On Planning with Preferences in HTN*

Shirin Sohrabi and Sheila A. Mcllraith
Department of Computer Science
University of Toronto
Toronto, Canada.
{shirin,sheild @cs.toronto.edu

Abstract

In this paper, we address the problem of generating preferred
plans by combining the procedural control knowledge speci-
fied by Hierarchical Task Networks (HTNs) with rich qualita-
tive user preferences. The outcome of our work is a language
for specifying user preferences, tailored to HTN planning,
together with a provably optimal preference-based planner,
HTNPLAN, that is implemented as an extensionsefopP2.

To compute preferred plans, we propose an approach based
on forward-chaining heuristic search. Our heuristic uses
an admissible evaluation function measuring the satisfaction
of preferences over partial plans. Our empirical evaluation
demonstrates the effectiveness of ®iNPLAN heuristics.

We prove our approach sound and optimal with respect to the
plans it generates by appealing to a situation calculus seman-
tics of our preference language and of HTN planning. While
our implementation builds osHoP2, the language and tech-
niques proposed here are relevant to a broad range of HTN
planners.

1 Introduction

Hierarchical Task Network (HTN) planning is a popular
and widely used planning paradigm, and many domain-
independent HTN planners exist (e.g-HOP2, SIPE-2, |-X/I-
PLAN, O-PLAN) (Ghallab, Nau, and Traverso 2004). InHTN
planning, the planner is provided with a set of tasks to be
performed, possibly together with constraints on thodestas

A plan is then formulated by repeatedly decomposing tasks
into smaller and smaller subtasks until primitive, exeblga

arbitrarily complex, often involving combinations of cand
tional, interacting, and mutually exclusive preferendest t
can range over multiple states of a plan. This makes finding
an optimal plan hard. There are two aspects to addressing
the problem of preference-based planning with HTNs. The
first is to propose a preference specification languageghat i
tailored to HTN planning. The second, is to generate pre-
ferred, and ideally optimal, plans efficiently.

To specify user preferences, we augment a rich quali-
tative preference languagé,PP, proposed in (Bienvenu,
Fritz, and Mcllraith 2006) with HTN-specific constructs.
LPP specifies preferences in a variant of linear temporal
logic (LTL). Among the HTN-specific properties that we
add to our languagefPH, is the ability to express pref-
erences over how tasks in our HTN are decomposed into
subtasks, preferences over the parameterizations of decom
posed tasks, and a variety of temporal and nhontemporal pref-
erences over the task networks themselves.

To compute preferred plans, we propose an approach
based on forward-chaining heuristic search. Key to our ap-
proach is a means of evaluating the (partial) satisfactfon o
preferences during HTN plan generation based on progres-
sion. The optimistic evaluation of preferences yields an ad
missible evaluation function which we use to guide search.
We implemented our planne#TNPLAN , as an extension to
thesHopP2 HTN planner. Our empirical evaluation demon-
strates the effectiveness BffNPLAN heuristics in finding
high-quality plans. We provide a semantics for our prefer-

tasks are reached. A primary reason behind HTN’s success ence language in the situation calculus (Reiter 2001) and ap

is that its task networks capture useful procedural control
knowledge—advice on how to perform a task—described in
terms of a decomposition of subtasks. Such control knowl-

edge can significantly reduce the search space for a plan

while also ensuring that plans follow one of the stipulated
courses of action. However, while HTNs specify a family
of satisfactory plans, they are, for the most part, unable to
distinguish high-quality plans.

In this paper, we address the problem of generating pre-
ferred plans by augmenting HTN planning problems with

rich qualitative user preferences. User preferences can be

*A shorter version of this paper appears in the Proceedings of
the Fourth Multidisciplinary Workshop on Advances in Preference
Handling (MPref 2008).

peal to this semantics to prove the soundness and optimality
of our planner with respect to the plans it generates.

In Section 2, we review HTN planning, situation calculus,
Golog, ConGolog, and provide an encoding of a preference-
based HTN planning problem. In Section 3, we provide
the syntax and the semantics for our preference language.
In Section 4, we turn our attention to computing preferred
plans describing how we evaluate the satisfaction of prefer
ences over partial plans using progression. In Section 5, we
describe the implementation of our HTN preference-based
planner,HTNPLAN that is built on top ofSHOP2, and pro-
vide empirical results that establish the effectivenessunf
evaluation function in guiding search. We conclude with a
summary and discussion of related work.

2 HTN Planning

In this section, we provide a brief overview of both HTN
planning, following (Ghallab, Nau, and Traverso 2004), and
our situation calculus encoding of preference-based HTN
planning.

Travel Example: Consider a simple HTN planning prob-

used to decompose tlask arrange-transnto thesubtasks
of booking a flight and paying, with the constraieb(str)
that the booking precede payment.

Definition 3 (Solution to HTN Planning Problem)
Given HTN planning problen? = (so,w, D), a plan
m = (01, ...,0) is @ solution forP, depending on these two

lem to address the task of arranging travel. This task can cases: 1) if w is primitive, then there must exist a ground
be decomposed into arranging transportation, accommoda- instance U’, C’) of (U, C) and a total orderingu, ..., ug)

tions, and local transportation. Each of these tasks can aga

of the nodes irUV’ such that for alll < ¢ < k, nameg;)

be decomposed based on alternative modes of transportation= t,,, the planr is executable in the statg, and all the

and accommodations, reducing eventually to primitive ac-

tions that can be executed in the world. Further constraints

can be imposed to restrict decompositions.

