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Abstract. We investigate the possibility of improving the efficiency of reasoning
through structure-based partitioning of logical theories, combined with partition-
based logical reasoning strategies. To this end, we provide algorithms for reason-
ing with partitions of axioms in first-order and propositional logic. We analyze
the computational benefit of our algorithms and detect those parameters of a par-
titioning that influence the efficiency of computation. These parameters are the
number of symbols shared by a pair of partitions, the size of each partition, and
the topology of the partitioning. Finally, we provide a greedy algorithm that au-
tomatically reformulates a given theory into partitions, exploiting the parameters
that influence the efficiency of computation.

1 Introduction

There is growing interest in building large knowledge bases (KBs) of everyday knowl-
edge about the world, teamed with theorem provers to perform inference. Three such
systems are Cycorp’s Cyc, and the High Performance Knowledge Base (HPKB) sys-
tems developed by Stanford’s Knowledge Systems Lab (KSL) [21] and by SRI (e.g.,
[13]). These KBs comprise tens/hundreds of thousands of logical axioms. One approach
to dealing with the size and complexity of these KBs is to structure the content in some
way, such as into multiple domain- or task-specific KBs, or into microtheories. In this
paper, we investigate how to reason effectively with partitioned sets of logical axioms
that have overlap in content, and that may even have different reasoning engines. Fur-
thermore, we investigate the problem of how to exploit structure inherent in a set of
logical axioms to induce a partitioning of the axioms that will improve the efficiency of
reasoning.

To this end, we propose partition-based logical reasoning algorithms, for reasoning
with logical theories1 that are decomposed into related partitions of axioms. Given a
partitioning of a logical theory, we use Craig’s interpolation theorem [16] to prove the
soundness and completeness of a forward message-passing algorithm and an algorithm
for propositional satisfiability. The algorithms are designed so that, without loss of gen-
erality, reasoning within a partition can be realized by an arbitrary consequence-finding
? Much of the material presented in this abstract appeared in [2].
1 In this paper, every set of axioms is a theory (and vice versa).



engine, in parallel with reasoning in other partitions. We investigate the impact of these
algorithms on resolution-based inference, and analyze the computational complexity
for our partition-based SAT.

A critical aspect of partition-based logical reasoning is the selection of a good par-
titioning of the theory. The computational analysis of our partition-based reasoning al-
gorithms provides a metric for identifying parameters of partitionings that influence the
computation of our algorithms: the bandwidth of communication between partitions,
the size of each partition, and the topology of the partitions graph. These parameters
guide us to propose a greedy algorithm for decomposing logical theories into partitions,
trying to optimize these parameters.

PSfrag replacements

(1) ¬ok pump ∨ ¬on pump ∨ water
(2) ¬man fill ∨ water
(3) ¬man fill ∨ ¬on pump
(4)man fill ∨ on pump

(5) ¬water∨¬ok boiler∨¬on boiler∨steam
(6)water ∨ ¬steam
(7) ok boiler ∨ ¬steam
(8) on boiler ∨ ¬steam

(9) ¬steam ∨ ¬coffee ∨ hot drink
(10) coffee ∨ teabag
(11) ¬steam ∨ ¬teabag ∨ hot drink

A A1

A2

A3

¬ok pump ∨ ¬on pump ∨ water
¬man fill ∨ water
¬man fill ∨ ¬on pump
man fill ∨ on pump
¬water ∨ ¬ok boiler ∨ ¬on boiler ∨ steam
water ∨ ¬steam
ok boiler ∨ ¬steam
on boiler ∨ ¬steam
¬steam ∨ ¬coffee ∨ hot drink
coffee ∨ teabag
¬steam ∨ ¬teabag ∨ hot drink

water

steam

Fig. 1. A partitioning of A and its intersection graph.

