concepts with
an edge going into the main force) or an effect (e.g., con-
cepts with an edge going from the main force and all other
cascading concepts). The Scenario Generation component
takes the domain knowledge and the key observations and
automatically generates a planning problem whose outcome
when clustered in the post-processing step generates a set of
alternative scenarios.

Our system is currently deployed for an international or-
ganization. We use a company name Acme, for anonymity,
in our examples. The system generates thousand plans and
presents three to six scenarios to the business user. The
extensive feedback we have collected has been encourag-
ing and helpful in improving our system. We report on our
knowledge engineering efforts, collected feedback, and the
lessons learned in the rest of this paper.

3 Problem Definition
In this section, we briefly review necessary background on
AI planning and Plan Recognition before defining the sce-
nario planning for risk management problem.

Definition 1 A planning problem is a tuple P = (F,
A, I,G), where F is a finite set of fluent symbols, A is a set
of actions with preconditions, PRE(a), add effects, ADD(a),
delete effects, DEL(a), and action costs, COST(a), I ⊆ F
defines the initial state, and G ⊆ F defines the goal state.
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Figure 1: The SPA system architecture

The solution to the planning problem, P , is a sequence
of executable actions, π = [a0, ..., an] such that if exe-
cutable from the initial state, I , meets the goal (i.e., G ⊆
δ(an, δ(an−1, . . . , δ(a0, I))), where δ(a, s) = ((s\DEL(a))
∪ ADD(a)) defines the successor state.

Definition 2 A Plan Recognition (PR) problem is a tuple
R = (F,A, I,O,G, PROB), where (F,A, I) is the planning
domain as defined above, O = {o1, ..., om}, where oi ∈
F , i ∈ [1,m] is the set of (partially ordered) observations,
G is the set of possible goals G, G ⊆ F , and PROB is a
probability distribution over G, P (G).

The solution to the PR problem is the posterior proba-
bilities P (π|O) and P (G|O). Plan recognition problem can
be transformed to an AI planning problem and the poste-
rior probabilities can be approximated using AI planning
(Ramı́rez and Geffner 2010; Sohrabi et al. 2016a). Note, the
observations are said to be satisfied by an action sequence
if it is either explained or discarded following the work of
Sohrabi et al. 2016a. This allows for some observations to
be left unexplained in particular if they are out of context
with respect to the rest of the observations.

Definition 3 A scenario planning for enterprise risk man-
agement problem is defined as a tuple SP = (F,A, I,O,G),
where (F,A, I) is the planning domain acquired by the do-
main experts, O = {o1, ..., om}, where oi ∈ F , i ∈ [1,m]
is a set of observations selected from the news and social
media trends, G is a set of possible goals G ⊆ F ; the set of
goals are called business implications in the scenario plan-
ning problem.

As shown in Figure 1, the input to the SPA system are raw
social media posts and news articles with RSS feeds. The
News Aggregation component analyzes such news and posts
and suggests possible observations. In the deployment of the
SPA system, we addressed unordered set of observations as
input; however, in theory, the observations can be expressed
in any Linear Temporal Logic (LTL) formula (Sohrabi et al.
2011).

The solution to the SP problem is defined as a set of sce-
narios, where each scenario is a collection of plans Π such
that: (1) each plan π = [a0, ..., ai, ai+1, ..., an] is an action



Figure 2: Sample questions

sequence that is executable from the initial state I and re-
sults in state s = δ(an, . . . , δ(a0, I)), (2) at least one of the
goals is met (i.e., ∃G ∈ G, where G ⊆ s), and (3) the set of
observations is satisfied by the action sequence [a0, ..., ai]
(i.e., observations are either explained or discarded). The
SP problem can be thought of as a plan recognition prob-
lem, where observations and a set of goals are given. Rather
than computing P (π|O) and P (G|O), the solution to the
SP problem is a set of scenarios showcasing the alternative
possible outcomes.