Definition 1 (HTN Planning Problem) An HTN planning
problem is a 3-tuplé® = (s, w, D) wheres, is the initial
state,w is a task network called the initial task network, and
D is the HTN planning domair? is a total-order planning
problem if w andD are totally ordered; otherwise it is said
to be partially ordered.

A taskconsists of a task symbol and a list of arguments.
A task is primitive if its task symbol is an operator name and
its parameters match, otherwise itrisnprimitive In our
example,arrange-transand arrange-accare nonprimitive
tasks, whilebook-flightandbook-carare primitive tasks.

Definition 2 (Task Network) A task network is a pair
w=(U, C) where U is a set of task nodes and C is a set of
constraints. Each task nodeaiU contains a task,,. If all

of the tasks are ground then w is ground; If all of the tasks
are primitive, then w is called primitive; otherwise is el
nonprimitive. Task networlo is totally ordered ifC' defines

a total ordering of the nodes in U.

In our example, we could have a task netwdtk C)
whereU = {uy,us}, u; =book-car andus= pay, andC is
a precedence constraint such thatmust occur before:,
and a before-constraint such that at least one car is alailab
for rent beforeu, .

A domain is a pairD = (O, M) whereO is a set of op-
erators and\/ is a set of methods. Operators are essentially
primitive actions that can be executed in the world. They
are described by a triple =(hame(0), pre(o), eff(o)xorre-
sponding to the operator's name, preconditions and effects
Preconditions are restricted to a set of literals, and tffec
are described as STRIPS-like Add and Delete lists. An op-
eratoro can accomplish a ground primitive task in a state
if their names match andlis applicable ins. In our exam-
ple, ignoring the parameters, operators might inclyakey,
book-train, book-car, book-hotedndbook-flight

A method,m, is a 4-tuple fame(m), task(m),subtasks(m),
constr(m))corresponding to the method’s name, a nonprim-
itive task and the method’s task network, comprising sub-
tasks and constraints. A methoddally orderedif its task
network istotally ordered A domain is a total-order domain
if everym € M istotally ordered Methodm is relevant for
a taske if there is a substitutiom such thatr(t) =taskm).
Several different methods can be relevant to a particular no
primitive taskt¢, leading to different decompositions ©fin
our example, the method withame by-flight-trangan be

constraints hold, 2) if w is nonprimitive, then there must
exist a sequence of task decompositions that can be applied
to w to produce a primitive task netwotk/, wherer is a
solution forw'.

Finally, we define the HTN preference-based planning
problem. This definition appeals to two concepts that are
not yet well-defined and which we defer to later sections:
definitions of the form and content of the the formdig,,,
that captures user preferences for HTN planning as well as
and the precise definition ofiore preferredappears in Sec-
tion 3.

Definition 4 (Preference-based HTN Planning)An HTN
planning problem with user preferences is described as a
4-tupleP = (sg,w, D, P,) Wheredy,, is a formula de-
scribing user preferences. A planis a solution toP if and
only if: 7 is a plan forP’ = (s, w, D) and there does not
exists a plant’ such thatr’ is more preferred tham with
respect to the preference formuig,;,, .

2.1 Situation Calculus Specification of HTN

We now have a definition of preference-based HTN plan-
ning. Later in the paper, we propose an approach to comput-
ing preferred plans, together with a description of our im-
plementation. To prove the correctness and optimality of ou
algorithm, we appeal to an existing situation calculus dnco
ing of HTN planning, which we augment and extend to pro-
vide an encoding of preference-based HTN planning. Since
the situation calculus has a well-defined semantics, we have
a semantics for our encoding which we use in our proofs. In
this section, we review the salient features of this enapdin

The Situation Calculusis a logical language for speci-
fying and reasoning about dynamical systems (Reiter 2001).
In the situation calculus, thetateof the world is expressed
in terms of functions and relations (fluents) relativizedito
particularsituations, e.g.,F(Z, s). A situations is ahistory
of the primitive actionsa € A, performed from a distin-
guished initial situationS,. The functiondo(a, s) maps a
situation and an action into a new situation thus inducing a
tree of situations rooted if,. A basic action theoryn the
situation calculugD includesdomain independent founda-
tional axioms anddomain dependent axiomA situations’
precedes a situation i.e., s’ C s, means that the sequence
s’ is a proper prefix of sequenee

Golog (Reiter 2001) is a high-level logic programming
language for the specification and execution of complex ac-
tions in dynamical domains. It builds on top of the situation

calculus by providing Algol-inspired extralogical consgtts
for assembling primitive situation calculus actions intore
plex actions rogramg 6. Example complex actions in-
clude action sequences, if-then-else, while loops, nandet

d,., and Do(6, So,do(a@, So)) denotes that the ConGolog
programsg, starting execution irs, will legally terminate
in situation do(@, So). Removing all thestart(P (%)) and

end(P(%)) actions froma to obtainb = (by, ..., b,), a pre-

ministic choice of actions and action arguments, and pro- ferred plan for the original HTN planning proble® is a
cedures. These complex actions serve as constraints upoplans = (o4, ..., 0,,) Where for alll < i < n, nameg;)= b;.

the situation tree. ConGolog (De Giacomo, Lessmce, and

Levesque 2000) is the concurrent version of Golog in which
the language can additionally deal with execution of concur

rent processes, interrupts, prioritized concurrency, exxd
ogenous actions.