Surprisingly, there has been little work on the specific problem of exploiting struc-
ture in theorem proving in the manner we propose. This can largely be attributed to the
fact that theorem proving has traditionally examined mathematics domains, that do not
necessarily have structure that supports decomposition. Nevertheless, there are many
areas of related work, some of which we discuss at the end of this paper.

2 Partition-Based Theorem Proving

In this section we address the problem of how to reason with an already partitioned
propositional or first-order logic (FOL) theory. In particular, we propose a forward
message-passing algorithm, in the spirit of Pearl [34], and examine the effect of this
algorithm on resolution-based inference.



{Ai}i≤n is a partitioning of a logical theory A if A =
⋃
iAi. Each individual

Ai is called a partition, and L(Ai) is its signature (the non-logical symbols). Each
such partitioning defines a labeled graph G = (V,E, l), which we call the intersection
graph. In the intersection graph, each node i represents an individual partitionAi, (V =
{1, ..., n}), two nodes i, j are linked by an edge if L(Ai) and L(Aj) have a symbol in
common (E = {(i, j) | L(Ai) ∩ L(Aj) 6= ∅}), and the edges are labeled with the set
of symbols that the associated partitions share (l(i, j) = L(Ai) ∩ L(Aj)). We refer to
l(i, j) as the communication language between partitions Ai and Aj . We ensure that
the intersection graph is connected by adding a minimal number of edges to E with
empty labels, l(i, j) = ∅.

We illustrate the notion of a partitioning in terms of the simple propositional theory
A, depicted at the top of Figure 1. This set of axioms captures the functioning of aspects
of an expresso machine. The top four axioms denote that if the machine pump is OK
and the pump is on then the machine has a water supply. Alternately, the machine can
be filled manually, but it is never the case that the machine is manually filling while the
pump is on. The second four axioms denote that there is steam if and only if the boiler
is OK and is on, and there is a supply of water. Finally, there is always either coffee or
tea. Steam and coffee (or tea) result in a hot drink.

2.1 Forward Message Passing

In this section we propose a forward message-passing algorithm for reasoning with
partitions of first-order and propositional logical axioms. Figure 2 describes our forward
message-passing algorithm, FORWARD-M-P (MP) for finding the truth value of query
formula Q whose signature is in L(Ak), given partitioned theory A and graph G =
(V,E, l), possibly the intersection graph of A, but not always so.

PROCEDURE FORWARD-M-P({Ai}i≤n, G,Q)
{Ai}i≤n a partitioning of the theory A, G = (V,E, l) a graph describing the connections
between the partitions, Q a query formula in the language of L(Ak) (k ≤ n).

1. Let dist(i, j) (i, j ∈ V ) be the length of the shortest path between i, j in G. Let i ≺ j iff
dist(i, k) < dist(j, k) (≺ is a strict partial order).

2. Concurrently perform consequence finding for each of the partitions Ai, i ≤ n.
3. For every (i, j) ∈ E such that i ≺ j, if we proveAj |= ϕ and ϕ’s signature is inL(l(i, j)),

then add ϕ to the set of axioms of Ai.
4. If we proved Q in Ak, return YES.

Fig. 2. A forward message-passing algorithm.

This algorithm exploits consequence finding (step 2) to perform reasoning in the
individual partitions. Consequence finding was defined by Lee [27] to be the problem
of finding all the logical consequences of a theory or sentences that subsume them.

In MP, we can use any sound and complete consequence-finding algorithm. The
resolution rule is complete for consequence finding (e.g., [27, 41]) and a the same is



Using FORWARD-M-P to prove hot drink

Part. Resolve Generating
A1 (2) , (4) on pump ∨ water (m1)

A1 (m1), (1) ok pump ∨ water (m2)

A1 (m2), (12) water (m3)

clause water passed from A1 to A2

A2 (m3) , (5) ok boiler ∧ on boiler ⊃ steam (m4)

A2 (m4) , (13) ¬on boiler ∨ steam (m5)

A2 (m5) , (14) steam (m6)

clause steam passed from A2 toA3

A3 (9) , (10) ¬steam ∨ teabag ∨ hot drink (m7)