4 Knowledge Engineering
While several knowledge engineering tools exists, most of
them assume that the domain expert has some AI plan-
ning background and these tools provide the additional sup-
port in writing the domain knowledge (e.g., (Muise 2016;
Simpson et al. 2007)). However, we anticipate the lack of
proper AI planning expertise in writing the domain knowl-
edge and the unwillingness to learn a planning language. In-
stead, the domain expert may choose to express their knowl-
edge in a light-weight graphical tool and have this knowl-
edge translated automatically to a planning language such as
Planning Domain Description Language (PDDL) (McDer-
mott 1998). In this section, we discuss the representation of
the domain knowledge and its translation to planning.

As shown in Figure 1, the domain knowledge comes in
two forms: Forces Model and Forces Impact. Forces Model,
is the domain knowledge corresponding to the causes and ef-
fects of the different forces influencing the risks in a business
organization such as the economy, currency, corruption, so-
cial unrest, and taxes. The domain experts express these re-
lationship for each force trends (e.g., economic decline and
economic growth) in separate Mind Maps. A Mind Map1 is
a graphical method that can be used to express the Forces
Model in a simple way. The Mind Maps can be created in a
tool such as FreeMind2 which produces an XML represen-
tation of the Mind Maps which can serve as an input to our

1https://en.wikipedia.org/wiki/Mind_map
2http://freemind.sourceforge.net/wiki/
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Figure 3: Part of the Mind Map for the currency depreciation
against US dollar force.

system. An example Mind Map is shown in Figure 3. The
force in this Mind Map is the currency depreciation. The
concepts with an edge going towards the force, are the pos-
sible causes, and the concepts with an outgoing edge from
the force, are the possible effects. The causes and effects can
appear in chains, and cascade to other causes, and effects,
with a leaf concept of either a business implication (i.e., the
planning goal), or another force, with its own separate Mind
Map that describes it. For example, “Acme workforce capital
available at better rates” is an example of a business implica-
tion, where Acme is the name of the organization. Note, one
of the leafs of this Mind Map, economic decline, is another
force which would be described in a separated Mind Map.
Any of the concepts in the Mind Map, except for the busi-
ness effects, can serve as observations in order to generate
the scenarios.

Additional information on the Mind Maps is encoded
through the Forces Impact, which is captured by a series of
automatically generated questions based on the Mind Maps.
These questions are created by a script that reads the XML
encoding of the Mind Maps. Sample questions are shown
in Figure 2. The domain expert is given options of low,
medium, and high in addition to the option of “do not know”
in which a default value is selected for them. The answers
to these questions determine the weight of the edges in the
Mind maps.

The domain knowledge encoded in the Mind Maps (i.e.,
Forces Model), together with the answers from the question-
naire (i.e., Forces Impact), is automatically translated into
a planning language such as PDDL. There are at least two
ways to translate the Mind Maps into a planning language.
The first method, we call “ungrounded”, defines one general
and ungrounded set of actions in the PDDL domain file with
many possible groundings of the actions based on the given
Mind Maps. The domain file includes an action named “in-
dicator” for each of the causes in a Mind Map. There would
be three different “indicator” actions, one for each level (i.e.,
“indicator-low”, “indicator-med” and “indicator-high”). The
levels are determined based on the answers to the question-
naire. The domain file also includes an action named “next”,
and “next-bis” for each of the edges in the Mind Map. The
“next” action also has three different versions, one for each
level. The “next-bis” actions do not have levels and are those
that end in a business implication concept (i.e., a concept
that includes the name of the company).

Table 1 shows part of the planning domain. For example,
the “next-med” action will be grounded by setting the pa-
rameter x1 to “increasing trade deficit” and the parameter
x2 to the “currency depreciation against US dollar”. Each



(:action next-med
:parameters (?x1 - occ ?x2 - occ)
:precondition (and (occur ?x1)

(next-med ?x1 ?x2))
:effect (and (occur ?x2)

(not (occur ?x1))
(increase (total-cost) 10)))

(:action indicator-med
:parameters (?y - force ?x - occ)
:precondition (and (indicator-med ?y ?x))
:effect (and (occur ?x)

(increase (total-cost) 15)))

(:action next-bis
:parameters (?x1 - occ ?x2 - bisimplication)
:precondition (and (occur ?x1)