3 HTN Preference Specification

A number of researchers have pointed out the connection In this section, we describe how to specify the preference
between HTN and ConGolog. Following Gabaldon (Gabal- formula ®;;,. Our preference languag#,PH, modifies

don 2002), we map an HTN state to a situation calcsltis
uation Consequently, the initial HTN statg is encoded as
the initial situation,S,. The HTN domain description maps
to a corresponding situation calculus domain descripfign,
where for every operatar there is a corresponding primi-
tive actiona, such that the preconditions and the effects of
are axiomatized irD. Every method and nonprimitive task

together with constraints is encoded as a ConGolog proce-
dure. For the purposes of this paper, the set of procedures in

a ConGolog domain theory is referred to7as
We use a predicatbadSituatiofis) proposed by Reiter

(Reiter 2001) to encode the constraints in a task network.
The purpose of these constraints is to prune part of a search

space similar to using temporal constraints.

To deal with partially ordered task networks, we add

two new primitive actionstart(P(v)), end P(v)), and two
new fluentexecutingP (v), s) andterminated X, s), where
P(7) is a ConGolog procedure arXi is either P(%) or an
actiona € A. executingP(?v), s) states that?(v) is exe-
cuting in situations, terminatedX, s) states thafX’ has ter-
minated ins. executinga, s) wherea € A is defined to be

false. The successor state axioms for these fluents follow.

They show how the actiorstart(P(¥)), end P(v)) change
the truth value of these fluents:
executingP(7), do(a, s)) = a = start(P(7))V
executingP (v), s) A a # end P(?))
terminated(X,do(a,s)) = X = aV
(X € RAa=endX))VterminatedX, s)

whereR is the set of ConGolog procedures in our domain.

Definition 5 (Preference-based HTN in Situation Calculus)

and extends th&€ PP qualitative preference language pro-
posed in (Bienvenu, Fritz, and Mcllraith 2006) to capture
HTN-specific preferences.

Our LPH language has the ability to express preferences

over certain parameterization of a task (e.g., preferrimg o

task grounding to another), over a certain decomposition of

nonprimitive tasks (i.e., prefer to apply a certain method

over another), and a soft version of the before, after, and in

between constraints. A soft constraint is defined via a pref-

erence formula whose evaluation determines when a plan is

more preferredhan another. However, unlike the task net-
work constraints which will prune or eliminate those plans

that have not satisfied them, not meeting a soft constraint

simplify deems a plan to be of poorer quality.

Definition 6 (Basic Desire Formula (BDF)) A basic de-
sire formula is a sentence drawn from the smallest/5et
where:
1. If lis a literal, thenl € B andfinal(l) € B
2. Iftis a task, themcdt) € B
3. If m is a method, ané = name(m),
thenapply(n) € B
4. If t;, andt, are tasks, and is a literal, then
beforet;, t2), holdBeforg(ty, 1), holdAfter(ty, 1),
holdBetweeifts, I, t2) are in B.
5. If 1 andp, are in 3, then so are~1, p1 A pa,

©1V p2,(37)p1, (Vo)p1, next(p1), alwaygpr),
eventuallyp,), anduntil (o1, @2).

final(l) states that the literdlholds in the final stategcdt)

An HTN planning problem with user preferences described states that the tagloccurs in the present state, amekt(y1),

as a 4-tupleP = (sg,w, D, ®p1y,) is encoded in situation
calculus as a 5-tuplegD,C, A, §y, Ps.) where D is the
basic action theoryC is the set of ConGolog axionds,is

always(1), eventually(,p1), anduntil (o1, ¢2) are basic LTL
constructs.apply(n) states that a method whose nameis
is applied to decompose a nonprimitive taslefore(ts, ¢2)

the sequence of procedure declarations for all ConGolog states a precedence ordering between two taskedBe-

procedures inRk, Jy is an encoding of the initial task net-
work in ConGolog, andb,,. is a mapping of the preference
formula®y,,,, in situation calculus. A pla@ is a solution to

the encoded preference-based HTN problem if and only if:

D UC = (3s)Do(A;dg,S0,s) Ns = do(d,So)
A —badSituatiotis) A Bs’.[Do(A; 6o, So, s')
A —badSituatiolts’) A pref(s’, s, ®s.)]

wherepref(s’, s, ®,.) denotes that the situatiost is pre-

ferred to situation s with respect to the preference formula tives, we are able to express other properties of state. The

fore(t1,1), holdAfter (t1,1), holdBetweer(t:,,t.) State a soft
constraint over when the fluehis preferred to hold. (i.e.,
holdBefore(t1, 1) state thal must be true right before the last
operator descender of occurs). Combiningcdt) with
the rest ofCPH language enables the construction of pref-
erence statements over parameterizations of tasks.