A3 (m7) , (11) ¬steam ∨ hot drink (m8)

A3 (m8) , (m6) hot drink (m9)

Fig. 3. A proof of hot drink from A in Figure 1 after asserting ok pump (12) in A1 and
ok boiler (13), on boiler (14) in A2.

true for several linear resolution variants (e.g., [31, 25]). Semantic resolution and set-
of-support resolution are complete for consequence finding, but only in a limited way
[42]. Such consequence finders are used for prime implicate generation in applications
such as diagnosis. Inoue [25] provides an algorithm for selectively generating conse-
quences or characteristic clauses in a given sub-vocabulary. We can exploit this algo-
rithm to focus consequence finding on axioms whose signature is in the communication
language of the partition. Figure 3 illustrates an execution of MP using resolution.

Given a partitioning whose intersection graph forms an undirected tree, our MP
algorithm is a sound and complete proof procedure. The completeness relies on Craig’s
Interpolation Theorem [16], as we prove in [2]. When the intersection graph is not a
tree, the cycles in the graph must first be broken and then MP applied. In [2] we present
an algorithm, BREAK-CYCLES that transforms the intersection graph into a tree by
removing edges from the graph and adding their labels to some of the edges that are
left. We then show that MP combined with BREAK-CYCLES is sound and complete.

Theorem 1 (Craig’s Interpolation Theorem [16]). If α ` β, then there is a formula
γ involving only symbols common to both α and β, such that α ` γ and γ ` β.

It is important to notice that although MP was illustrated with respect to an exam-
ple in propositional logic, it was designed primarily for first-order theorem proving.
The results above are valid for first-order theories as well as propositional ones. A pro-
cedure solely for propositional satisfiability is presented in Section 3. We discuss the
application and limitation of MP in the following section.



2.2 Resolution-Based Inference

We now analyze the effect of forward message-passing (MP) on the computational effi-
ciency of resolution-based inference, and identify some of the parameters of influence.
Current measures for comparing automated deduction strategies are insufficient for our
purposes. Proof length (e.g., [24]) is only marginally relevant. More relevant is compar-
ing the sizes of search spaces of different strategies (e.g., [35]). Both measures do not
precisely address our needs, but we use them here, leaving better comparison for future
work.

In a resolution search space, each node includes a set of clauses, and properties
relevant to the utilized resolution strategy (e.g., clause parenthood information). Each
arc is a resolution step allowed by the strategy. In contrast, in an MP resolution search
space the nodes also include partition membership information. Further, each arc is a
resolution step allowed by the utilized resolution strategy that satisfies either of: (1)
the two axioms are in the same partition, or (2) one of the axioms is in partition Aj ,
the second axiom is drawn from its communication language l(i, j), and the query-
based ordering allows the second axiom to be sent from Ai to Aj . Legal sequence of
resolutions correspond to paths in these spaces.

Proposition 1. Let A =
⋃
i≤nAi be a partitioned theory. Any path in the MP res-

olution search space of {Ai}i≤n is also a path in the resolution search space of the
unpartitioned theory A.

From the point of view of proof length, it follows that the longest proof without using
MP is as long or longer than the longest MP proof. Unfortunately, the shortest MP
proof may be longer than the shortest possible proof without MP. This observation can
be quantified most easily in the simple case of only two partitions A1,A2. The set of
messages that need to be sent from A1 to A2 to prove Q is exactly the interpolant γ
promised by Theorem 1 for α = A1, β = A2 ⇒ Q. The MP proof has to prove α ` γ
and γ ` β. Carbone [12] showed that, if γ is a minimal interpolant, then for many
important cases the proof length of α ` γ together with the proof length of γ ` β is in
O(k2) (for sequent calculus with cuts), where k is the length of the minimal proof of
α ` β .