(next-bis ?x1 ?x2)
:effect (and (bis-implication-achieved)

(increase (total-cost) 6)))

Table 1: Part of the planning domain.

of the “next” actions (-low, -med, -high) have a cost that
maps to the importance of that edge such that lower im-
pact/likelihood answers map to a higher cost. Hence, while
the domain is fixed, based on the answers obtained by the
domain experts, the actions will have a different set of pos-
sible groundings defined in the problem file. The “next-bis”
action is the action that if executed, indicates that at least
one of the business effects have been reached and the “bis-
implication-achieved” predicate is set to true; this is the goal
of the planning problem. The problem file (i.e., the initial
state) will include all the possible groundings of these ac-
tions by including a grounding for the predicates “(next-med
?from ?to)”, “(next-bis ?from ?to)”, and “(indicator-med ?y
?x)”. Note that the size of the Mind Map leads to a larger
problem file, as the domain file is fixed. A successful plan
maps to an execution of an “indicator” action, followed by
the execution of one or more “next” actions, followed by an
execution of a “next-bis” action. This maps to a path through
the connected Mind Maps.

The second method to translate the Mind Maps into a
planning language is called “grounded” which as the name
suggests, defines one action per each edge in the Mind Map
in addition to one action for each of the causes in the Mind
Map in the planning domain itself. So rather than having
one fixed planning domain which can get grounded by the
problem file, the second approach fully specifies all the pos-
sible actions in the planning domain. We evaluate the per-
formance of both methods in the experimental evaluation.

5 Computing Plans
In the previous section, we discussed how to translate the
information available in the Mind Maps into a planning do-
main and problem. However, we are also given the set of
observations as the input and we need to compile away the
observations in order to use planning. To do so we follow
the work of Sohrabi et al. 2013; 2016a which adds a set of
“explain” and “discard” actions for each observation. The
discard action can be selected in order to leave some obser-
vations unexplained. The observations are driven from news

and social media posts and not all of them are reliable; in
addition, some of them could be mutually exclusive and not
all of them could be explainable. Hence, it is important to
have the ability to discard some observations. However, to
encourage the planner to generate plans that explain as many
observations as possible, a penalty is set for the “discard” ac-
tion in the form of a cost. The penalty is relative to the cost
of the other action in the domain; we currently set it to be
five times the cost of a “next-med” action. After considering
multiple options, this seemed to be good a middle-ground
option between the two extremes; a high discard cost will
cause the planner to consider many long and unlikely paths,
while a low discard will cause the planner to discard obser-
vations without trying to explain them. In addition, to ensure
all observations are considered, whether explained or dis-
carded, a set of special predicates, one per each observation
is used and must hold true for each of the “next-bis” actions.
This ensures that a plan that meets one of the goals also has
considered all of the observations. To disallow different per-
mutation of the discard action, we discard observations us-
ing a fixed order.

The resulting planning problem captures both the domain
knowledge that is encoded in the Mind Maps and its associ-
ated weights of the edges as well as the given set of obser-
vations, and possible set of goals, associated with the plan
recognition aspect of the problem. To compute a set of high-
quality plans on the transformed planning problem, we use
the top-k planning approach proposed in (Riabov et al. 2014;
Sohrabi et al. 2016b). Top-k planning is defined in as the
problem of finding k set of plans that have the highest qual-
ity. The best known algorithm to compute the set of top-k
plans is based on the k shortest paths algorithm called K∗

(Aljazzar and Leue 2011) which also allows use of heuristics
search. We use the K∗ algorithm together with the LM-cut
heuristic (Pommerening and Helmert 2012) in our system.
Next, we discuss how the generated plans are post-processed
into the scenarios.

6 Computing Scenarios
To compute the type of scenarios shown in Figure 4, we per-
form a set of post-processing steps on the computed set of
plans. All of the post-processing steps are done automati-
cally. First, we identify the number of plans out of the top-k
plans (e.g., 1000) generated by the planner to consider for
scenario generation. We argue that this number is problem-
dependent rather than being a fixed number for all problems.
To calculate the cost cutoff, we calculate the average and the
standard deviation of the cost of all plans among the top-k
plans. We then consider plans that have a lower cost than
the average cost subtracted by the standard deviation. The
number of plans considered for scenario generation is shown
under the “# of Plans” column in Table 2.