BDFs establish properties of different states within a plan
By combining BDFs using boolean and temporal connec-

following are a few examples from our travel dontain Definition 8 (General Preference Formula (GPF))

A formula® is a GPF if one of the following holds:

(3c).ocd (book-cakc, Enterprise)) (P1) e disan APF
apply’ (by-car-local(SUV, Avig) (P2) e ®isy : ¥, whereyis a BDF andV is a GPF[Conditional]
before(arrange-transarrange-acg (P3) e ®isoneof ¥o& ¥, & ... & ¥, [General Conjunction]
holdBefore(hotel Reservation, arrange-trang (P4) orWo [Uy | .. ‘. ¥ [General Disjunction]

wheren > 1 and each¥; is a GPF.
always(—(ocd (pay(Mastercard)))) (P5)
(3h,7).0cd (book-hotelh, 7)) A starsGHr, 3) (P6) General conjunction (resp.general disjunction) refines th

ordering defined by, & U1 & ... & U, (resp. Uo|¥q]...|¥,)
by sorting indistinguishable states using the lexicogrgpi
ordering. Continuing our example:

(3c).ocd (book-flightc, EconomyDirect, WindowSea))

A membe¢c, StarAlliance (P7)

P1 states that at some point the user books a car with
Enterprise. P2 states that at some point, lijecar-local
method is applied to book an SUV from Avis. P3 states that
the arrange-transtask occurs before tharrange-acc task.

P4 states that the hotel is reserved before transportatam i
ranged. P5 states that the user never pays by Mastercard. P6
states that at some point the user books a hotel that has arat- P11 states that if inter-city transportation is being ar-
ing of 3 or more. P7 states that at some point the user books ranged then the user prefers to rent a car from Avis. P12
a direct economy window-seated flight with a Star Alliance states that if local transportation is being arranged tlee us
carrier. prefers Enterprise. P13 states that if the distance bettheen

To define a preference ordering over alternative properties origin and the destination is drivable then the user preters

occarrange-trang : (3c).ocd (book-cafc, Avis)) (P11)
ocqarrange-local-tran$: P1 (P12)
drivable : P10[0] > ocd (book-flighy[0.3] (P13)
P4& P6& P7& P8& P9& P10& P12& P13 (P14)

of states Atomic Preference Formula@PFs) are defined.
Each alternative comprises two components: the property
of the state, specified by a BDF, andvalue term which
stipulates the relative strength of the preference.

Definition 7 (Atomic Preference Formula (APF))

Let V be a totally ordered set with minimal elemeny;,,
and maximal element,, ... An atomic preference formula
is a formulayg[vg] > 1[vi] > ... > vn[v,], where each
v; is a BDF, eachv; € V, v; < v; fori < j, andvy =
Umin- Whenn = 0, atomic preference formulae correspond
to BDFs.

While one could let = [0, 1], you could choose a strictly
qualitative set like{best < good < indifferent < bad <
worst} to express preferences over alternatives.

Now here are a few APF examples from the travel domain.

P2[0] > apply’(by-car-local(SUV, Nationa)f0.3] (P8)
apply’ (by-car-trang[0] > apply’ (by-flight)[0.4] (P9)
ocd (book-train[0] > ocd (book-cap[0.4] (P10)

P8 states that the user prefers thatipear-localmethod
rents an SUV and that the rental car company Avis is pre-
ferred toNational P9 states that the user prefers to de-
compose tharrange-transtask by the methotly-car-trans
rather than thdy-flight method. Note that the task is im-
plicit in the definition of the method. P10 states that the use
prefers travelling by train over renting a car.

To allow the user to specify more complex preferences

book a train over booking a car over booking a flight. P14
aggregates preferences into one formula.

Again, and only for the purpose of proving properties, we
provide an encoding of the HTN-specific termsgPH in
the situation calculus. As such, for any preference formula
d,,,, there is a corresponding formulkd,. where every
HTN-specific term is replaced as follows: each literad
mapped to a fluent or non-fluent relation in the situation cal-
culus, as appropriate; each primitive task mapped to an
actiona € A; and each nonprimitive tagkand each method
m is mapped to a proceduf®(v) € R in ConGolog.

3.1 The Semantics

The semantics ofLPH is achieved through assigning a
weight to a situations with respect to a GPFp, written
ws(P). This weight is a composition of its constituents. For
BDFs, a situatiors is assigned the valusg,,;,, if the BDF is
satisfied ins, v,,4.. Otherwise. Similarly, given an APF, and
a situations, s is assigned the weight of the best BDF that it
satisfies within the defined APF. Finally GPF semantics fol-
low the natural semantics of boolean connectives. As such
General Conjunction yields the minimum of its constituent
GPF weights and General Disjunction yields the maximum.

Similar to (Gabaldon 2004) and followingPP, we use
the notationp[s’, s] to denote that holds in the sequence
of situations starting from’ and terminating irs. Next, we
will show how to interpret BDFs in the situation calculus.

If fis a fluent, we will writef[s’,s] = f[s'] since flu-

and to aggregate preferences, General Preference Formulaénts are represented in situation-suppressed form: isf

(GPFs) extend the language to conditional, conjunctive, an
disjunctive preferences.

To simplify the examples many parameters have been sup-
pressed, and we abbreviagentually(ocd)) by ocd, eventu-
ally (apply(e)) by apply’ and refer to preferences by their labels.

a non-fluent, we will have'[s’,s] = r sincer is already
a situation calculus formula. Furthermore, we will write
final(f)[s’,s] = f[s] sincefinal(f) means that the fluent
f must hold in the final situation.