In general, the size of γ itself may be large. In fact, in the propositional case it
is an open question whether or not the size of the smallest interpolant can be poly-
nomially bounded by the size of the two formulae α, β. A positive answer to this
question would imply an important consequence in complexity theory, namely that
NP ∩ coNP ⊆ P/poly [10]. Nevertheless, there is a good upper bound on the length
of the interpolation formula as a function of the length of the minimal proof [26] : If
α, β share l symbols, and the resolution proof of α ` β is of length k, then there is an
interpolant γ of lengthmin(klO(1), 2l).

The limits reported above are important for computational space considerations.
The facts above imply a limit on the space used in the propositional case of MP: It may
in general take exponential space, but only in as much as the underlying proof procedure
does. It does not add more than a polynomial amount of space on top of a resolution
theorem prover. A comparison between resolution theorem proving and a satisfiability
search procedure is reported in [20, 37].



To conclude, we can guarantee low amounts of computation and space, if we make
sure the communication language is minimal. Unfortunately, we do not always have
control over the communication language, as in the case of multiple KBs that have
extensive overlap. In such cases, the communication language between KBs may be
large, possibly resulting in a large interpolant. In Section 4 we provide an algorithm for
partitioning theories that attempts to minimize the communication language between
partitions.

3 Propositional Satisfiability

The algorithm we propose in this section uses a SAT procedure as a subroutine and is
back-track free. We describe the algorithm using database notation [45]. πp1,...,pkT is
the projection operation on a relation T . It produces a relation that includes all the rows
of T , but only the columns named p1, ..., pk (suppressing duplicate rows). S

�
R is the

natural join operation on the relations S and R. It produces the cross product of S,R,
selecting only those entries that are equal between identically named fields (checking
S.A = R.A), and discarding those columns that are now duplicated (e.g., R.A will be
discarded).

The proposed algorithm shares some intuition with prime implicate generation (e.g.,
[29, 25]). Briefly, we first compute all the models of each of the partitions (akin to
computing the implicates of each partition). We then use

�
to combine the partition

models into models for A. The algorithm is presented in Figure 4.

PROCEDURE LINEAR-PART-SAT({Ai}i≤n)
{Ai}i≤n a partitioning of the theory A,

1. G0 ← the intersection graph of {Ai}i≤n. G← BREAK-CY CLES(G0).
2. ∀i ≤ n, let L(i) =

⋃
(i,j)∈E l(i, j).

3. ∀i ≤ n, for every truth assignment A to L(i), find satisfying truth assignments ofAi ∪A,
storing the result in a table Ti(A).

4. Let dist(i, j) (i, j ∈ V ) be the length of the shortest path between i, j in G. Let i ≺ j iff
dist(i, 1) < dist(j, 1) (≺ is a strict partial order).

5. Iterate over i ≤ n in reverse ≺-order (the last i is 1). ∀j ≤ n such that (i, j) ∈ E and
i ≺ j, perform:

– Ti ← Ti � (πL(i)Tj) (Join Ti with those columns of Tj that correspond to L(i)). If
Ti = ∅, return FALSE.

6. Return TRUE.

Fig. 4. An algorithm for SAT of a partitioned propositional theory.

The iterated join that we perform takes time proportional to the size of the tables
involved. We keep table sizes below 2|L(i)| (L(i) computed in step 2), by projecting
every table before joining it with another. Soundness and completeness follow by an
argument similar to that given for MP, which can be found in [2].



Let A be a partitioned propositional theory with n partitions. Let m = |L(A)|,
L(i) the set of propositional symbols calculated in step 2 of LINEAR-PART-SAT, and
mi = |L(Ai) \ L(i)| (i ≤ n). Let a = |A| and k be the length of each axiom.