Next, we cluster the resulting plans to create scenarios.
Hence, rather than presenting all plans, we group similar
plans and only present 3-6 clusters of plans to the end user.
We cluster plans according to the predicates present in the
last state. Given that the number of ground predicates (i.e,
F) is finite, we first represent each plan through a bit array
of the same size such that 1 indicates the predicate is in the



Figure 4: The screenshot of a sample generated scenario for the high inflation observation. Each scenario is divided into three
parts, the leading indicators, scenario and emerging risks, and the business implications.
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Figure 5: Part of the screenshot of a explanation graph for the scenario shown in Figure 4. Observations are shown in green,
leading indicators are shown in blue, and business implications are shown in yellow.



final state, and 0 indicates that the predicate is not in the fi-
nal state. To determine the Euclidean distance between two
plans, we compute a XOR of the corresponding bit arrays
and take the square root of the sum of 1 bits. Normally, we
want to avoid plans with opposite predicates (e.g., weaken-
ing/strengthening economic environment, increase/decrease
in inflation, etc.) ending up in the same cluster. To ensure
this, we add a penalty factor to the number of 1 bits we use
to compute the distance for every pair of opposite predicates.
Given this distance function for each pair of plans, we com-
pute a dendrogram bottom-up using the complete-linkage
clustering method (Defays 1977). The user can specify a
minimum and maximum consumable number of scenarios.
These settings are used to perform a cut through the dendro-
gram that yields the number of plans in the specified interval
with the optimal Dunn index (Dunn 1973), a metric for eval-
uating clustering algorithms that favors tightly compact sets
of clusters that are well separated.

After post-processing is complete, we automatically per-
form several tasks to prepare the scenarios for presentation.
First, we separate the predicates in each cluster (scenario)
into business implications and regular predicates. At the
same time, we separate probable and possible predicates in
each of these categories by determine the proportion of plans
where the predicate is present in the last state from all plans
in the scenario; predicates that appear in more than 66% of
plans are put into the probable category, those that appear
between 25% and 66% are placed in the possible category.
Second, we identify discriminative predicates, i.e. predicates
that appear early on the plans that are part of one scenario
but not other scenarios (i.e., they tend to lead to this scenario
and not others); these are useful to monitor in order to deter-
mine early on whether a scenario is likely to occur. Third, we
compute a summary of all plans that are part of the scenario
and present this as a graph to the user. Figure 5 shows an
example of this graph. This serves as an explanatory tool for
the predicates that are presented in each scenario. This graph
also shows how the different Mind Maps are connected with
each other through concepts that are shared between them.

7 Experimental Evaluations
In this section, we evaluate: (1) the performance of the plan-
ner, (2) quality of the clusters measured by the size of the
cluster, and (3) how informative each cluster measured by
number of predicates and business implications. In the next
section, we provide details on the pilot deployment of the
Scenario Planning Adviser (SPA) tool, feedback and the
lessons learned in interacting with the domain experts as
well as the business users. All our experiments were run on
a 2.5 GHz Intel Core i7 processor with 16 GB RAM.

We compare the performance of the planner on our
two proposed methods to translate the Mind Maps into
a planning domain: “ungrounded” and “grounded”. The
“grounded” method creates 670 actions when considering
the full set of Mind Maps. We remove some of these Mind
Maps creating 403 actions instead and report on that result
under the “ungrounded small” method. To increase the dif-
ficulty of the problem, we increase the size of the O. Obser-

Figure 6: Planning performance comparison between the
“grounded” and “ungrounded” methods, as we increase the number
of observations. The time is in seconds and is shown in logarithmic
scale.

vations are chosen randomly from the set of possible obser-
vations.