The BDFocd X) states the occurrence &f which can
be either an action or a procedure. written as:

;1 [do(X,s")Cs ifX € A
OCqX)[Svs]_{ do(start(X),s')C s ifX € R

The BDFapply(P (%)) will be interpreted as follows:
apply(P(%))[s', s] = do(start(P(7)),s') C s

4 Computing Preferred Plan

To compute a preferred plan, we proposed a heuristic-
search, forwarding-chaining planner that searchs for the
most preferrederminating state that satisfies the HTN plan-

Boolean connectives and quantifiers are already part of the Ning problem. The search is guided by an admissible eval-

situation calculus and require no further explanation here
The LTL constructs are interpreted in the same way as in

uation function that evaluates partial plans with respect t
preference satisfaction. We upmgressionto evaluate the

(Gabaldon 2004). We interpret the rest of the connectives as Preference formula satisfaction over partial plans.

follows 2.
before(X1, X2)[s',s] = (Is1,82 : 8 Cs1 Es2 C s)
{terminated X)[s1] A —executingX2)[s1]
A —terminated X)[s1] A ocd X2)[s2, s]}
holdBefore(X, f)[s’,s] = (Is1 : ' C s1 C)
{fls1] A 0cd(X)[s1, 5]}
holdAfter (X, f)[s’,s] = (3s1: s’ Cs1 C s)
{terminated(X)[s1] A f[s1]}
holdBetweer(X1, f, X2)[s', s] =
(351,82 : ' E 51 Es2 C)
{terminated X)[s1] A —executingX>)[s1]
A —terminatedXs)[s1] A ocd X2)[s2, s]}
A (Vs i s1 C si C s2) f[si]
From here, the semantics follows that&PP.

Definition 9 (Basic Desire Satisfaction)Let D be an ac-
tion theory, and let’ and s be situations such that C s.
The situations beginning isf and terminating ins satisfyy
just in the case thab E ¢[s', s]. We definev, s(p) to be
the weight of the situations originating ¥t and ending in
swrt BDF ¢. wy s(¢) = v if ¢ is satisfied, otherwise
ws’,s(@) = Umazx-

Note that for readability we are going to drepfrom the
index, i.e.ws(¢) = wy s(¢) in the special case af = 5.

Definition 10 (Atomic Preference Satisfaction)Lets be a
situation and® = @ofvg] > p1[v1] > ... > @, [v,] be
an atomic preference formula. Then (®) = v; if i
min ;{D = ¢;[So,s]}, and ws(P) = vy if NO suchi
exists.

Definition 11 (General Preference Satisfaction)Let s be
a situation and® be a general preference formula. Then
ws(P) is defined as follows:

o ws(po > p1 > ... > ¢,) is defined above

. _ Umin if ws ('Y) = Umazx
o ws(v:W) =9 (W) otherwise
e ws(Vo& VUi &...& U,) = max{ws(¥;) : 1 <i<n}
o wy(Wo | Wy | ... | Up) =min{ws(¥;):1<i<n}

The following definition dictates how to compare two sit-
uations (and thus two plans) with respect to a GPF. This
preference relatiopref is used to compare HTN plans in
Definition 5 and provides the semantics fapre preferred
in Definition 4.

Definition 12 (Preferred Situations) A situation s; is at
least as preferred as a situationy with respect to a GPF
®, writtenpref(s1, s2, @) if ws, (P) < ws, (P).

2\We use the following abbreviations:
(3s1:5 Cs1 C8)®=(Is1){s' Cs1As1 CsAD}
(Vs1:8" Cs1 Cs)® = (Vs1){[s' Cs1 As1 Cs]CP}

4.1 Progression

Given a situation and a temporal formula, progression eval-
uates it with respect to the state of a situation to generate a
new formula representing those aspects of the formula that
remain to be satisfied. In this section, we define the progres-
sion of the constructs we added/modified fra@i®P and
show that progression preserves the semantics of preferenc
formulae. To define the progression, similar to (Bienvenu,
Fritz, and Mcllraith 2006) we add the propositional con-
stantsTRUE andFALSE to both the situation calculus and to
our set of BDFs, wher® F TRUE andD ¥ FALSE for ev-

ery action theoryD. We also add the BDBccNex(X), and
applyNext(P(%)) to capture the progression otg X) and
apply(P(%)). Below we show the progression of the added
constructs.

Definition 13 (Progression) Let s be a situation, and lep
be a BDF. The progression gfthroughs, written p,(¢), is
given by:
e If p=0cqX) then

ps(p) = occNextX) Aeventuallyterminated(X))
o If ¢ = occNext{X) , then

TRUE if X e AAND E 3s'.s =do(X,s')
TRUE if X € RAD E3s'.s = do(start(X), s")
FALSE otherwise

o If o = apply(P(?)), then
ps(p) = applyNext P(7)) Aneventuallyterminated(P(V)))
o If o = applyNext P(?)) , then
| TRUE if D | 3s’.s = do(start(P(v)), s")
ps(p) = FALSE otherwise
o If o = beforg X1, X32), holdBeforg X, f), holdAfter(X, f),
or holdBetweeli X+, f, X2), then

ps(p) = { FALSE otherwise

To see how the other constructs are progressed please re-
fer to (Bienvenu, Fritz, and Mcllraith 2006).