Lemma 1. The time taken by LINEAR-PART-SAT to compute SAT for A is

T ime(n,m,m1, ...,mn, a, k, |L(1)|, ..., |L(n)|) =

O(a ∗ k2 + n4 ∗m +
n∑

i=1

(2|L(i)| ∗ fSAT (mi))),

where fSAT is the time to compute SAT. Furthermore, if P 6= NP and in G all the
partitionsAi have the same number of propositional symbols, then LINEAR-PART-SAT
computes SAT for A in time

T ime(m,n, l, d) = O(n ∗ 2d∗l ∗ fSAT (
m

n
)).

where d = maxv∈V d(v) (d(v) is the degree of node v) and l = maxi,j≤n|l(i, j)|.

For example, if we partition a given theoryA into only two partitions (n = 2), sharing l
propositional symbols, the algorithm will take time O(2l ∗ fSAT (m2 )). Assuming P 6=
NP , this is a significant improvement over a simple SAT procedure, for every l that is
small enough (l < αm

2 , and α ≤ 0.582 [38, 14]).
It is important to notice that both the MP procedure (Figure 2) and the LINEAR-

PART-SAT procedure (Figure 4) focus on structured problems and not random ones. In
structured problems the labels of the links are small, leading to only a small overhead
in space. Lemma 1 and Section 2.2 show that the size of tables and size of messages
sent is exponentially dependent on the size of links between partitions. In a random
problem it is possible that in any decomposition the links may be large, leading to
possibly exponential computational space. In structured problems the links are small,
thus avoiding such risk.

4 Decomposing a Logical Theory

The algorithms presented in previous sections assumed a given partitioning. In this sec-
tion we address the critical problem of automatically decomposing a set of propositional
or FOL clauses into a partitioned theory. Guided by the results of previous sections, we
propose guidelines for achieving a good partitioning, and present a greedy algorithm
that decomposes a theory following these guidelines.

4.1 A Good Partitioning

Given a theory, we wish to find a partitioning of that theory that minimizes the for-
mula derived in Lemma 1. To that end, assuming P 6= NP , we want to minimize the
following parameters for all i ≤ n.



1. |L(i)| - the total number of symbols contained in all links to/from node i. If G0 is
already a tree, this is the number of symbols shared between the partition Ai and
the rest of the theoryA \ Ai.

2. mi - the number of symbols in a partition, less those in the links, i.e., in Ai \L(i).
Typically, having more partitions causesmi to become smaller.

3. n - the number of partitions.

Also, a simple analysis shows that given fixed values for l, d in Corollary 1, the
maximal n that maintains l, d such that also n ≤ ln2 ∗ α ∗ m (α = 0.582 [38, 14])
yields an optimal bound for LINEAR-PART-SAT. In Section 2.2 we saw that the same
parameters influence the number of derivations we can perform in MP: |L(i)| influ-
ences the interpolant size and thus the proof length, and mi influences the number of
deductions/resolutions we can perform. Thus, we would like to minimize the number
of symbols shared between partitions and the number of symbols in each partition less
those in the links.

The question is, how often do we get large n (many partitions), small mi’s (small
partitions) and small |L(i)|’s (weak interactions) in practice. We believe that in domains
that deal with engineered physical systems, many of the domain axiomatizations have
these structural properties. Indeed, design of engineering artifacts encourages modu-
larization, with minimal interconnectivity (see [1, 28, 13]). More generally, we believe
axiomatizers of large corpora of real-world knowledge tend to try to provide structured
representations following some of these principles.

4.2 Vertex Min-Cut in the Graph of Symbols

To exploit the partitioning guidelines proposed in the previous subsection, we represent
our theory A using a symbols graph that captures the features we wish to minimize.
G = (V,E) is a symbols graph for theory A such that each vertex v ∈ V is a symbol
in L(A), and there is an edge between two vertices if their associated symbols occur in
the same axiom of A , i.e., E = {(a, b) | ∃α ∈ A s.t. a, b appear in α}.