Table 2 presents a comparison between “ungrounded
small” and “grounded”. The objective of this experiment
is to show how the planning domain size influence perfor-
mance and the generated clusters. All numbers shown in
each row are averages over 10 runs of the same type of prob-
lem, where the same number of observations is considered in
both cases. The columns show the planning performance in
seconds, total number of business implications, G, number
of actions, A, number of observations O, number of dis-
carded observations in the optimal plan, “# of Discards”,
number of plans considered for scenario generation, “# of
Plans”, and number of scenarios generated “# of Scenarios”.
We also show the average, standard deviation, max, and min
count on the number of members of each cluster, number of
predicates, and number of business implications in each sce-
nario. We used a timeout of 900 seconds. The problems with
30 or more observations did not finish within the time limit.

The results show that the performance of the planner de-
pends on both the number of observations and the size of the
domain, as expected. As the number of observations grow
the planner’s performance worsens but this does not influ-
ence the number of plans, the number of scenarios, size of
the clusters, or the number of scenario predicates. However,
the number of business implications decreases, as expected,
as the observation size grows. Looking at the average num-
ber of cluster members, the average number of scenarios
predicates, and the average number of bossiness implica-
tions, the results show that the clusters in both cases are bal-
anced and informative.

We also compare the planning performance between two
methods of translating the Mind Maps. The results in log-
arithmic scale is shown in Figure 6. Each shown point
in the figure is an average over 20 instances. The re-
sults show that in our current implementation, as the num-
ber of observations increases, planning performance using



#of #of #of Cluster Members Scenario Predicates Bis Implications
Time |G| |A| |O| Discards Plans Scenarios Avg σ Max Min Avg σ Max Min Avg σ Max Min
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0.03 65 403 1 0.0 129.0 3.8 37.0 28.6 76.9 11.2 9.6 2.7 13.5 6.6 4.8 1.7 7.1 2.7
0.03 65 403 2 0.5 141.7 3.8 39.9 31.7 83.4 6.5 9.8 3.1 13.7 5.4 4.1 1.7 6.1 1.8
0.05 65 403 4 1.6 120.5 3.6 34.6 27.9 72.1 7.9 10.9 2.7 13.9 6.9 3.7 1.2 5.3 2.1
0.22 65 403 8 4.4 122.4 3.8 34.8 33.4 82.6 4.3 10.0 2.4 13.0 6.9 2.1 0.9 3.5 1.3
0.80 65 403 10 5.0 112.6 4.5 25.6 26.0 71.5 5.6 7.6 2.0 10.1 5.4 2.3 0.8 3.8 1.6
2.33 65 403 12 5.9 100.1 4.2 25.3 20.7 56.2 4.4 9.4 1.4 11.1 7.4 1.7 0.4 2.6 1.2
9.16 65 403 15 8.8 104.8 3.9 30.2 25.6 68.5 8.8 10.6 1.2 12.4 8.8 1.9 0.4 2.8 1.5

27.85 65 403 18 9.9 92.8 4.8 20.2 23.5 61.3 3.0 8.5 1.2 10.3 6.7 1.6 0.5 2.4 1.3
103.71 65 403 20 11.3 117.7 3.9 30.9 26.8 68.0 3.7 9.0 1.4 11.0 7.3 1.8 0.6 2.5 1.0
179.90 65 403 23 14.9 103.7 4.1 26.3 21.2 58.6 4.4 9.0 1.4 11.1 6.9 1.9 0.6 2.7 1.2
282.87 65 403 26 16.9 90.6 4.9 20.3 19.0 53.5 5.3 9.5 1.1 11.3 7.8 1.6 0.3 2.0 1.3
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0.03 112 670 1 0.0 91.5 4.4 24.4 16.6 48.6 6.6 7.0 2.5 10.4 4.3 4.5 1.7 6.6 2.2
0.04 112 670 2 0.4 132.1 4.3 34.4 32.2 80.3 3.7 8.0 3.0 11.7 4.0 3.8 1.8 6.1 1.5
0.08 112 670 4 1.5 114.1 3.6 32.9 30.7 77.9 4.3 10.2 2.9 13.2 6.1 3.6 1.4 6.0 2.3
0.35 112 670 8 3.7 109.7 3.6 31.5 24.6 65.9 7.0 9.1 1.9 11.4 6.5 3.8 1.3 5.4 2.3
1.17 112 670 10 5.1 139.4 4.2 34.6 27.9 73.2 5.9 7.8 2.0 10.1 4.9 2.6 0.8 3.9 1.6
3.35 112 670 12 5.4 99.5 4.8 22.8 24.8 64.7 3.5 8.6 1.9 11.0 6.3 1.6 0.4 2.8 1.2