4.2 Admissible Evaluation Function

In this section, we describe an admissible evaluation func-
tion using the notion obptimistic and pessimistioveights
that provide a bound on the best and worst weights of any
successor situation with respect to a GBF Optimistic
(resp. pessimistic) weights,2?*(®) (resp. w?e**(®)) are
defined based on optimistic (resp. pessimistic) satisfacti
of BDFs. Optimistic satisfactiong(s’, s]°?*) assumes that
any parts of the BDF not yet falsified will eventually be
satisfied. Pessimistic satisfactiop[{’, s]P¢**) assumes the
opposite. The following definitions highlight the key diffe
ences between this work and the definitions in (Bienvenu,
Fritz, and Mcllraith 2006).

/ qopt def | do(X, ')Es\/s':s ifX e A
ocqX)[s', s = { do(start(X) ""CEsvs =sifX e€R

/ qpess det | do(X,s')C s ifX e A
ocdX)[s', 5] - { do(start(X),s') Cs if X € R

def

apply(P(v))[s', s]°?* = do(start(P(7)),s') EsVs =s

apply(P(#))[s', 5] ' do(start(P()),s') C

If ¢ = before(X,, X2), holdBefore(X, f), oIdAfter (X, f)
hoIdBetweer(Xl,f, X2), then

ess dcf
pls', 8] pls', s

= wy ,s(p)
Theorem 1 Let s, = do([a1, ..., axn],S0),n > 0 be a col-
lection of situationsy,y be a BDF,® a general preference
formula, andw?*(®), wP***(®) be the optimistic and pes-
simistic weights of® with respect tos. Then for any
0<i<j<k<n,
1.D | ¢[s:i]P°** = D |= ¢ls;], D B ¢[si] " = D = ¢[s;],
2. (wel'(®) = wEE (@) = wy, (B) = W' (@) = whi** (@),
3wl (®) < wl(®) < wey (), wl* (@) = WD) = wsy ()

opt

Theorem 1 states that the optimistic weight is non-

HTNPLAN (so, W, D, pref)
frontier < INIT FRONTIER (s, W, pref)
while frontier £
current«— REMOVE FIRST(frontier)
% establishes values of, partialP, s, progPref
if w= 0 andoptW=pessWhenreturn partialP, optw
neighbours— ExPAND(w, D, partialP, s, progPref)
frontier — sSORTNMERGE (neighboursfrontier)
return [], co

Figure 1: A sketch of theiTNPLAN algorithm.

HTNPLAN is an implementation ac§HopP2 with user prefer-
ences. For each primitive task leading to terminating state
EXPAND generates a node of the same form but vaipt\W
and pessWreplaced by the actual weight. If we reach the
empty frontier, we return the empty plan.

Theorem 2 (Soundness and Optimality)
LetP=(sg,w, D, ®) be a HTN planning problem with user
preferences. Let be the plan returned b TNPLAN from

decreasing and never over-estimates the real weight. Thus,inputP. Thenr is a solution to the preference based HTN
fo is admissible and when used in best-first search, the problemP

search is optimal.

Definition 14 (Evaluation function) Lets = do(d, Sy) be

a situation and letb be a general preference formula. Then

Fo(s) L w, (D) if @is a plan, otherwisgp (s) % wort (D).

5 Implementation and Results

In this section, we describe our best-first search, ordered-

task-decomposition planner. Figure 1 outlines the allyorit
HTNPLAN takes as inpuP = (so,w, D, pref) wheresg is
the initial state,w the initial task network,D is the HTN
planning domain, angref the general preference formula,

Proof sketchWe prove that the algorithm terminates appeal-
ing to the fact that the PFD procedure is sound and complete.
We prove that the returned plan is optimal, by exploiting the
correctness of progression of preference formula, and ad-
missibility of our evaluation function.

5.1 Experiments

We implemented our preference-based HTN planaex -
PLAN, on top of the LISP implementation gfHop2 (Nau

et al. 2003). All experiments were run on a Pentium 4 HT,
3GHZ CPU, and 1 GB RAM, with a time limit of 1800 sec-
onds (30 min). Since the optimality effNPLAN -generated

and returns a sequence of ground primitive operators, i.e. a plans was established in Theorem 2, our objective was to

plan, and the weight of that plan.

The frontier is a list of nodes of the fornfoptW, pessw
w, partialP, s, pref], sorted by optimistic weight, pessimistic
weight, and then by plan length. The frontier is initialized
the initial task networko, the empty partial plan, itsptw,
pessWandpref corresponding to the progression and evalua-
tion of the input preference formula in the initial state.

On each iteration of thevhile loop, HTNPLAN removes
the first node from the frontier and places itdarrent |If
w is empty (i.e.U is an empty set), the situation associated
with this node is a terminating situation. ThemNPLAN re-
turnscurrents partial plan and weight. Otherwise, it calls
the functionEXPAND with current’snode as input.

EXPAND returns a new list of nodes that need to be added
to the frontier. The new nodes are sorteddppw, pessw
and merged with the remainder of the frontier. wfis
nil then the frontier is left as is. Otherwise, it generates a
new set of nodes of the forifoptW, pessW newW newPar-
tialP, newS newProgPref, one for each legal ground operator
that can be reached by performingusing a partial-order
forward decomposition procedure (PFD) (Ghallab, Nau, and
Traverso 2004). CurrentigTNPLAN usesSHOP2 (Nau et
al. 2003) as its PFD. Hence, the current implementation of

evaluate the effectiveness of our heuristics in guidingcfea
towards the optimal plan, and to establish benchmarks for
future study, since none currently exist.