Figure 5 illustrates the symbols graph of theory A (top) from Figure 1 and the
connected symbols graphs (bottom) of the individual partitions A1,A2,A3. The sym-
bols ok p, on p, m f , w, ok b, on b, s, c, t, h d are short for ok pump, on pump,
man fill, water, ok boiler, on boiler, steam, coffee, teabag, hot drink, respec-
tively. Notice that each axiom creates a clique among its constituent symbols. To min-
imize the number of symbols shared between partitions (i.e., |L(i)|), we must find par-
titions whose symbols have minimal vertex separators in the symbols graph.

We briefly describe the notion of a vertex separator. Let G = (V,E) be an undi-
rected graph. A set S of vertices is called an (a, b) vertex separator if {a, b} ⊂ V \ S
and every path connecting a and b in G passes through at least one vertex contained in
S. Thus, the vertices in S split the path from a to b. LetN(a, b) be the least cardinality
of an (a, b) vertex separator. The connectivity of the graphG is the minimalN(a, b) for
any a, b ∈ V that are not connected by an edge.

Figure 6 presents a greedy recursive algorithm that uses Even’s algorithm to find sets
of vertices that together separate a graph into partitions. The algorithm returns a set of
symbols sets that determine the separate subgraphs. Different variants of the algorithm
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Fig. 5. Decomposing A’s symbols graph.

yield different structures for the intersection graph of the resulting partitioning. As is,
SPLIT returns sets of symbols that result in a chain of partitions. We obtain arbitrary
trees, if we change step 2(c) to find a minimum separator that does not include a, b (not
required to separate a, b). We obtain arbitrary graphs, if in addition we do not aggregate
R into r in step 4.

Proposition 2. Procedure SPLIT takes time O(|V |
5

2 ∗ |E|).

Finally, to partition a theory A, create its symbols graph G and run SPLIT(G,M ,
l, nil, nil). For each set of symbols returned, define a partition Ai that includes all the
axioms of A in the language defined by the returned set of symbols.

We know of no easy way to find an optimal selection of l (the limit on the size of
the links) and M (the limit on the number of symbols in a partition) without having
prior knowledge of the dependency between the number (and size) of partitions and l.
However, we can find out when a partitioning no longer helps computation (compared
to the best time bound known for SAT procedures [38, 14]). Our time bound for the pro-
cedure is lower than Θ(2αm) when l ≤ αm−αmi−lgn

d
(i = argmaxjmj). In particular,

if l > m
2 , a standard deterministic SAT procedure will be better. Hence, l and M are

perhaps best determined experimentally.

5 Related Work

Many AI researchers have exploited structure to improve the efficiency of reasoning
(e.g., Bayes Nets [34], Markov decision processes [11], CSPs [18], and model-based
diagnosis [17]). There is also a vast literature in both clustering and decomposition
techniques.

Decomposition has not been exploited in theorem proving until recently (see [6,
7]). We believe that part of the reason for this lack of interest has been that theorem
proving has focused on mathematical domains that do not necessarily have structure that



PROCEDURE SPLIT(G,M , l, a, b)
G = (V,E) is an undirected graph.M is the limit on the number of symbols in a partition. l is
the limit on the size of links between partitions. a, b are in V or are nil.

1. If |V | < M then return the graph with the single symbol set V .
2. (a) If a and b are both nil, find a minimum vertex separator R in G. (b) Otherwise, if b is

nil, find a minimum vertex separator R in G that does not include a. (c) Otherwise, find a
minimum vertex separator R in G that separates a and b.
If R > l then return the graph with the single symbol set V .

3. LetG1, G2 be the two subgraphs ofG separated by R, withR included in both subgraphs.
4. Create G′1, G

′
2 from G1, G2, respectively, by aggregating the vertices in R into a single

vertex r, removing all self edges and connecting r with edges to all the vertices connected
by edges to some vertices in R.

5. Set V 1 = SPLIT (G′1,M, l, r, a) and V 2 = SPLIT (G′2,M, l, r, b).
6. Replace r in V 1, V 2 by the members of R. Return V 1, V 2.