22.01 112 670 15 8.1 92.3 4.1 23.3 22.1 57.9 3.2 9.9 1.8 12.0 7.0 2.5 1.0 4.0 1.5
85.73 112 670 18 9.4 88.5 4.3 22.2 19.2 51.6 6.7 7.2 1.1 8.7 5.5 2.2 0.3 2.7 1.7
144.89 112 670 20 10.7 124.3 5.1 26.0 19.4 57.0 5.0 9.0 1.0 10.0 7.2 2.1 0.2 2.3 1.9
284.73 112 670 23 14.5 106.8 4.8 24.5 23.9 62.5 4.0 8.6 1.6 10.6 6.5 2.9 0.6 3.6 2.0
511.95 112 670 26 16.8 80.0 4.7 17.2 9.0 30.2 7.8 7.8 1.0 9.5 6.5 1.7 0.7 2.8 1.2

Table 2: Comparison between “ungrounded” and “ungrounded small” as we increase the number of observations: “grounded”
considers all of the Mind Maps, “ungrounded small” considers a smaller set of Mind Maps.

Figure 7: Planning performance comparison between two meth-
ods (i.e, “grounded” and “ungrounded”) as the number of discarded
observations in an optimal plan increases when considering prob-
lems with 20, 23, and 26 observations. The time is in seconds and
is shown in logarithmic scale.

the “ungrounded” method is significantly better than the
“grounded” method.

Considering problems with 20, 23, and 26 observations,
we also looked at the number of discarded observations in
the optimal plan in each case. This indicates whether or not
the observations are explainable in a single path through the
Mind Maps. The results in logarithmic scale is shown in Fig-
ure 7. The results confirm that the performance of the “un-
grounded” method is better than the “grounded” method. It
also shows that as the number of discarded observation in-
creases, the planning time decreases. This seems to indicate

that the planner identifies the unexplainable observations,
through its heuristics, and does not spend time on explaining
the unexplainable observations.

Based on these results, we conclude that performance of
the planner depends on number of observations, the size of
the domain, the method used in the translation of the Mind
Maps, as well as the number of unexplainable observations.
Given this result, we deployed the “ungrounded” method
and use the full set of Mind Maps.

8 User Experience
The SPA tool was evaluated in a pilot deployment with 7
teams of business users, whose responsibilities included risk
management within their business area. For those teams SPA
was introduced together with the new scenario planning pro-
cess; hence, there was no pre-automation baseline available
to compare against. In addition the functionality provided
by the tool cannot be reproduced manually due to the broad
news analysis the tool provides.

The Mind Map were developed over the course of three
months by one enterprise risk management expert work-
ing with an assistant and in consultation with other experts.
While Mind Maps in general can be in any form, we briefly
educated the domain expert to provide Mind Maps that have
one force (e.g., currency deprecation against US dollar) as
their main concept and provide causes and consequences of
this force in one Mind Map; the concepts with an edge to
the central concept and the concepts with an edge from the
main concept and their cascading effects where the last ef-
fect is either a business implication or another force with its
own separate Mind Map. This ensures that we can automati-
cally translate the Mind Maps into a planning language. We
used 23 Mind Maps in the pilot deployment and used the
“ungrounded” method to translate the Mind Maps. The re-



sulting planning problem that aggregates the knowledge of
all Mind Maps (i.e., the grounding of the actions based on
the edges on the Mind Maps) has around 350 predicates and
670 actions.