We testedHTNPLAN with ZenoTravel and Logistics do-
mains, which were adapted from the International Planning
Competition (IPC). The ZenoTravel domain involves trans-
porting people on aircrafts that can fly at two alternative
speeds between locations. In the numeric variant the planes
consume fuel at different rates according to the speed of
travel, and distances between locations vary. The simple-
time variant combines the speed of travel with the assatiate
costs. We used both. The Logistics domain involves trans-
porting packages to different destinations using trucks fo
delivery within cities and planes for between cities. Some
of the preferences we used in the evaluations are as follows:
we prefer that the high priority packages be delivered first,
we prefer to use trucks with lower gas consumptions, and we
prefer certain truck routes to another. The problems become
harder as the number of objects and/or number of tasks in
the domain increases.

In order to evaluate the effectiveness ®fNPLAN it
would have been appealing to evaluate our planner with a
preference-based planner that also makes use of procedural

i‘ #'i'z""” 2'7'52 Tomef '\7'5 '\ég Tl'”l‘g 'Z; The results show that, in all but the first two cases of
: : the ZenoTravel domairgHOP2 required more time to find
2 155 1628 | 860 | 448 | 547 | 9.45 | 26 h imal ol q ded d | icul
3 530 534 T 1115 T 76 57 1T 105 T 23 the optimal plan, and expanded more nodes. In particular
2 530 | 2234 | 1110 || 361 | 213 | 467 | 23 note that in a number of problems, for example problems
5 285 6331 74.10 240 | 276 | 8.14 | 38 13 and 14sHoP2 ran out of time (1800 seconds) whilg -
6 487 6226 | 113.20 || 1084 | 1218 | 63.60 | 46 NPLAN found the optimal plan well within the time limit.
7 720 6724 | 50.46 || 211 | 250 | 463 | 31 Also note thatHTNPLAN expands far fewer nodes in com-
8 720 6724 | 50.90 || 699 | 808 | 13.63| 28 parison tosHOP2, illustrating the effectiveness of our eval-
9 851 9152 | 165.22 || 2689 | 3066 | 142.7 | 40 uation function in guiding search.
10 || 2069 | 23200 | 205.10 || 2290 | 2733 | 91.25| 34
11 || 2875 | 27022 | 369.20 || 609 | 704 | 17.20| 30
12 || 3956 | 35789 | 275.30| 304 | 361 | 5.10 | 22 , 6 Summary and Related Work)
13 | S8K | S104K | >1800 || 150 | 167 | 5.64 | 63 In this paper, we addressed the problem of generating pre-
14 || >13K | >143K | >1800 || 2153 | 2922 | 80.01 | 35 ferred plans by combining the procedural control knowl-
15 || >13K | >136K | >1800 || 1624 | 1910 | 36.02 | 29 edge of HTNs with rich qualitative user preferences. The
16 || >31K | >293K | >1800 || 1510 | 1848 | 24.80 | 21 most significant contributions of this paper includ&PH,
(a) ZenoTravel domain a rich HTN-tailored preference specification language, de-
veloped as an extension of a previously existing language;
; - SF,\"%PZ - < HT'\,LPC'-AN - - an approach to (preference-based) HTN planning based on
an Ime Ime forward-chaining heuristic search, that exploits progias
1 80 1297 | 1.27 73 93 | 0.64 | 14 ; ; . .
to evaluate the satisfaction of preferences during plapnin
2 90 540 0.28 19 24 | 020 | 12 . ; ;
3 808 | 2597 | Zo0 | 301 [204 | 222 | 18 a sound and optimal implementation of an ordered-task-
4 1024 | 10665 | 79.95 || 1626 | 1820 | 4956 | 42 decomposition preference-based HTN planner; and leverag-
5 1024 | 10665 | 79.95 98 | 115 | 2.30 | 42 ing previous research, an encoding of HTN planning with
6 1260 | 6320 4.66 130 | 172 | 1.04 | 14 preferences in the situation calculus, that enabled usteepr
7 2178 | 15104 | 17.20 27 32 [022 | 20 our theoretical results. While the implementation we presen
8 2520 | 14728 | 12.47 || 29 40 | 033 | 16 here exploitssHOP2, the language and techniques proposed
9 || 21776 | 114548 | 119.1 || 866 | 1163 | 944 | 15 are relevant to a broad range of HTN planners.
12 >§SE >§gg§ >iggg 1325 ;ﬁ; 5% 1?1 In previous work, we addressed the problem of integrat-
> > > : ing user preferences into Web service composition (Sohrabi
12 || >30K | >118K | >1800 || 1417 | 1925 | 21.07 | 20 Prokosh d Mellraith 2006). To that end devel
13 || 42K | >368K | >1800 || 2398 | 2068 | 82.62 | 42 rokoshyna, and Mcllraith 2006). To that end, we devel-
14 || >B4K | >407K | >1800 | 858 | 1088 | 19.26 | 33 oped a Golog-based composition engine that also exploits
15 | >65K | 428K | 1800 || 37 28 | 046 | 24 heuristic search. It similarly uses an optimistic heutisti
16 || >67K | >376K | >1800 || 451 | 618 | 5.14 | 22 The language used in that work wd® 7P and had no Web-
(b) Logistic domain service or Golog-specific extensions for complex actions.