Fig. 6. An algorithm for generating symbol sets that define partitions.

supports decomposition. Work on theorem proving has focused on decomposition for
parallel implementations [8, 5, 15, 43] and has followed decomposition methods guided
by lookahead and subgoals, neglecting the types of structural properties we used here.
Another related line of work focuses on combining logical systems (e.g., [32, 40, 3,
36, 44]). Contrasted with this work, we focus on interactions between theories with
overlapping signatures, the efficiency of reasoning, and automatic decomposition.

Decomposition for propositional SAT has followed different tracks. Perhaps the
most relevant work to ours is [19], which presented algorithms for reasoning with de-
composed CSPs. These can be used for SAT, using a given decomposition. In compar-
ison, the algorithm we presented for partitioned SAT does not produce all the models
possible in each partition, as proposed in [19]. Instead, it finds the truth values for propo-
sitions on the links that are extendible to a satisfying truth assignment for the whole
partition. This reduces our computation time and makes it more dependent on the links’
sizes rather than on partition sizes. Other work focused on heuristics for clause weight-
ing or symbol ordering (e.g., [39, 20]). Concurrently to our work, Rish and Dechter
[37] have proposed an algorithm similar to our MP for the case of propositional ordered
resolution. Aside from looking at only a limited case (ordered resolution, propositional
logic), they allow excessive computation (they do the equivalent of performing all pos-
sible resolutions in each partition, twice) thus possibly using exponential amounts of
space and time over and above MP in the same settings.

Other SAT decomposition methods include [33] which suggested a decomposition
procedure that represents the theory as a hypergraph of clauses and divides the proposi-
tional theory into two partitions (heuristically minimizing the number of hyperedges),
modifying ideas described in [22]. [15] developed an algorithm that partitions a propo-
sitional theory into connected components. Both [15, 33] performed experiments that
demonstrated a decrease in the time required to prove test sets of axioms unsatisfiable.



Compared to work on automated decomposition for reasoning in Bayes-networks
and CSPs (e.g., [4]), our work is the first to address the problem of defining guidelines
and parameters for good decompositions of sets of axioms for the purpose of logi-
cal reasoning. Earlier work assumes that reasoning inside a given partition takes time
O(2m) (m is the number of propositions in the partition), which is not necessarily the
case in logical reasoning (in either model finding or proof finding). This has led to a
decomposition algorithm that focuses on minimal links rather than minimal partitions.

Finally, work on formalizing and reasoning with context (e.g., [30]) can be related
to partition-based logical reasoning by viewing the contextual theories as interacting
sets of theories. Unfortunately, to introduce explicit contexts, a language that is more
expressive than FOL is needed. Consequently, a number of researchers have focused on
context for propositional logic, while much of the reasoning work has focused on proof
checking (e.g., GETFOL [23]). There have been few reported successes with automated
reasoning; [9] presents one example.

6 Conclusions

We have shown that structured logical theories can be reformulated into partitioned log-
ical theories such that reasoning over those partitions has computational advantages for
theorem provers and SAT solvers. Theorem proving strategies, such as resolution, can
use such decompositions to constrain search. Partition-based reasoning will improve
the efficiency of propositional SAT solvers if the theory is decomposable into partitions
that share only small numbers of symbols. We have provided sound and complete algo-
rithms for reasoning with partitions of related logical axioms, both in propositional and
FOL. Further, we analyzed the effect of partition-based logical reasoning on resolution-
based inference, both with respect to proof search space size, and with respect to the
length of a proof. We also analyzed the performance of our SAT algorithm and showed
that it takes time proportional to SAT solutions on individual partitions and an expo-
nent in the size of the links between partitions. Both algorithms can gain further time
efficiency through parallel processing.

Guided by the analysis of our SAT algorithm, we suggested guidelines for achieving
a good partitioning and proposed an algorithm for the automatic decomposition of the-
ories that tries to minimize identified parameters. This algorithm generalizes previous
algorithms used to decompose CSPs by finding single-vertex separators.
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