Additionally, the end users (i.e., the analysts) provided us
with a list of possible keywords, such as organizations of in-
terest, key people, key topics, and were able to pick the rele-
vant sequence of observations when we presented them with
the summary of relevant news and RSS publications. For
RSS publications, around 3,000 news abstracts from 64 pub-
lishers, and for Twitter, around 73,000 tweets from around
32,000 users matched our keyword search criteria.

The teams have universally found the tool easy to use and
navigate. Although no detailed feedback was collected for
each scenario, the teams have reported that approximately
80% of generated scenarios had identified implications di-
rectly or indirectly affecting the business. By design, the
tool is trying to help the business users to think outside the
box and it is expected that some of the scenarios it generates
will not be relevant. Judging by the provided comments, the
teams whose business is affected by frequent political, regu-
latory and economic change have found the tool more useful
than those operating under relatively stable conditions.

In addition, the teams found the explanation graph, visu-
alization of a set of plans, essential to the adaptation of the
tool (Figure 5). They believe that the explanation graph “de-
mystifies” the tool by providing them with an explanation
of why they are presented with a particular scenario. This is
critical for the business users or policy-makers who would
be basing their decisions on the generated scenarios.

The suggestions for improvement focused primarily on
the need for further automated assistance in selecting ob-
servations based on the news, to ensure that no important
context is lost, and on the additional information about the
scenarios. Several teams have requested confidence levels
or at least ranking information provided with the generated
scenarios. We believe this is an interesting future direction
and believe more accurate models are required in order to
provide that additional information.

In working with the domain experts and users from the
start of the pilot deployment, we learned several lessons: (1)
The users are interested in being presented with several sce-
narios rather than one along with the explanation of each
scenario. This captures the possible alternatives rather than
a precise prediction, analogous to a generation of a multi-
ple plans rather than a single (optimal) plan; (2) The users
wanted personalized scenarios specific to their particular use
case. To address that we consider the Mind Maps as a tem-
plate that holds true for all use cases and allow personal-
ization of the scenarios by incorporating different weights
of the edges of the Mind Maps. As mentioned previously
we automatically generate a serious of questions in order to
obtain the impact and likelihoods that are specific to a use
case. Hence, computing a set of high-quality plans for dif-
ferent use cases results in different set of plans, which in
turn results in different scenarios; (3) The domain experts
found themselves continuously updating the Mind Maps af-
ter interacting with the tool and we had to enable those con-
tinuous updates. In addition to building the automated tech-

nique of translating the Mind Maps to planning language,
we assigned unique identifiers to each of the concepts in the
Mind Maps. This allowed us to develop scripts for super-
vised detection and propagation of the associated knowledge
throughout theses changes.

9 Related Work and Summary
There exist a body of work on the plan recognition prob-
lem with several different approaches (e.g., (Zhuo et al.
2012)). However, most approaches assume that the obser-
vations are perfect, mainly because they do not take as in-
put the raw data and that they do not have to analyze and
transform the raw data into observations (Sukthankar et al.
2014). Also, most plan recognition approaches assume plan
libraries are given as input, whereas we use AI planning
(Goldman et al. 1999). Furthermore, there is a body of
work on learning the domain knowledge (Yang et al. 2007;
Zhuo et al. 2013). Our focus in addressing knowledge engi-
neering challenges was to transform one form of knowledge,
expressed in Mind Maps, into another form that is accessible
by planners. Learning can be beneficial in domains in which
plan traces are available.

In this paper, we applied AI planning techniques for a
novel application, scenario planning for enterprise risk man-
agement and addressed knowledge engineering challenges
of encoding the domain knowledge from domain experts. To
this end, we designed Scenario Planning Adviser (SPA), that
takes as input the raw data, news and social media posts, and
interacts with the business user to obtain key observations.
SPA also allows upload of Mind Maps, as one way of ex-
pressing the domain knowledge by the domain experts, and
obtains additional information based on these Mind Maps
by an automatically generated questionnaire. SPA then auto-
matically generates scenarios by first generating large num-
ber of plans and then clustering the generated plans into a
small set (i.e., 3-6) in order to be consumable by a human
user. The SPA system is in pilot deployment with several
teams of business users. The feedback we have received so
far have been positive and show that our approach seems
promising for this application.
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