This paper’s HTN-tailored language and HTN-based plan-

Figure 2:Our criteria for comparisons are number of Nodes Ex- N€r are significantly different. .
panded (NE), number of applied operators; number of Nodes Con- _Preference-based planning has been the subject of much

sidered (NC), the number of nodes that were added to the frontier, INterestin the last few years, spurred on by an Internationa

and time measured in seconds. Note NC is equal to NEHa@P2. Planning Competition (IPC) track on this subject. A num-

PL is the Plan Length and # Plan is the total number of plans. ber of planners were developed, all based on the the com-
petition’s PDDL3 language (Gerevini and Long 2005). Our

work is distinguished in that it exploitsrocedural(action-

.) centric) domain control knowledge in the form of an HTN,

control knowledge. But since no comparable planner exists, and action-centric and state-centric preferences in tim fo

and it would not have been fair to compareNPLAN with of LPH. In contrast, the preferences and domain control
a preference-based planner that does not use control knowl-jn pppL3 and its variants are strictly state-centric. Ferth
edge, we comparedTNPLAN with SHOP2, using a brute- ~py js qualitativewhereas PDDL3 is quantitative, appeal-

force technique fosHOP2 to determine the optimal plan. In jng to a numeric objective function. We contend that qualita
particular, as is often done with Markov Decision Processes tjye, action- or task-centric preferences are often more-co
sHop2 generated all plans that satisfied the HTN specifica- pelling and easier to elicit that their PDDL3 counterparts.
tion and then evaluated each to find the optimal plan. Note * \hjle no other HTN planner can perform true preference-
that the times reported faHOP2 do not actually include based planning,sHoP2 (Nau et al. 2003) andEN-
the time for posthoc preference evaluation, so they arerlowe oy rer (Kuter et al. 2004) handle some simple user con-
bounds on the time to compute the optimal plan. straints. In particular the order of methods and sorted pre-
Figure 2 reports our experimental results for ZenoTravel conditions in a domain description specifies a user prefer-
and the Logistics domain. The problems varied in prefer- ence over which method is more preferred to decompose a
ence difficulty and are shown in the order of difficulty with task. Hence users may write different versions of a domain
respect to number of possible plans (# Plan) that satisfy the description to specify simple preferences. However, @nlik

HTNPLAN the user constraints are treated as hard constraints
and (partial) plans that do not meet these constraints will
be pruned from the search space. Further, there is no way
to handle temporally extended hard or soft constraints in
SHOP2. We used progression in our approach to planning
precisely to deal with these interesting preferences. Were
limiting the expressive power of preferencesstaor2-like
method ordering, we would have created a different planner.
InterestinglysHoP2 method ordering can still be exploited

in our approach, but requires a mechanism that is beyond the
scope of this paper.

Finally, the ASPEN planner (Rabideau, Engelhardt, and
Chien 2000) performs a simple form of preference-based
planning, focused mainly on preferences over resources
and with far less expressivity than our preference language
Moreover, unlike our planner ASPEN will not perform well
on problems where preferences are interacting, nested, and
not local to any specific activity. NeverthelegsPEN has
the ability to plan with HTN-like task decomposition, and as
such, this work is related in spirit, though not in approazh t
our work.

Acknowledgements: We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Ontario Ministry of Re-
search and Innovation Early Researcher Award.

References

Bienvenu, M.; Fritz, C.; and Mcllraith, S. A. 2006. Plan-
ning with qualitative temporal preferences.Rroceedings

of the 10th International Conference on Knowledge Repre-
sentation and Reasoning (KR)34-144.

De Giacomo, G.; Leggrance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculugrtificial Intelligencel21(1-2):109—
169.

Gabaldon, A. 2002. Programming hierarchical task net-
works in the situation calculus. IAIPS’02 Workshop on
On-line Planning and Scheduling

Gabaldon, A. 2004. Precondition control and the progres-
sion algorithm. InProceedings of the 9th International
Conference on Knowledge Representation and Reasoning
(KR), 634-643. AAAI Press.

Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences for PDDL3. Technical Report 2005-08-07, Depart-
ment of Electronics for Automation, University of Brescia,
Brescia, Italy.

Ghallab, M.; Nau, D.; and Traverso, P. 20@4ierarchical
Task Network Planning. Automated Planning: Theory and
Practice Morgan Kaufmann.

Kuter, U.; Sirin, E.; Nau, D. S.; Parsia, B.; and Hendler,
J. A. 2004. Information gathering during planning for web
service composition. IfProceedings of the 3rd Interna-
tional Semantic Web Conference (ISW&35-349.

Nau, D. S.; Au, T.-C.; llghami, O.; Kuter, U.; Murdock,
J.W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Research
20:379-404.

Rabideau, G.; Engelhardt, B.; and Chien, S. A. 2000.
Using generic preferences to incrementally improve plan
quality. InProceedings of the 5th International Conference
on Atrtificial Intelligence Planning and Scheduling (AIRS)
236-245.

Reiter, R. 2001.Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems
Cambridge, MA: MIT Press.

Sohrabi, S.; Prokoshyna, N.; and Mcllraith, S. A. 2006.
Web service composition via generic procedures and cus-
tomizing user preferences. Rroceedings of the 5th Inter-
national Semantic Web Conference (ISWE9)7—-611.

